• Sonuç bulunamadı

Analyzing large sparse Markov chains of Kronecker products

N/A
N/A
Protected

Academic year: 2021

Share "Analyzing large sparse Markov chains of Kronecker products"

Copied!
1
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Analyzing Large Sparse Markov Chains

of Kronecker Products

Tuˇgrul Dayar

Department of Computer Engineering

Bilkent University

TR–06800 Bilkent, Ankara, Turkey

Email: tugrul@cs.bilkent.edu.tr

Abstract—Kronecker products are used to define the underly-ing Markov chain (MC) in various modelunderly-ing formalisms, includ-ing compositional Markovian models, hierarchical Markovian models, and stochastic process algebras. The motivation behind using a Kronecker structured representation rather than a flat one is to alleviate the storage requirements associated with the MC. With this approach, systems that are an order of magnitude larger can be analyzed on the same platform.

In the Kronecker based approach, the generator matrix underlying the MC is represented using Kronecker products [6] of smaller matrices and is never explicitly generated. The implementation of transient and steady–state solvers rests on this compact Kronecker representation, thanks to the existence of an efficient vector–Kronecker product multiplication algorithm known as the shuffle algorithm [6]. The transient distribution can be computed through uniformization using vector–Kronecker product multiplications. The steady–state distribution also needs to be computed using vector–Kronecker product multiplications, since direct methods based on complete factorizations, such as Gaussian elimination, normally introduce new nonzeros which cannot be accommodated. The two papers [2], [10] provide good overviews of iterative solution techniques for the analysis of MCs based on Kronecker products. Issues related to reachability analysis, vector–Kronecker product multiplication, hierarchical state space generation in Kronecker based matrix representations for large Markov models are surveyed in [5].

Throughout our discussion, we make the assumption that the MC at hand does not have unreachable states, meaning it is irreducible. And we take an algebraic view [7] to discuss recent results related to the analysis of MCs based on Kronecker products independently from modeling formalisms. We provide background material on the Kronecker representation of the generator matrix underlying a CTMC, show that it has a rich structure which is nested and recursive, and introduce a small CTMC whose generator matrix is expressed as a sum of Kronecker products; this CTMC is used as a running example throughout the discussion. We also consider preprocessing of the Kronecker representation so as to expedite numerical analysis. We discuss permuting the nonzero structure of the underlying CTMC symmetrically by reordering, changing the orders of the nested blocks by grouping, and reducing the size of the state space by lumping. The steady–state analysis of CTMCs based on Kronecker products is discussed for block iterative meth-ods, multilevel methmeth-ods, and preconditioned projection methmeth-ods, respectively. The results can be extended to DTMCs based on Kronecker products with minor modifications. Areas that need further research are mentioned as they are discussed.

Our contribution to this area over the years corresponds to work along iterative methods based on splittings and their block versions [11], associated preconditioners to be used with projection methods [4], near complete decomposability [8], a

method based on iterative disaggregation for a class of lumpable MCs [9], a class of multilevel methods [3], and a recent method based on decomposition for weakly interacting subsystems [1].

Keywords-Markov chains; Kronecker products; reordering; grouping; lumping; block iterative methods; multilevel methods; preconditioned projection methods;

A

CKNOWLEDGMENT

The author gratefully acknowledges grant T ¨

UBA–GEB˙IP of

the Turkish Academy of Sciences.

R

EFERENCES

[1] Y. BAO, I. N. BOZKURT, T. DAYAR, X. SUN, AND K. S. TRIVEDI, Decompositional analysis of Kronecker structured

Markov chains, to appear in Electronic Transactions on

Numer-ical Analysis.

[2] P. BUCHHOLZ, Structured analysis approaches for large Markov

chains, Applied Numerical Mathematics, 31 (1999), pp. 375–

404.

[3] P. BUCHHOLZ ANDT. DAYAR, Comparison of multilevel

meth-ods for Kronecker structured Markovian representations,

Com-puting, 73 (2004), pp. 349–371.

[4] P. BUCHHOLZ ANDT. DAYAR, Block SOR preconditioned

pro-jection methods for Kronecker structured Markovian represen-tations, SIAM Journal on Scientific Computing, 26 (2005), pp.

1289–1313.

[5] P. BUCHHOLZ ANDP. KEMPER, Kronecker based

representa-tions of large Markov chains, in Validation of Stochastic

Sys-tems, Lecture Notes in Computer Science 2925, B. Haverkort, H. Hermanns, and M. Siegle, eds., Springer Verlag, 2004, pp. 256–295.

[6] M. DAVIO, Kronecker products and shuffle algebra, IEEE Trans-actions on Computers, C-30 (1981), pp. 116–125.

[7] T. DAYAR, Analyzing Markov chains based on Kronecker

prod-ucts, in MAM 2006: Markov Anniversary Meeting, A. N.

Langville and W. J. Stewart, eds., Boson Books, Raleigh, North Carolina, USA, 2006, pp. 279–300.

[8] O. GUSAK, T. DAYAR, AND J.-M. FOURNEAU, Stochastic automata networks and near complete decomposability, SIAM Journal on Matrix Analysis and Applications, 23 (2001), pp. 581–599.

[9] O. GUSAK, T. DAYAR, AND J.-M. FOURNEAU, Lumpable

continuous-time stochastic automata networks, European

Jour-nal of OperatioJour-nal Research, 148 (2003), pp. 436–451. [10] W. J. STEWART, K. ATIF, ANDB. PLATEAU, The numerical

solution of stochastic automata networks, European Journal of

Operational Research, 86 (1995), pp. 503–525.

[11] E. UYSAL ANDT. DAYAR, Iterative methods based on splittings

for stochastic automata networks, European Journal of

Opera-tional Research, 110 (1998), pp. 166–186.

2009 Sixth International Conference on Quantitative Evaluation of Systems

978-0-7695-3808-2/09 $25.00 © 2009 IEEE DOI 10.1109/QEST.2009.12

Referanslar

Benzer Belgeler

Daha sonra atıcı çilliğin damaklı kısmına değnekle vurup olduğu bölgede çilliği havalandırıp uygun anda tekrardan sert bir vuruş yaparak ebe takımın

In fact, MNCs increasingly rely on the implementation of knowledge management capabilities (i.e. the processes of knowledge acquisition, knowledge conversion and knowledge

This is explained by a combination of factors: Communication time is smaller than computation time, the global exchange step is overlapped with the merge step, and

We study the energy transfer rate for electrons in two parallel quantum wires due to interwire Coulomb interactions. The energy transfer rate between the wires ~similar to the

As a computational study, he used Civil Aeronautics Board(CAB) data which is based on the airline passenger interactions between top 25 U.S cities in 1970 as evaluated

Furthermore, the same elimination procedure can also be incorporated into al- gorithms that can compute an approximate minimum enclosing ball of more general input sets such as a set

I think that an analysis which would interrogate the symbolic construction of women in nationalist ideologies and the imagination of women as gendered national subjects in

The connection between migration and security have been well grasped by Keyman and İçduygu (2000:383-4) who state that “migration can be seen as integral to the discourse of