• Sonuç bulunamadı

Measurement of the ZZ production cross section and Z -> l(+)l(-)l '(+)l '(-) branching fraction in pp collisions at root s=13TeV

N/A
N/A
Protected

Academic year: 2021

Share "Measurement of the ZZ production cross section and Z -> l(+)l(-)l '(+)l '(-) branching fraction in pp collisions at root s=13TeV"

Copied!
24
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Measurement

of

the

ZZ

production

cross

section

and

Z

→ 

+





+



−

branching

fraction

in

pp

collisions

at

s

=

13 TeV

.TheCMS Collaboration CERN,Switzerland

a r t i c l e i n f o a b s t ra c t

Articlehistory: Received29July2016

Receivedinrevisedform9October2016 Accepted21October2016

Availableonline27October2016 Editor: M.Doser

Keywords: CMS Physics Electroweak

Four-lepton production in proton–proton collisions, pp→ (Z) (Z)→ ++−, where ,=e or μ, is studied at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 2.6 fb−1. The ZZ production cross section, σ(ppZZ)=

14.6+11..98(stat)+00..53(syst)±0.2 (theo)±0.4 (lumi)pb, is measured for events with two opposite-sign, same-flavor lepton pairs produced in the mass region 60 <m+,m+−<120 GeV. The Z boson branching

fraction to four leptons is measured to be B(Z → ++−)=4.9+0.8

−0.7(stat)+ 0.3

−0.2(syst)+ 0.2

−0.1(theo)±

0.1 (lumi)×10−6for the four-lepton invariant mass in the range 80 <m

++−<100 GeV and dilepton

mass m+>4 GeV for all opposite-sign, same-flavor lepton pairs. The results are in agreement with

standard model predictions.

©2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Measurements of diboson production at the CERN LHC allow precision studies of the standard model (SM). These measure-ments are important for testing predictions that were recently made available at next-to-next-to-leading-order (NNLO) in quan-tum chromodynamics (QCD) [1]. Comparing these predictions to data ata rangeof center-of-mass energies gives insightinto the structure of the electroweak gauge sector of the SM, and new proton–protoncollision dataat √s=13 TeV allow diboson mea-surements at the highest energies to date. Any deviations from expectedvaluescouldbeanindicationofphysicsbeyondtheSM.

PreviousmeasurementsoftheZZproductioncrosssectionfrom CMSwereperformedintheZZ→ ++− andZZ→ +νν

decaychannels,where=e, μand=e, μ, τ forbothZbosons producedon-shell,inthedileptonmass range60–120 GeV[2–4]. Thesemeasurements were madewithdata setscorresponding to integratedluminositiesof5.1 fb−1 at√s=7 TeV and19.6 fb−1 at √

s=8 TeV,andagreewithSM predictions.TheATLAS Collabora-tionproducedsimilarresultsat√s=7,8,and13 TeV[5–7],which alsoagreewiththeSM.

Extending the mass window for the dilepton candidates to lower values allows measurements of (Z) (Z) production, where “Z” may indicate an on-shell Z boson or an off-shell

 E-mailaddress:cms-publication-committee-chair@cern.ch.

Z∗ boson. The resulting sample includes Higgs boson events in the “golden channel” H→ZZ∗→ ++−, where =e, μ, and rare Z boson decays to four leptons. The Z→ +γ∗→

++− decaywas studied in detail at LEP [8] andwas ob-servedinppcollisionsbyCMS[9]andbyATLAS [10].Thoughthe branching fraction forthis decay is orders of magnitude smaller than that forthe Z→ +− decay,the precisely known mass of the Z boson makes the four-lepton mode useful for calibrating massmeasurementsofthenearbyHiggsresonance.

This letter reports a study of four-lepton production (pp→

++−,whereandindicateelectronsormuons)at√s= 13 TeV witha dataset correspondingtoan integratedluminosity of 2.62±0.07 fb−1 recorded in2015. Fromthisstudy,cross sec-tionsareinferredfornonresonantproductionofpairsofZ bosons, pp→ZZ, whereboth Z bosonsareproduced on-shell,definedas the massrange60–120 GeV,andresonantpp→Z→ ++−

production.Discussionof resonantHiggs bosonproductionis be-yondthescopeofthisletter.

2. TheCMSdetector

AdetaileddescriptionoftheCMSdetector,togetherwitha def-inition of thecoordinatesystemused andtherelevant kinematic variables,canbefoundinRef.[11].

The central feature of the CMS apparatus is a superconduct-ing solenoidof6 m internal diameter,providing amagneticfield of3.8 T.Withinthe solenoidvolumeare asiliconpixel andstrip

http://dx.doi.org/10.1016/j.physletb.2016.10.054

0370-2693/©2016TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

tracker,aleadtungstatecrystalelectromagneticcalorimeter(ECAL), and a brass and scintillator hadron calorimeter (HCAL), which provide coverage in pseudorapidity |η|<1.479 in a barrel and 1.479<|η|<3.0 intwoendcapregions.Forwardcalorimeters ex-tendthecoverageprovidedbythebarrelandendcapdetectorsto |η|<5.0.Muonsaremeasuredingas-ionizationdetectors embed-dedinthesteelflux-returnyokeoutsidethesolenoidintherange |η|<2.4, with detection planes made using three technologies: drifttubes,cathodestripchambers,andresistiveplatechambers.

Electronmomentaareestimatedbycombiningenergy measure-mentsintheECALwithmomentummeasurements inthetracker. Themomentum resolution forelectrons withtransverse momen-tum pT≈45 GeV from Z→e+e− decays ranges from 1.7% for nonshoweringelectronsinthebarrelregionto4.5%forshowering electronsintheendcaps[12].Matchingmuonstotracksmeasured in the silicon tracker results in a pT resolution for muons with 20<pT<100 GeV of1.3–2.0%inthebarrelandbetterthan 6%in theendcaps.ThepT resolutioninthebarrelisbetterthan10%for muonswithpTupto1 TeV[13].

3. Signalandbackgroundsimulation

Signaleventsare generatedwith powheg 2.0[14–16]at next-to-leading-order(NLO) inQCD forquark–antiquarkprocesses and leading-order (LO) for quark–gluon processes. This includes ZZ, Zγ∗,Z,and γγ∗ productionwithaconstraintofm+−>4 GeV

appliedbetweenallpairsofoppositelychargedleptonsatthe gen-eratorleveltoavoidinfrareddivergences.The gg→ZZ processis simulatedatLOwith mcfm v7.0[17].Thesesamplesarescaledto correspondto cross sectionscalculated atNNLO for qq→ZZ [1] (scalingK factor 1.1)andatNLO forgg→ZZ[18](K factor1.7). The gg→ZZ process is calculated to Oα5

s 

, where αs is the strong coupling constant, while the other contributing processes arecalculated to Oα4

s 

; thishigher-order correction isincluded becausetheeffectisknowntobelarge[18].

AsampleofHiggsbosoneventsisproducedinthegluon–gluon fusion process with powheg 2.0 in the NLO QCD approximation. TheHiggsbosondecayismodeledwith jhugen 3.1.8[19–21].The qq→WZ processisgeneratedwith powheg 2.0.

The pythia v8.175 [22–24] package is used for parton show-ering, hadronization, and the underlying event simulation, with parameterssetbytheCUETP8M1tune[25].TheNNPDF3.0[26]set isused asthedefaultset ofpartondistribution functions(PDFs). For all simulated event samples, the PDFs are calculated to the sameorderinQCDastheprocessinthesample.

Thedetectorresponseissimulatedusingadetaileddescription oftheCMSdetectorimplemented withthe Geant4package [27]. The eventreconstruction is performedwiththe same algorithms used fordata. The simulated samples include additional interac-tions per bunch crossing, referred to as “pileup.” The simulated events are weighted so that the pileup distribution matches the data,withanaverageofabout11interactionsperbunchcrossing.

4. Eventreconstruction

All long-lived particles in each collision event — electrons, muons,photons,andchargedandneutralhadrons—areidentified andreconstructedwiththe CMSparticle-flow(PF) algorithm[28, 29]fromacombinationofthesignalsfromallsubdetectors. Recon-structedelectrons[12]andmuons[13]arecandidatesforinclusion infour-leptonfinalstatesiftheyhavepeT>7 GeV and|ηe|<2.5 or T >5 GeV and|ημ|<2.4.Thesearedesignated“signalleptons.”

Signal leptons are also required to originate from the event vertex,definedastheproton–protoninteractionvertexwhose as-sociatedchargedparticleshavethehighestsumofp2

T.Thedistance

ofclosestapproach betweeneach leptontrackandtheevent ver-tex isrequired tobe lessthan 0.5 cm inthe plane transverse to thebeamaxis,andlessthan1 cminthedirectionalongthebeam axis.Furthermore,thesignificanceofthethree-dimensionalimpact parameterrelativetotheeventvertex, SIP3D,isrequiredtosatisfy SIP3D≡ |IPIP|<4 for each lepton, where IP is the distance of closest approachofeach leptontracktothe eventvertexand σIP isitsassociateduncertainty.

Signal leptons are requiredto beisolated fromother particles intheevent.Therelativeisolationisdefinedas

Riso=   charged hadrons pT +max  0,  neutral hadrons pT+  photons pT− pPUT  pT, (1)

where the sums run over the charged and neutralhadrons, and photons,inaconedefinedbyR



(η)2+ (φ)2<0.3 around the lepton trajectory, where φ is the azimuthal angle inradians. Tominimize the contributionof chargedparticles frompileupto theisolationcalculation,chargedhadronsareincludedonlyifthey originatefromtheeventvertex.Thecontributionofneutral parti-cles frompileup is pPU

T .For electrons, pPUT is evaluated with the “jetarea”methoddescribedinRef.[30];formuons,itistakento behalfthesumofthepTofallchargedparticlesinthecone orig-inatingfrom pileupvertices.The factor one-halfaccountsfor the expected ratio of charged to neutral particle energy in hadronic interactions.AleptonisconsideredisolatedifRiso<0.35.

Emission of final-state radiation (FSR) photons by the signal leptons may degrade the performance of the isolation require-mentsandZ bosonmassreconstruction. Thesephotonsare omit-ted from the isolation determination for signal leptons and are implicitlyincludedindileptonkinematiccalculations.Photonsare FSR candidates if T >2 GeV, |ηγ|<2.4, their relative isola-tion (defined as in Eq. (1) with pPU

T =0) is less than 1.8, and

R(,γ) <0.5 withrespecttothenearestsignallepton.Toavoid double countingof bremmstrahlung photonsthat are already in-cludedinelectron reconstruction,photonsarenot FSRcandidates if there is anysignal electron within R(γ,e) <0.15 orwithin |φ (γ,e)|<2 and|η(γ,e)|<0.05.BecauseFSRphotonshavea higheraverageenergythanphotonsfrompileupandareexpected tobemostlycollinearwiththeemittinglepton,aphotoncandidate isacceptedasFSRifR(,γ) /T2<0.012 GeV−2.

In simulatedZZ→ ++− events, the efficiencyto select generatedFSRphotonsisaround55%,androughly85%ofselected photonsare matched to FSRphotons. At leastone FSR photonis identifiedinapproximately2%, 5%,and8% ofsimulatedeventsin the 4e, 2e2μ,and4μ channels, respectively. Indata eventswith twoon-shellZ bosons,noFSRphotonsareselectedinthe4e decay channel,whileatleastoneFSRphotonisselectedinthreeandfive eventsinthe2e2μand4μdecaychannels,respectively.

Theleptonreconstruction, identification,andisolation efficien-ciesaremeasuredwithatag-and-probetechnique[31] appliedto a sample of Z→ +− data events. The measurements are per-formed in several bins of pT and |η|. The electron

reconstruc-tion and selection efficiency in the ECAL barrel (endcaps) varies from about 85% (77%) at peT≈10 GeV to about 95% (89%) for peT≥20 GeV, whileinthebarrel-endcaptransitionregionthis ef-ficiencyisabout85%averagedoverallelectronswithpeT>7 GeV. Themuonsarereconstructedandidentifiedwithefficienciesabove ∼98% within|ημ|<2.4.

(3)

5. Eventselection

The primary triggers for thisanalysis require the presence of apair oflooselyisolatedleptons ofthe sameordifferentflavors. ThehighestpTleptonmusthave pT>17 GeV,andthesubleading leptonmusthavepe

T>12 GeV ifitisanelectronorp μ

T >8 GeV if itisamuon. Thedielectronanddimuontriggersrequirethatthe tracks corresponding to the leptons originate fromwithin 2 mm of each other in the plane transverse to the beam axis.Triggers requiringatriplet oflower-pT leptonswithno isolationcriterion, orasingle high-pTelectronwithoutan isolationrequirement,are also used.An event isused if it passesany trigger regardlessof the decay channel. The total trigger efficiency for events within theacceptanceofthisanalysisisgreaterthan98%.

AsignaleventmustcontainatleasttwoZ∗ candidates,each formedfromanoppositelychargedpairofisolatedsignalelectrons or muons. Among the four leptons, the highest pT lepton must have pT>20 GeV, andthe second-highest pT lepton must have peT>12 GeV if itis an electron or T >10 GeV if it is amuon. AllleptonsarerequiredtobeseparatedbyR(1, 2) >0.02,and electronsarerequiredtobeseparatedfrommuonsbyR(e,μ) >

0.05.

Within each event, all permutations of leptons givinga valid pair of Z∗ candidates are considered separately. Within each

++− candidate, the dilepton candidate with an invariant massclosest to 91.2 GeV,takenasthe nominalZ bosonmass,is denoted Z1 andis requiredto havea mass greater than40 GeV. TheotherdileptoncandidateisdenotedZ2.BothmZ1 andmZ2 are

requiredto belessthan 120 GeV.Allpairs ofoppositely charged leptonsinthecandidatearerequiredtohavem>4 GeV

regard-lessofflavor.

Ifmultiple++− candidateswithinan eventpassall se-lections,thepassingcandidatewithmZ1 closesttothe nominalZ

bosonmassischosen.Intherarecaseoffurtherambiguity,which mayariseineventswithfiveormoresignal leptons, theZ2 can-didate that maximizes the scalar pT sum of the four leptons is chosen.

Additional requirements are applied toselect eventsfor mea-surements ofspecific processes.The →ZZ cross section is mea-sured using events where both mZ1 and mZ2 are greater than

60 GeV.TheZ→ ++−branchingfractionismeasuredusing eventswith80<m++−<100 GeV, arangechosen toretain mostof the decaysin the resonancewhile removing most other processeswithfour-leptonfinalstates.

6. Backgroundestimate

ThemajorbackgroundcontributionsarisefromZ bosonandWZ dibosonproductioninassociationwithjetsandfromtt production. Inallthesecases,particlesfromjetfragmentationsatisfyboth lep-tonidentificationandisolationcriteria,andarethusmisidentified assignalleptons.

Theprobabilityforsuchobjectstobeselectedismeasuredfrom a sample of Z+ candidate events,where Z isa pair ofoppositely charged, same-flavor leptons that pass all analysis requirements and satisfy |m+−−mZ|<10 GeV, where mZ is the nominal Z bosonmass.Eacheventinthissamplemusthaveexactlyone ad-ditionalobjectcandidatethat passesrelaxedidentification require-ments withno isolation requirements applied. The misidentifica-tionprobability foreach leptonflavor isdefinedasaratioofthe numberofcandidates that passthe final isolation and identifica-tionrequirementstothetotalnumberinthesample,measuredin bins of lepton candidate pT and η. The number of Z+ candidate eventsiscorrected forcontamination fromWZ production,orZZ productioninwhichoneleptonisnotreconstructed.Theseevents

Table 1

Thecontributionsofeachsourceofsignalsystematicuncertainty inthecrosssectionmeasurements.Theintegratedluminosity un-certaintyandthePDFandscaleuncertaintiesareconsidered sepa-rately.Allotheruncertaintiesareaddedinquadratureintoasingle systematicuncertainty.Uncertaintiesthatvarybydecaychannel arelistedasarange.

Uncertainty Z→4 ZZ→4 ID efficiency 2–6% 0.4–0.9% Isolation efficiency 1–6% 0.3–1.1% Trigger efficiency 2–4% 2% MC statistics 1–2% 1% Background 0.7–1.4% 0.7–2% Pileup 0.4–0.8% 0.2% PDF 1% 1% QCD scales 1% 1% Integrated luminosity 2.7% 2.7%

havea thirdgenuine,isolated leptonthat mustbeexcluded from the misidentification probability calculation. The WZ contamina-tionissuppressedbyrequiringthemissingtransverseenergyEmiss

T tobebelow25 GeV.The EmissT isdefinedasthemagnitudeofthe missing transverse momentum vector pmissT , the projection onto the plane transverse tothe beams ofthe negative vector sumof themomentaofallreconstructedparticlesintheevent. Addition-ally, the transverse mass mT≡



(ET+EmissT )2− (p

T+ pmissT )2 of

candidateandthemissingtransversemomentumvectorisrequired to be less than 30 GeV. The residualcontribution of WZ andZZ events, which may be up to a few percent of the events with

candidatepassingallselectioncriteria,isestimatedfromsimulation andsubtracted.

To account for all sources of background events, two control samplesareusedtoestimatethenumberofbackgroundeventsin thesignalregions.Botharedefinedtocontaineventswitha dilep-ton candidate satisfyingall requirements(Z1) andtwo additional lepton candidates +−.In one control sample, enriched in WZ events, one  candidateis required to satisfy the full identifica-tion andisolation criteriaandtheother mustfailthe fullcriteria and instead satisfy only relaxed ones; in the other, enriched in Z+jets events,both candidatesmustsatisfytherelaxedcriteria, but fail the full criteria. The additional leptons must have oppo-site charge andthe same flavor (e±e∓, μ±μ∓). From this set of events, the expected numberof background events inthe signal region isobtainedby scalingthenumberofobserved Z1+ +−

events by the misidentification probability for each lepton fail-ingtheselection.Low-massdileptonsmaybesufficientlycollinear thattheirisolationconesoverlap,andtheirmisidentification prob-abilities are therefore correlated. To mitigate the effect of these correlations,onlythecontrolsampleinwhichbothadditional lep-tonsfailthefull selectionisusedifR+, −<0.6.The back-groundcontributionstothesignalregionsofZ→ ++−and ZZ→ ++−aresummarizedinSection8.

7. Systematicuncertainties

Systematic uncertainties are summarized in Table 1. In both data and simulated event samples,trigger efficiencies are evalu-atedwithatag-and-probe technique.The ratiobetweendataand simulation isappliedto simulatedevents,andthesize ofthe re-sultingchangeinexpectedyieldistakenastheuncertaintyforthe determination ofthetriggerefficiency.Thisuncertaintyis around 2%ofthefinalestimatedyield.ForZ→e+e−e+e−events,the un-certaintyincreasesto4%.

Theleptonidentificationandisolationefficienciesinsimulation are corrected with scaling factors derived with a tag-and-probe

(4)

methodandappliedasafunctionofleptonpTand η.Toestimate theuncertaintiesassociatedwiththetag-and-probetechnique,the total yield is recomputed withthe scaling factors varied up and downbythetag-and-probe fituncertainties.Theuncertainties as-sociatedwiththeidentificationefficiencyintheZZ→ ++−

(Z→ ++−)signal regions arefound tobe0.9% (6%)inthe 4e final state, 0.7% (4%) in the 2e2μ final state, and 0.4% (2%) inthe 4μ final state. The corresponding uncertainties associated withtheisolationefficiencyare1.1%(6%)inthe4e finalstate,0.7% (3%)in the 2e2μfinal state,and0.3% (1%) inthe 4μ final state. TheseuncertaintiesarehigherforZ→ ++−eventsbecause theleptonsgenerallyhavelower pT,andthesamplesusedinthe tag-and-probemethodhavefewereventsandmorecontamination fromnonpromptleptonsinthislow-pTregion.

Uncertaintiesduetotheeffectoffactorization(μF) and renor-malization(μR)scalechoiceonthe Z Z→ ++−acceptance are evaluated with powheg and mcfm by varying the scales up anddown by a factor of two with respect to the defaultvalues

μF =μR=mZZ. These variations are much smaller than 1% and areneglected.Parametricuncertainties(PDF+αs)areevaluated us-ing the CT10 [32] and NNPDF3.0 sets and are found to be less than1%.Thelargestdifference betweenpredictionsfrom powheg and mcfm with differentscales andPDF sets,1.5%, is considered tobe thetheoreticaluncertaintyintheacceptancecalculation.An additionaltheoretical uncertaintyarisesfromscaling the powheg qq→ZZ simulatedsamplefromitsNLOcrosssectiontotheNNLO prediction, andthe mcfm gg→ZZ samples from their LO cross sections to the NLO predictions. The change in the acceptance corresponding to this scaling procedure is found to be 1.1%. All theoreticaluncertaintiesareaddedinquadrature.

Thelargestuncertaintyintheestimatedbackgroundyieldarises fromdifferencesinsample compositionbetweentheZ+ control sample used to calculate the lepton misidentification probability andtheZ+ +−controlsample.Afurtheruncertaintyarisesfrom the limitednumber of events in the Z+  sample. A systematic uncertaintyof40%oftheestimatedbackgroundyieldisappliedto coverbotheffects. Thesize ofthisuncertaintyvariesby channel, butislessthan1%ofthetotalexpectedyield.

Theuncertaintyintheintegratedluminosityofthedatasample is2.7%[33].

8. Crosssectionmeasurements

The distributions of the four-lepton mass and the masses of the Z1 and Z2 candidates are shown in Fig. 1. The SM predic-tions include nonresonant ZZ predictions normalized using the NNLOcrosssection,productionoftheSM Higgsbosonwithmass 125 GeV[34],andresonantZ→ ++−production.The back-groundestimatedfromdatais alsoshown. The reconstructed in-variant mass of the Z1 candidates, and a scatter plot showing the correlation betweenmZ2 andmZ1 in data events,are shown

inFig. 2. In the scatter plot,clusters of eventscorresponding to ZZ→ ++−, Zγ→ ++−, andZ→ ++− pro-ductioncanbeseen.

The four-lepton invariant mass distribution below 110 GeV is shownin Fig. 3(top). Fig. 3(bottom) showsmZ2 plotted against mZ1 foreventswithm++− between80 and100 GeV,andthe

observedandexpectedeventyields inthismassregionare given inTable 2.

Thereconstructedfour-leptoninvariantmassisshowninFig. 4 (top)foreventswithtwoon-shellZ bosons.Fig. 4(bottom)shows theinvariantmassdistributionforallZ candidatesintheseevents. Thecorresponding observed andexpectedyields aregiven in Ta-ble 3.

Fig. 1. Distributionsof(top)thefour-leptoninvariant massm++− and (bot-tom)theinvariantmassofthedileptoncandidatesinallselectedfour-leptonevents, includingbothZ1 and Z2 ineachevent.Pointsrepresentthedata,whileshaded

histogramsrepresenttheSMpredictionandbackgroundestimate.Hatchedregions aroundthe predictedyieldrepresentcombinedstatistical,systematic,theoretical, andintegratedluminosityuncertainties.

The observed yields are used to evaluate the pp→Z→

++− andpp→ZZ→ ++− productioncrosssections froma combinedfitto thenumberof observedeventsin allthe final states. The likelihood is a combination of individual chan-nellikelihoodsforthesignalandbackgroundhypotheseswiththe statisticalandsystematicuncertaintiesintheformofscaling nui-sanceparameters. The ratioofthe measured crosssection to the SM crosssection givenby thisfitincludingall channelsisscaled by thecrosssection usedin thesimulationto findthemeasured fiducialcrosssection.

The definitions for the fiducial phase spaces for the Z→

++−andZZ→ ++−crosssectionmeasurementsare giveninTable 4.

(5)

Fig. 2. (top)ThedistributionofthereconstructedmassoftheZ1candidate.Points

representthedata,whileshadedhistogramsrepresenttheSMpredictionand back-groundestimate.Hatchedregionsaroundthepredictedyieldrepresentcombined statistical,systematic,theoretical,andintegratedluminosityuncertainties.(bottom) ThereconstructedmZ2 plottedagainstthereconstructedmZ1 indataevents,with

distinctivemarkersforeachfinalstate. Themeasuredcrosssectionsare

σfid(pp→Z→ ++−)

=30.5+54..27(stat)+11..84(syst)±0.8 (lumi) fb, σfid(pp→ZZ→ ++−)

=34.8+44..62(stat)+10..28(syst)±0.9 (lumi) fb.

Thepp→Z→ ++− fiducialcrosssectioncanbecompared to 27.9+11..05±0.6 fb calculated at NLO in QCD with powheg us-ingthesamesettingsasusedforthesimulatedsample described inSection3,withdynamicscales μF=μR=m++−.The

un-certainties are for scale and PDF variations, respectively. The ZZ fiducial cross section can be compared to 34.4+00..76±0.5 fb cal-culated with powheg and mcfm using the same settings as the simulatedsamples,withdynamicscales μF =μR=0.5m++−

forthecontributionfrom mcfm.

Fig. 3. (top)Thedistributionofthereconstructedfour-leptonmassm++−for eventsselectedwithm++−<110 GeV.Pointsrepresentthedata,whileshaded histogramsrepresenttheSMpredictionandbackgroundestimate.Hatchedregions around thepredictedyieldrepresentcombinedstatistical,systematic,theoretical, and integrated luminosityuncertainties. (bottom)The reconstructedmZ2 plotted

againstthereconstructedmZ1 indataeventsselectedwithm++−between80 and100 GeV,withdistinctivemarkersforeachfinalstate.

The pp→Z→ ++− fiducial cross section is scaled to

σ(pp→Z)B(Z→4) usingthe acceptancecorrection factorA= 0.122±0.002, estimated with powheg. This factor corrects the fiducialZ→ ++−crosssectiontothephasespacewithonly the 80–100 GeVmasswindowandm+>4 GeV requirements, andalsoincludesacorrection,0.96±0.01,forthecontributionof nonresonantfour-leptonproductiontothesignalregion.The mea-suredcrosssectionis

σ(pp→Z)B(Z→ ++−)

=250+4339(stat)+1511(syst)±4 (theo)±7 (lumi) fb. (2)

The branching fraction for the Z→ ++− decay, B(Z→

++−),ismeasuredbycomparingthecrosssectiongivenby Eq.(2)withtheZ→ +−crosssection,andiscomputedas

(6)

Table 2

Theobservedandexpectedyieldsoffour-leptoneventsinthemassregion80<m++−<100 GeV andestimatedyieldsofbackgroundeventsevaluatedfromdata,shownforeachfinalstateandsummed inthetotalexpectedyield.Thefirstuncertaintyisstatistical,thesecondoneissystematic.

Final state Expected N++− Background Total expected Observed 4μ 16.88±0.14±0.62 0.31±0.30±0.12 17.19±0.33±0.63 17 2e2μ 15.88±0.14±0.87 0.37±0.27±0.15 16.25±0.31±0.88 16 4e 5.58±0.08±0.53 0.21±0.10±0.08 5.78±0.13±0.53 6 Total 38.33±0.21±1.19 0.89±0.42±0.22 39.22±0.47±1.21 39

Fig. 4. Distributionsof(top)thefour-leptoninvariantmassm++−and(bottom) dileptoncandidatemassforfour-leptoneventsselectedwithbothZ bosonson-shell. Pointsrepresentthedata,whileshadedhistogramsrepresenttheSMpredictionand backgroundestimate.Hatchedregionsaroundthepredictedyieldrepresent com-binedstatistical,systematic,theoretical,andintegratedluminosityuncertainties.

B(Z→ ++−)

= σ(pp→Z→ ++−)

C60–120

80–100σ(pp→Z→ +)/B(Z→ +)

,

where σ(pp→Z→ +)=1870+5040 pb is the Z→ +− cross section times branching fraction calculated at NNLO with

fewzv2.0[35] inthemassrange60–120 GeV.Itsuncertainty in-cludes PDF uncertainties and uncertainties in αs, the charm and bottom quark masses, and the effect of neglected higher-order correctionsto thecalculation. Thefactor C80–10060–120=0.926±0.001 corrects for the difference in Z mass windows and is estimated using powheg. Its uncertainty includes scale and PDF variations. The nominal Z to dilepton branching fraction B(Z→ +) is 0.03366[36].Themeasuredvalueis

B(Z→ ++−)

=4.9+00..87(stat)+00..23(syst)+00..21(theo)±0.1 (lumi)×10−6,

wherethetheoreticaluncertaintyincludestheuncertainties inA,

C60–120

80–100,and σ(pp→Z)B(Z→ +).Thiscanbecomparedwith 4.6×10−6, computed with MadGraph5_aMC@NLO [37], and is consistentwiththeCMSandATLASmeasurementsat√s=7 and 8 TeV[9,10].

The total ZZ production cross section for both dileptons pro-ducedinthemassrange60–120 GeVandm+−>4 GeV isfound

tobe

σ(pp→ZZ)

=14.6+11..98(stat)+00..53(syst)±0.2 (theo)±0.4 (lumi) pb.

The measured total cross section can be compared to the the-oretical value of 14.5+00..54±0.2 pb calculated with a combina-tion of powheg and mcfm with the same settings as described for σfid(pp→ZZ→ ++−). It can also be compared to 16.2+00..46 pb, calculated at NNLO in QCD via matrix [1,38], or 15.0+00..76±0.2 pb, calculatedwith mcfm atNLO inQCD with ad-ditionalcontributionsfromLOgg→ZZ diagrams.Both valuesare calculatedwiththeNNPDF3.0PDFsets,atNNLOandNLO respec-tively,andfixedscalessetto μF=μR=mZ.

ThetotalZZ crosssectionisshowninFig. 5asafunctionofthe proton–protoncenter-of-massenergy.Results fromtheCMS[2–4] and ATLAS [5–7] experiments are compared to predictions from matrix and mcfm with the NNPDF3.0PDF sets andfixed scales

μF =μR =mZ. The matrix prediction uses PDFs calculated at NNLO,whilethe mcfm predictionusesNLOPDFs.Theuncertainties are statistical(innerbars)andstatisticalandsystematicaddedin quadrature(outer bars).The band around the matrix predictions reflectsscaleuncertainties, whilethebandaround the mcfm pre-dictionsreflects both scaleandPDF uncertainties. Thetheoretical predictionsandallCMSmeasurementsareperformedinthe dilep-ton massrange 60–120 GeV.AllATLAS measurements are in the masswindow66–116 GeV.Thesmallermasswindowisestimated tocausea1.6%reductioninthemeasuredcrosssection.

9. Summary

Results have been presented for a study of four-lepton fi-nal states in proton–proton collisions at √s = 13 TeV with the CMS detector at the LHC. The pp→ZZ cross section has been measured to be σ(pp→ZZ)=14.6+11..98(stat)+00..53(syst) ±

(7)

Table 3

TheobservedandexpectedyieldsofZZ events,andestimatedyieldsofbackgroundeventsevaluated fromdata,shownforeachfinalstateandsummedinthetotalexpectedyield.Thefirstuncertaintyis statistical,thesecondoneissystematic.

Final state Expected N++− Background Total expected Observed 4μ 21.80±0.15±0.46 0.00+0−0..2400+0 .10 −0.00 21.80+0 .28 −0.15+0 .47 −0.46 26 2e2μ 36.15±0.20±0.81 0.60±0.34±0.24 36.75±0.34±0.85 30 4e 14.87±0.12±0.36 0.81±0.26±0.33 15.68±0.26±0.48 8 Total 72.82±0.27±1.00 1.42+0.49 −0.43+ 0.42 −0.41 74.23+ 0.56 −0.45+ 1.08 −1.08 64 Table 4

Fiducialdefinitionsforthereportedcrosssections.Thecommonrequirementsareappliedforboth mea-surements.

Cross section measurement Fiducial requirements Common requirements p1 T >20 GeV, p 2 T >10 GeV, p 3,4 T >5 GeV, |η| <2.5, m

+>4 GeV (any opposite-sign same-flavor pair) Z→ ++− mZ

1>40 GeV

80<m++−<100 GeV ZZ→ ++− 60<mZ1,mZ2<120 GeV

Fig. 5. ThetotalZZ crosssectionasafunctionoftheproton–protoncenter-of-mass energy.ResultsfromtheCMSandATLASexperimentsarecomparedtopredictions from matrix and mcfm withNNPDF3.0PDFsetsandfixedscalesμF=μR=mZ.

Detailsofthecalculationsanduncertaintiesaregiveninthetext.Measurementsat thesamecenter-of-massenergyareshiftedslightlyalongthex-axisforclarity. 0.2(theo)±0.4(lumi) pb forZ boson massesin the range 60<

mZ <120 GeV. The branching fraction for Z boson decays to four leptons has been measured to be B(Z→ ++−)=

4.9+00..78(stat)+00..32(syst)+00..21(theo) ± 0.1(lumi) × 10−6 for four-leptonmassintherange80<m++−<100 GeV anddilepton

massm+>4 GeV foralloppositelychargedsame-flavorlepton

pairs.TheresultsareconsistentwithSMpredictions.

Acknowledgements

WethankMassimilianoGrazziniandhiscollaboratorsfor pro-viding the NNLO cross section calculations. We congratulate our colleagues in theCERN accelerator departments forthe excellent performance ofthe LHCand thankthetechnical and administra-tivestaffsatCERNandatotherCMSinstitutesfortheir contribu-tions to the successof the CMSeffort. In addition,we gratefully acknowledgethe computingcentersandpersonnel ofthe World-wideLHCComputingGridfordeliveringsoeffectivelythe

comput-ing infrastructure essential to our analyses. Finally, we acknowl-edge the enduring support forthe construction andoperation of the LHCandtheCMSdetectorprovidedby thefollowingfunding agencies: BMWFW andFWF(Austria); FNRSandFWO(Belgium); CNPq,CAPES, FAPERJ,andFAPESP(Brazil); MES (Bulgaria); CERN; CAS,MoST,andNSFC(China);COLCIENCIAS(Colombia);MSESand CSF(Croatia); RPF (Cyprus); SENESCYT(Ecuador);MoER, ERCIUT andERDF(Estonia); AcademyofFinland,MEC,andHIP (Finland); CEA andCNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CIN-VESTAV, CONACYT,LNS,SEP, andUASLP-FAI(Mexico);MBIE(New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portu-gal);JINR(Dubna);MON,RosAtom,RASandRFBR(Russia);MESTD (Serbia);SEIDIandCPAN(Spain);SwissFundingAgencies (Switzer-land); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thai-land);TUBITAKandTAEK(Turkey);NASUandSFFR(Ukraine);STFC (UnitedKingdom);DOEandNSF(USA).

Individuals have received support from the Marie-Curie pro-gram and the European Research Council and EPLANET (Euro-pean Union); the Leventis Foundation; the A. P. Sloan Founda-tion; the Alexander von Humboldt Foundation; the Belgian Fed-eral Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technolo-gie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of theCzech Republic; theCouncil of Scienceand Indus-trial Research, India; the HOMING PLUS program of the Foun-dation for Polish Science, cofinanced from European Union, Re-gional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2013/11/B/ST2/04202, 2014/13/B/ST2/02543 and 2014/15/B/ST2/ 03998, Sonata-bis 2012/07/E/ST2/01406; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Na-tional Priorities Research Program by Qatar National Research Fund; the Programa Clarín-COFUND del Principado de Asturias; theRachadapisekSompotFundforPostdoctoralFellowship, Chula-longkornUniversityandtheChulalongkornAcademic intoIts2nd Century Project Advancement Project (Thailand); and the Welch Foundation,contractC-1845.

(8)

References

[1] F. Cascioli, T. Gehrmann, M. Grazzini, S. Kallweit, P. Maierhöfer, A. von Manteuffel, S. Pozzorini, D. Rathlev, L. Tancredi, E. Weihs, ZZ produc-tion at hadron colliders in NNLO QCD, Phys. Lett. B 735 (2014) 311,

http://dx.doi.org/10.1016/j.physletb.2014.06.056,arXiv:1405.2219.

[2] CMSCollaboration,MeasurementoftheZZproductioncrosssectionandsearch foranomalouscouplingsin22finalstatesinppcollisionsat√s=7 TeV,J. HighEnergyPhys.01(2013)063,http://dx.doi.org/10.1007/JHEP01(2013)063, arXiv:1211.4890.

[3] CMS Collaboration, Measurement of the pp → ZZ production cross section and constraints on anomalous triple gauge couplings in four-lepton final states at √s= 8 TeV, Phys. Lett. B 740 (2015) 250,

http://dx.doi.org/10.1016/j.physletb.2016.04.010, arXiv:1406.0113, Erratum:

http://dx.doi.org/10.1016/j.physletb.2014.11.059.

[4] CMSCollaboration,MeasurementsoftheZZproductioncrosssectionsinthe 22νchannelinproton–protoncollisionsat√s=7 and8 TeVandcombined constraintsontriple gaugecouplings,Eur.Phys. J. C75(2015)511,http:// dx.doi.org/10.1140/epjc/s10052-015-3706-0,arXiv:1503.05467.

[5] ATLASCollaboration,MeasurementofZZproductioninppcollisionsat√s=

7 TeV and limits on anomalous ZZZ and ZZγ couplings with the AT-LASdetector, J. HighEnergy Phys.03 (2013)128,http://dx.doi.org/10.1007/ JHEP03(2013)128,arXiv:1211.6096.

[6] ATLAS Collaboration, Measurements of four-lepton production in pp colli-sionsat √s=8 TeV withthe ATLASdetector,Phys.Lett.B753(2016)552,

http://dx.doi.org/10.1016/j.physletb.2015.12.048,arXiv:1509.07844.

[7] ATLASCollaboration,MeasurementoftheZZproductioncrosssectioninpp collisionsat√s=13 TeV withtheATLASdetector,Phys.Rev.Lett.116(2016) 101801,http://dx.doi.org/10.1103/PhysRevLett.116.101801,arXiv:1512.05314. [8] D.Buskulic,etal.,ALEPH,StudyofthefourfermionfinalstateattheZ

reso-nance,Z.Phys.C66(1995)3,http://dx.doi.org/10.1007/BF01496576. [9] CMSCollaboration, Observation of Z decays tofour leptons with the CMS

detector at the LHC,J. High Energy Phys. 12(2012) 034,http://dx.doi.org/ 10.1007/JHEP12(2012)034,arXiv:1210.3844.

[10] ATLASCollaboration, Measurementsoffour-leptonproduction at the Z res-onance in pp collisions at √s=7 and 8 TeV with ATLAS, Phys. Rev. Lett. 112 (2014) 231806, http://dx.doi.org/10.1103/PhysRevLett.112.231806, arXiv:1403.5657.

[11] CMSCollaboration, The CMSexperiment at the CERN LHC,JINST 3(2008) S08004,http://dx.doi.org/10.1088/1748-0221/3/08/S08004.

[12] CMSCollaboration,Performanceofelectronreconstructionandselectionwith theCMSdetectorinproton–protoncollisionsat√s=8 TeV,JINST10(2015) P06005,http://dx.doi.org/10.1088/1748-0221/10/06/P06005,arXiv:1502.02701. [13] CMS Collaboration, Performance of CMS muon reconstruction in pp

colli-sioneventsat√s=7 TeV,JINST7(2012)P10002,http://dx.doi.org/10.1088/ 1748-0221/7/10/P10002,arXiv:1206.4071.

[14] S.Alioli,P.Nason,C.Oleari,E.Re,NLOvector-bosonproductionmatchedwith shower inPOWHEG, J. HighEnergy Phys. 07(2008) 060,http://dx.doi.org/ 10.1088/1126-6708/2008/07/060,arXiv:0805.4802.

[15] P.Nason,AnewmethodforcombiningNLOQCDwithshowerMonteCarlo algorithms, J. High Energy Phys. 11 (2004) 040, http://dx.doi.org/10.1088/ 1126-6708/2004/11/040,arXiv:hep-ph/0409146.

[16] S.Frixione,P.Nason,C.Oleari,MatchingNLOQCDcomputationswithparton showersimulations:thePOWHEGmethod,J.HighEnergyPhys.11(2007)070,

http://dx.doi.org/10.1088/1126-6708/2007/11/070,arXiv:0709.2092.

[17] J.M.Campbell,R.K.Ellis,MCFMfortheTevatronandtheLHC,Nucl.Phys.Proc. Suppl.205–206(2010)10,http://dx.doi.org/10.1016/j.nuclphysbps.2010.08.011, arXiv:1007.3492.

[18] F.Caola, K. Melnikov, R. Röntsch, L. Tancredi,QCD corrections to ZZ pro-ductioningluonfusion atthe LHC,Phys.Rev.D92(2015)094028,http:// dx.doi.org/10.1103/PhysRevD.92.094028,arXiv:1509.06734.

[19] Y.Gao,A.V.Gritsan,Z.Guo,K.Melnikov,M.Schulze,N.V.Tran,Spin determina-tionofsingle-producedresonancesathadroncolliders,Phys.Rev.D81(2010) 075022,http://dx.doi.org/10.1103/PhysRevD.81.075022,arXiv:1001.3396.

[20] S.Bolognesi,Y.Gao,A.V.Gritsan,K.Melnikov,M.Schulze,N.V.Tran,A. Whit-beck, On the spinand parity ofa single-produced resonanceat the LHC, Phys.Rev.D86(2012)095031,http://dx.doi.org/10.1103/PhysRevD.86.095031, arXiv:1208.4018.

[21] I.Anderson,S.Bolognesi,F.Caola,Y. Gao,A.V.Gritsan, C.B.Martin, K. Mel-nikov, M.Schulze,N.V.Tran,A.Whitbeck,Y. Zhou,Constraininganomalous HVVinteractionsatprotonandleptoncolliders,Phys.Rev.D89(2014)035007,

http://dx.doi.org/10.1103/PhysRevD.89.035007,arXiv:1309.4819.

[22] T. Sjöstrand, S.Mrenna, P.Skands,PYTHIA 6.4 physicsand manual,J. High EnergyPhys.05(2006)026,http://dx.doi.org/10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175.

[23] T.Sjöstrand,S.Ask,J.R.Christiansen,R.Corke,N.Desai,P.Ilten,S.Mrenna,S. Prestel,C.O.Rasmussen,P.Z.Skands,AnintroductiontoPYTHIA8.2,Comput. Phys. Commun. 191 (2015) 159, http://dx.doi.org/10.1016/j.cpc.2015.01.024, arXiv:1410.3012.

[24] S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for implement-ingNLOcalculationsinshowerMonteCarloprograms:thePOWHEGBOX,J. HighEnergyPhys.06(2010)043,http://dx.doi.org/10.1007/JHEP06(2010)043, arXiv:1002.2581.

[25] CMS Collaboration, Event generator tunes obtained from underlying event and multiparton scattering measurements, Eur. Phys. J. C 76 (2016) 155,

http://dx.doi.org/10.1140/epjc/s10052-016-3988-x,arXiv:1512.00815. [26] R.D. Ball, et al., NNPDF, Parton distributions for the LHC run II, J.

HighEnergyPhys.04(2015)040,http://dx.doi.org/10.1007/JHEP04(2015)040, arXiv:1410.8849.

[27] S. Agostinelli,et al., GEANT4, GEANT4—a simulation toolkit, Nucl. Instrum. MethodsA506(2003)250,http://dx.doi.org/10.1016/S0168-9002(03)01368-8. [28] CMSCollaboration,Particle-floweventreconstructioninCMSandperformance

forjets,taus,and Emiss

T ,CMSPhysicsAnalysisSummaryCMS-PAS-PFT-09-001,

http://cdsweb.cern.ch/record/1194487,2009.

[29] CMSCollaboration, Commissioningofthe particle-flowevent reconstruction withthefirstLHCcollisionsrecordedintheCMSdetector,CMSPhysics Anal-ysis Summary CMS-PAS-PFT-10-001, http://cdsweb.cern.ch/record/1247373, 2010.

[30] M.Cacciari,G.P.Salam,Pileupsubtractionusingjet areas,Phys.Lett.B659 (2008)119,http://dx.doi.org/10.1016/j.physletb.2007.09.077,arXiv:0707.1378. [31] CMSCollaboration,MeasurementoftheinclusiveWandZproductioncross

sectionsinppcollisionsat√s=7 TeV,J.HighEnergyPhys.10(2011)132,

http://dx.doi.org/10.1007/JHEP10(2011)132,arXiv:1107.4789.

[32] H.-L. Lai,M. Guzzi, J. Huston, Z. Li, P.M.Nadolsky, J. Pumplin, C.-P.Yuan, Newpartondistributionsforcolliderphysics,Phys.Rev.D82(2010)074024,

http://dx.doi.org/10.1103/PhysRevD.82.074024,arXiv:1007.2241.

[33] CMS Collaboration, CMS Luminosity Measurement for the 2015 Data Taking Period, Technical Report CMS-PAS-LUM-15-001, CERN, 2016,

https://cds.cern.ch/record/2138682.

[34] ATLAS,CMSCollaborations,CombinedmeasurementoftheHiggsbosonmass inppcollisionsat√s=7 and8TeVwiththeATLASandCMSexperiments, Phys. Rev. Lett. 114 (2015) 191803, http://dx.doi.org/10.1103/PhysRevLett. 114.191803,arXiv:1503.07589.

[35] R.Gavin, Y.Li,F.Petriello,S. Quackenbush, FEWZ2.0:acodefor hadronic Z production at next-to-next-to-leadingorder, Comput.Phys. Commun.182 (2011)2388,http://dx.doi.org/10.1016/j.cpc.2011.06.008,arXiv:1011.3540. [36] ParticleDataGroup,K.A.Olive,etal.,Reviewofparticlephysics,Chin.Phys.C

38(2014)090001,http://dx.doi.org/10.1088/1674-1137/38/9/090001. [37] J.Alwall, R. Frederix,S. Frixione, V.Hirschi, F.Maltoni, O.Mattelaer, H.-S.

Shao, T. Stelzer, P. Torielli, M. Zaro, The automated computation of tree-leveland next-to-leading orderdifferentialcrosssections,and their match-ingtopartonshowersimulations,J.HighEnergyPhys.07(2014)079,http:// dx.doi.org/10.1007/JHEP07(2014)079,arXiv:1405.0301.

[38] M.Grazzini,S.Kallweit,D.Rathlev,ZZproductionat theLHC:fiducialcross sectionsanddistributionsinNNLOQCD,Phys.Lett.B750(2015)407,http:// dx.doi.org/10.1016/j.physletb.2015.09.055,arXiv:1507.06257.

CMSCollaboration

V. Khachatryan,A.M. Sirunyan, A. Tumasyan

YerevanPhysicsInstitute,Yerevan,Armenia

W. Adam, E. Asilar,T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö,M. Flechl, M. Friedl,

(9)

T. Matsushita, I. Mikulec,D. Rabady, N. Rad, B. Rahbaran, H. Rohringer, J. Schieck1, J. Strauss,

W. Treberer-Treberspurg,W. Waltenberger, C.-E. Wulz1

InstitutfürHochenergiephysikderOeAW,Wien,Austria

V. Mossolov,N. Shumeiko, J. Suarez Gonzalez

NationalCentreforParticleandHighEnergyPhysics,Minsk,Belarus

S. Alderweireldt, E.A. De Wolf,X. Janssen, J. Lauwers,M. Van De Klundert, H. Van Haevermaet,

P. Van Mechelen, N. Van Remortel,A. Van Spilbeeck

UniversiteitAntwerpen,Antwerpen,Belgium

S. Abu Zeid,F. Blekman, J. D’Hondt, N. Daci, I. De Bruyn, K. Deroover, N. Heracleous,S. Lowette,

S. Moortgat, L. Moreels,A. Olbrechts, Q. Python, S. Tavernier,W. Van Doninck, P. Van Mulders,

I. Van Parijs

VrijeUniversiteitBrussel,Brussel,Belgium

H. Brun, C. Caillol, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian,

A. Grebenyuk,G. Karapostoli, T. Lenzi,A. Léonard,J. Luetic, T. Maerschalk, A. Marinov,A. Randle-conde,

T. Seva, C. Vander Velde, P. Vanlaer,R. Yonamine, F. Zenoni, F. Zhang2

UniversitéLibredeBruxelles,Bruxelles,Belgium

A. Cimmino,T. Cornelis, D. Dobur, A. Fagot, G. Garcia, M. Gul, D. Poyraz, S. Salva,R. Schöfbeck, M. Tytgat,

W. Van Driessche, E. Yazgan, N. Zaganidis

GhentUniversity,Ghent,Belgium

H. Bakhshiansohi,C. Beluffi3, O. Bondu,S. Brochet,G. Bruno, A. Caudron, S. De Visscher, C. Delaere,

M. Delcourt, L. Forthomme,B. Francois, A. Giammanco,A. Jafari, P. Jez,M. Komm, V. Lemaitre,

A. Magitteri,A. Mertens, M. Musich, C. Nuttens, K. Piotrzkowski,L. Quertenmont, M. Selvaggi,

M. Vidal Marono, S. Wertz

UniversitéCatholiquedeLouvain,Louvain-la-Neuve,Belgium

N. Beliy

UniversitédeMons,Mons,Belgium

W.L. Aldá Júnior, F.L. Alves,G.A. Alves, L. Brito,C. Hensel,A. Moraes, M.E. Pol, P. Rebello Teles

CentroBrasileirodePesquisasFisicas,RiodeJaneiro,Brazil

E. Belchior Batista Das Chagas, W. Carvalho,J. Chinellato4,A. Custódio, E.M. Da Costa, G.G. Da Silveira5,

D. De Jesus Damiao,C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson,

D. Matos Figueiredo, C. Mora Herrera,L. Mundim, H. Nogima,W.L. Prado Da Silva, A. Santoro,

A. Sznajder,E.J. Tonelli Manganote4, A. Vilela Pereira

UniversidadedoEstadodoRiodeJaneiro,RiodeJaneiro,Brazil

S. Ahujaa, C.A. Bernardesb, S. Dograa,T.R. Fernandez Perez Tomeia, E.M. Gregoresb, P.G. Mercadanteb,

C.S. Moona, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abadb,J.C. Ruiz Vargas

aUniversidadeEstadualPaulista,SãoPaulo,Brazil bUniversidadeFederaldoABC,SãoPaulo,Brazil

A. Aleksandrov, R. Hadjiiska, P. Iaydjiev,M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova

InstituteforNuclearResearchandNuclearEnergy,Sofia,Bulgaria

(10)

UniversityofSofia,Sofia,Bulgaria

W. Fang6

BeihangUniversity,Beijing,China

M. Ahmad, J.G. Bian, G.M. Chen,H.S. Chen, M. Chen, Y. Chen7,T. Cheng, C.H. Jiang, D. Leggat,Z. Liu,

F. Romeo,S.M. Shaheen, A. Spiezia,J. Tao, C. Wang, Z. Wang, H. Zhang, J. Zhao

InstituteofHighEnergyPhysics,Beijing,China

Y. Ban, G. Chen, Q. Li, S. Liu,Y. Mao, S.J. Qian,D. Wang, Z. Xu

StateKeyLaboratoryofNuclearPhysicsandTechnology,PekingUniversity,Beijing,China

C. Avila,A. Cabrera, L.F. Chaparro Sierra, C. Florez,J.P. Gomez, C.F. González Hernández, J.D. Ruiz Alvarez,

J.C. Sanabria

UniversidaddeLosAndes,Bogota,Colombia

N. Godinovic, D. Lelas,I. Puljak, P.M. Ribeiro Cipriano

UniversityofSplit,FacultyofElectricalEngineering,MechanicalEngineeringandNavalArchitecture,Split,Croatia

Z. Antunovic,M. Kovac

UniversityofSplit,FacultyofScience,Split,Croatia

V. Brigljevic,D. Ferencek, K. Kadija,S. Micanovic, L. Sudic,T. Susa

InstituteRudjerBoskovic,Zagreb,Croatia

A. Attikis, G. Mavromanolakis,J. Mousa, C. Nicolaou, F. Ptochos,P.A. Razis, H. Rykaczewski

UniversityofCyprus,Nicosia,Cyprus

M. Finger8,M. Finger Jr.8

CharlesUniversity,Prague,Czechia

E. Carrera Jarrin

UniversidadSanFranciscodeQuito,Quito,Ecuador

A. Ellithi Kamel9,M.A. Mahmoud10,11, A. Radi11,12

AcademyofScientificResearchandTechnologyoftheArabRepublicofEgypt,EgyptianNetworkofHighEnergyPhysics,Cairo,Egypt

B. Calpas,M. Kadastik, M. Murumaa, L. Perrini, M. Raidal, A. Tiko, C. Veelken

NationalInstituteofChemicalPhysicsandBiophysics,Tallinn,Estonia

P. Eerola,J. Pekkanen, M. Voutilainen

DepartmentofPhysics,UniversityofHelsinki,Helsinki,Finland

J. Härkönen,V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini,S. Lehti, T. Lindén,P. Luukka,

T. Peltola,J. Tuominiemi,E. Tuovinen, L. Wendland

HelsinkiInstituteofPhysics,Helsinki,Finland

J. Talvitie,T. Tuuva

(11)

M. Besancon, F. Couderc,M. Dejardin, D. Denegri, B. Fabbro,J.L. Faure, C. Favaro,F. Ferri, S. Ganjour,

S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault,P. Jarry, I. Kucher, E. Locci,M. Machet,

J. Malcles,J. Rander, A. Rosowsky, M. Titov, A. Zghiche

IRFU,CEA,UniversitéParis-Saclay,Gif-sur-Yvette,France

A. Abdulsalam, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot,

O. Davignon,R. Granier de Cassagnac, M. Jo, S. Lisniak,P. Miné, M. Nguyen, C. Ochando, G. Ortona,

P. Paganini, P. Pigard,S. Regnard, R. Salerno, Y. Sirois,T. Strebler, Y. Yilmaz, A. Zabi

LaboratoireLeprince-Ringuet,EcolePolytechnique,IN2P3-CNRS,Palaiseau,France

J.-L. Agram13, J. Andrea, A. Aubin, D. Bloch,J.-M. Brom, M. Buttignol,E.C. Chabert, N. Chanon, C. Collard,

E. Conte13, X. Coubez, J.-C. Fontaine13,D. Gelé, U. Goerlach,A.-C. Le Bihan, J.A. Merlin14,K. Skovpen,

P. Van Hove

InstitutPluridisciplinaireHubertCurien,UniversitédeStrasbourg,UniversitédeHauteAlsaceMulhouse,CNRS/IN2P3,Strasbourg,France

S. Gadrat

CentredeCalculdel’InstitutNationaldePhysiqueNucleaireetdePhysiquedesParticules,CNRS/IN2P3,Villeurbanne,France

S. Beauceron,C. Bernet, G. Boudoul, E. Bouvier, C.A. Carrillo Montoya, R. Chierici,D. Contardo,

B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille,

F. Lagarde, I.B. Laktineh,M. Lethuillier, L. Mirabito,A.L. Pequegnot, S. Perries, A. Popov15, D. Sabes,

V. Sordini,M. Vander Donckt, P. Verdier,S. Viret

UniversitédeLyon,UniversitéClaudeBernardLyon1,CNRS-IN2P3,InstitutdePhysiqueNucléairedeLyon,Villeurbanne,France

T. Toriashvili16

GeorgianTechnicalUniversity,Tbilisi,Georgia

Z. Tsamalaidze8

TbilisiStateUniversity,Tbilisi,Georgia

C. Autermann, S. Beranek,L. Feld, A. Heister, M.K. Kiesel, K. Klein, M. Lipinski, A. Ostapchuk, M. Preuten,

F. Raupach, S. Schael, C. Schomakers,J.F. Schulte, J. Schulz,T. Verlage, H. Weber, V. Zhukov15

RWTHAachenUniversity,I.PhysikalischesInstitut,Aachen,Germany

M. Brodski,E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann,S. Erdweg, T. Esch, R. Fischer,

A. Güth, M. Hamer,T. Hebbeker,C. Heidemann, K. Hoepfner,S. Knutzen, M. Merschmeyer,A. Meyer,

P. Millet,S. Mukherjee, M. Olschewski, K. Padeken,T. Pook,M. Radziej, H. Reithler, M. Rieger,F. Scheuch,

L. Sonnenschein, D. Teyssier,S. Thüer

RWTHAachenUniversity,III.PhysikalischesInstitutA,Aachen,Germany

V. Cherepanov, G. Flügge, W. Haj Ahmad, F. Hoehle, B. Kargoll, T. Kress, A. Künsken,J. Lingemann,

A. Nehrkorn, A. Nowack,I.M. Nugent, C. Pistone, O. Pooth,A. Stahl14

RWTHAachenUniversity,III.PhysikalischesInstitutB,Aachen,Germany

M. Aldaya Martin,C. Asawatangtrakuldee, K. Beernaert, O. Behnke,U. Behrens, A.A. Bin Anuar,

K. Borras17,A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos,G. Dolinska,

G. Eckerlin, D. Eckstein, E. Eren, E. Gallo18, J. Garay Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando,

P. Gunnellini, A. Harb, J. Hauk, M. Hempel19,H. Jung,A. Kalogeropoulos,O. Karacheban19,M. Kasemann,

J. Keaveney, J. Kieseler, C. Kleinwort,I. Korol, D. Krücker, W. Lange,A. Lelek, J. Leonard, K. Lipka,

A. Lobanov, W. Lohmann19,R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich,

(12)

T. Schoerner-Sadenius,C. Seitz,S. Spannagel, N. Stefaniuk,K.D. Trippkewitz, G.P. Van Onsem, R. Walsh, C. Wissing

DeutschesElektronen-Synchrotron,Hamburg,Germany

V. Blobel, M. Centis Vignali, A.R. Draeger,T. Dreyer, E. Garutti, K. Goebel, D. Gonzalez, J. Haller,

M. Hoffmann,A. Junkes, R. Klanner,R. Kogler,N. Kovalchuk,T. Lapsien, T. Lenz,I. Marchesini,D. Marconi,

M. Meyer,M. Niedziela, D. Nowatschin, J. Ott, F. Pantaleo14,T. Peiffer, A. Perieanu, J. Poehlsen, C. Sander,

C. Scharf,P. Schleper, A. Schmidt,S. Schumann, J. Schwandt,H. Stadie,G. Steinbrück, F.M. Stober,

M. Stöver,H. Tholen, D. Troendle, E. Usai, L. Vanelderen,A. Vanhoefer, B. Vormwald

UniversityofHamburg,Hamburg,Germany

C. Barth,C. Baus, J. Berger,E. Butz, T. Chwalek, F. Colombo, W. De Boer,A. Dierlamm, S. Fink,R. Friese,

M. Giffels,A. Gilbert,P. Goldenzweig, D. Haitz, F. Hartmann14,S.M. Heindl, U. Husemann,I. Katkov15,

P. Lobelle Pardo, B. Maier, H. Mildner, M.U. Mozer,T. Müller, Th. Müller, M. Plagge, G. Quast,

K. Rabbertz,S. Röcker, F. Roscher,M. Schröder, I. Shvetsov, G. Sieber,H.J. Simonis, R. Ulrich,

J. Wagner-Kuhr,S. Wayand, M. Weber, T. Weiler, S. Williamson,C. Wöhrmann, R. Wolf

InstitutfürExperimentelleKernphysik,Karlsruhe,Germany

G. Anagnostou,G. Daskalakis, T. Geralis,V.A. Giakoumopoulou, A. Kyriakis, D. Loukas,I. Topsis-Giotis

InstituteofNuclearandParticlePhysics(INPP),NCSRDemokritos,AghiaParaskevi,Greece

A. Agapitos,S. Kesisoglou, A. Panagiotou,N. Saoulidou, E. Tziaferi

NationalandKapodistrianUniversityofAthens,Athens,Greece

I. Evangelou,G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos,I. Papadopoulos, E. Paradas

UniversityofIoánnina,Ioánnina,Greece

N. Filipovic

MTA-ELTELendületCMSParticleandNuclearPhysicsGroup,EötvösLorándUniversity,Budapest,Hungary

G. Bencze,C. Hajdu, P. Hidas,D. Horvath20, F. Sikler,V. Veszpremi, G. Vesztergombi21, A.J. Zsigmond

WignerResearchCentreforPhysics,Budapest,Hungary

N. Beni,S. Czellar, J. Karancsi22,A. Makovec,J. Molnar, Z. Szillasi

InstituteofNuclearResearchATOMKI,Debrecen,Hungary

M. Bartók21,P. Raics, Z.L. Trocsanyi, B. Ujvari

UniversityofDebrecen,Debrecen,Hungary

S. Bahinipati, S. Choudhury23,P. Mal, K. Mandal, A. Nayak24,D.K. Sahoo, N. Sahoo,S.K. Swain

NationalInstituteofScienceEducationandResearch,Bhubaneswar,India

S. Bansal,S.B. Beri, V. Bhatnagar, R. Chawla, U. Bhawandeep, A.K. Kalsi,A. Kaur, M. Kaur, R. Kumar,

A. Mehta,M. Mittal, J.B. Singh, G. Walia

PanjabUniversity,Chandigarh,India

Ashok Kumar,A. Bhardwaj, B.C. Choudhary, R.B. Garg,S. Keshri, S. Malhotra,M. Naimuddin, N. Nishu,

K. Ranjan,R. Sharma, V. Sharma

(13)

R. Bhattacharya,S. Bhattacharya, K. Chatterjee, S. Dey,S. Dutt, S. Dutta, S. Ghosh, N. Majumdar,

A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit,A. Roy, D. Roy, S. Roy Chowdhury,

S. Sarkar,M. Sharan, S. Thakur

SahaInstituteofNuclearPhysics,Kolkata,India

P.K. Behera

IndianInstituteofTechnologyMadras,Madras,India

R. Chudasama, D. Dutta, V. Jha,V. Kumar, A.K. Mohanty14,P.K. Netrakanti,L.M. Pant, P. Shukla,A. Topkar

BhabhaAtomicResearchCentre,Mumbai,India

T. Aziz, S. Dugad,G. Kole, B. Mahakud, S. Mitra, G.B. Mohanty, B. Parida, N. Sur, B. Sutar

TataInstituteofFundamentalResearch-A,Mumbai,India

S. Banerjee, S. Bhowmik25,R.K. Dewanjee, S. Ganguly, M. Guchait,Sa. Jain, S. Kumar, M. Maity25,

G. Majumder, K. Mazumdar,T. Sarkar25, N. Wickramage26

TataInstituteofFundamentalResearch-B,Mumbai,India

S. Chauhan,S. Dube, V. Hegde, A. Kapoor, K. Kothekar, A. Rane, S. Sharma

IndianInstituteofScienceEducationandResearch(IISER),Pune,India

H. Behnamian,S. Chenarani27,E. Eskandari Tadavani,S.M. Etesami27, A. Fahim28, M. Khakzad,

M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, F. Rezaei Hosseinabadi, B. Safarzadeh29,

M. Zeinali

InstituteforResearchinFundamentalSciences(IPM),Tehran,Iran

M. Felcini,M. Grunewald

UniversityCollegeDublin,Dublin,Ireland

M. Abbresciaa,b, C. Calabriaa,b,C. Caputoa,b,A. Colaleoa,D. Creanzaa,c, L. Cristellaa,b,N. De Filippisa,c,

M. De Palmaa,b, L. Fiorea,G. Iasellia,c, G. Maggia,c,M. Maggia, G. Minielloa,b, S. Mya,b, S. Nuzzoa,b,

A. Pompilia,b,G. Pugliesea,c,R. Radognaa,b,A. Ranieria,G. Selvaggia,b,L. Silvestrisa,14, R. Vendittia,b,

P. Verwilligena

aINFNSezionediBari,Bari,Italy bUniversitàdiBari,Bari,Italy cPolitecnicodiBari,Bari,Italy

G. Abbiendia,C. Battilana, D. Bonacorsia,b, S. Braibant-Giacomellia,b, L. Brigliadoria,b, R. Campaninia,b,

P. Capiluppia,b,A. Castroa,b,F.R. Cavalloa,S.S. Chhibraa,b, G. Codispotia,b, M. Cuffiania,b,

G.M. Dallavallea,F. Fabbria, A. Fanfania,b, D. Fasanellaa,b,P. Giacomellia,C. Grandia,L. Guiduccia,b,

S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa,b,A. Perrottaa, A.M. Rossia,b,T. Rovellia,b,

G.P. Sirolia,b,N. Tosia,b,14

aINFNSezionediBologna,Bologna,Italy bUniversitàdiBologna,Bologna,Italy

S. Albergoa,b,M. Chiorbolia,b,S. Costaa,b,A. Di Mattiaa,F. Giordanoa,b,R. Potenzaa,b,A. Tricomia,b,

C. Tuvea,b

aINFNSezionediCatania,Catania,Italy bUniversitàdiCatania,Catania,Italy

G. Barbaglia, V. Ciullia,b,C. Civininia, R. D’Alessandroa,b,E. Focardia,b,V. Goria,b, P. Lenzia,b,

M. Meschinia, S. Paolettia,G. Sguazzonia,L. Viliania,b,14

(14)

bUniversitàdiFirenze,Firenze,Italy

L. Benussi,S. Bianco, F. Fabbri, D. Piccolo,F. Primavera14

INFNLaboratoriNazionalidiFrascati,Frascati,Italy

V. Calvellia,b, F. Ferroa, M. Lo Veterea,b, M.R. Mongea,b,E. Robuttia, S. Tosia,b

aINFNSezionediGenova,Genova,Italy bUniversitàdiGenova,Genova,Italy

L. Brianza14, M.E. Dinardoa,b,S. Fiorendia,b, S. Gennaia, A. Ghezzia,b,P. Govonia,b, S. Malvezzia,

R.A. Manzonia,b,14,B. Marzocchia,b,D. Menascea,L. Moronia,M. Paganonia,b, D. Pedrinia,S. Pigazzini,

S. Ragazzia,b,T. Tabarelli de Fatisa,b

aINFNSezionediMilano-Bicocca,Milano,Italy bUniversitàdiMilano-Bicocca,Milano,Italy

S. Buontempoa, N. Cavalloa,c,G. De Nardo, S. Di Guidaa,d,14,M. Espositoa,b,F. Fabozzia,c,

A.O.M. Iorioa,b,G. Lanzaa,L. Listaa, S. Meolaa,d,14, P. Paoluccia,14, C. Sciaccaa,b, F. Thyssen

aINFNSezionediNapoli,Napoli,Italy bUniversitàdiNapoli‘FedericoII’,Napoli,Italy cUniversitàdellaBasilicata,Potenza,Italy dUniversitàG.Marconi,Roma,Italy

P. Azzia,14,N. Bacchettaa,L. Benatoa,b, D. Biselloa,b, A. Bolettia,b, R. Carlina,b,

A. Carvalho Antunes De Oliveiraa,b,P. Checchiaa, M. Dall’Ossoa,b,P. De Castro Manzanoa, T. Dorigoa,

U. Dossellia,F. Gasparinia,b,U. Gasparinia,b, A. Gozzelinoa, S. Lacapraraa,M. Margonia,b,

A.T. Meneguzzoa,b,J. Pazzinia,b,14, N. Pozzobona,b, P. Ronchesea,b,F. Simonettoa,b, E. Torassaa,

M. Zanetti,P. Zottoa,b, A. Zucchettaa,b,G. Zumerlea,b

aINFNSezionediPadova,Padova,Italy bUniversitàdiPadova,Padova,Italy cUniversitàdiTrento,Trento,Italy

A. Braghieria, A. Magnania,b, P. Montagnaa,b,S.P. Rattia,b,V. Rea, C. Riccardia,b, P. Salvinia, I. Vaia,b,

P. Vituloa,b

aINFNSezionediPavia,Pavia,Italy bUniversitàdiPavia,Pavia,Italy

L. Alunni Solestizia,b, G.M. Bileia,D. Ciangottinia,b,L. Fanòa,b, P. Laricciaa,b, R. Leonardia,b,

G. Mantovania,b, M. Menichellia,A. Sahaa,A. Santocchiaa,b

aINFNSezionediPerugia,Perugia,Italy bUniversitàdiPerugia,Perugia,Italy

K. Androsova,30,P. Azzurria,14,G. Bagliesia,J. Bernardinia,T. Boccalia,R. Castaldia, M.A. Cioccia,30,

R. Dell’Orsoa,S. Donatoa,c,G. Fedi, A. Giassia,M.T. Grippoa,30,F. Ligabuea,c, T. Lomtadzea, L. Martinia,b,

A. Messineoa,b, F. Pallaa,A. Rizzia,b,A. Savoy-Navarroa,31, P. Spagnoloa,R. Tenchinia, G. Tonellia,b,

A. Venturia,P.G. Verdinia

aINFNSezionediPisa,Pisa,Italy bUniversitàdiPisa,Pisa,Italy

cScuolaNormaleSuperiorediPisa,Pisa,Italy

L. Baronea,b, F. Cavallaria,M. Cipriania,b, G. D’imperioa,b,14,D. Del Rea,b,14,M. Diemoza, S. Gellia,b,

C. Jordaa, E. Longoa,b, F. Margarolia,b,P. Meridiania,G. Organtinia,b, R. Paramattia,F. Preiatoa,b,

S. Rahatloua,b,C. Rovellia, F. Santanastasioa,b

aINFNSezionediRoma,Roma,Italy bUniversitàdiRoma,Roma,Italy

(15)

N. Amapanea,b, R. Arcidiaconoa,c,14, S. Argiroa,b, M. Arneodoa,c, N. Bartosika, R. Bellana,b,C. Biinoa,

N. Cartigliaa, F. Cennaa,b,M. Costaa,b, R. Covarellia,b,A. Deganoa,b,N. Demariaa, L. Fincoa,b, B. Kiania,b,

C. Mariottia, S. Masellia, E. Migliorea,b,V. Monacoa,b,E. Monteila,b,M.M. Obertinoa,b,L. Pachera,b,

N. Pastronea,M. Pelliccionia, G.L. Pinna Angionia,b,F. Raveraa,b,A. Romeroa,b,M. Ruspaa,c, R. Sacchia,b,

K. Shchelinaa,b, V. Solaa, A. Solanoa,b,A. Staianoa, P. Traczyka,b

aINFNSezionediTorino,Torino,Italy bUniversitàdiTorino,Torino,Italy

cUniversitàdelPiemonteOrientale,Novara,Italy

S. Belfortea,M. Casarsaa, F. Cossuttia, G. Della Riccaa,b,C. La Licataa,b,A. Schizzia,b, A. Zanettia

aINFNSezionediTrieste,Trieste,Italy bUniversitàdiTrieste,Trieste,Italy

D.H. Kim,G.N. Kim, M.S. Kim,S. Lee, S.W. Lee, Y.D. Oh, S. Sekmen,D.C. Son,Y.C. Yang

KyungpookNationalUniversity,Daegu,RepublicofKorea

A. Lee

ChonbukNationalUniversity,Jeonju,RepublicofKorea

J.A. Brochero Cifuentes, T.J. Kim

HanyangUniversity,Seoul,RepublicofKorea

S. Cho,S. Choi, Y. Go, D. Gyun,S. Ha, B. Hong,Y. Jo, Y. Kim, B. Lee, K. Lee, K.S. Lee, S. Lee,J. Lim,

S.K. Park,Y. Roh

KoreaUniversity,Seoul,RepublicofKorea

J. Almond, J. Kim,S.B. Oh, S.h. Seo,U.K. Yang, H.D. Yoo,G.B. Yu

SeoulNationalUniversity,Seoul,RepublicofKorea

M. Choi,H. Kim, H. Kim,J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu, M.S. Ryu

UniversityofSeoul,Seoul,RepublicofKorea

Y. Choi,J. Goh, C. Hwang, J. Lee,I. Yu

SungkyunkwanUniversity,Suwon,RepublicofKorea

V. Dudenas, A. Juodagalvis,J. Vaitkus

VilniusUniversity,Vilnius,Lithuania

I. Ahmed,Z.A. Ibrahim, J.R. Komaragiri, M.A.B. Md Ali32,F. Mohamad Idris33,W.A.T. Wan Abdullah,

M.N. Yusli,Z. Zolkapli

NationalCentreforParticlePhysics,UniversitiMalaya,KualaLumpur,Malaysia

H. Castilla-Valdez, E. De La Cruz-Burelo,I. Heredia-De La Cruz34,A. Hernandez-Almada,

R. Lopez-Fernandez, R. Magaña Villalba, J. Mejia Guisao,A. Sanchez-Hernandez

CentrodeInvestigacionydeEstudiosAvanzadosdelIPN,MexicoCity,Mexico

S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

UniversidadIberoamericana,MexicoCity,Mexico

S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

(16)

A. Morelos Pineda

UniversidadAutónomadeSanLuisPotosí,SanLuisPotosí,Mexico

D. Krofcheck

UniversityofAuckland,Auckland,NewZealand

P.H. Butler

UniversityofCanterbury,Christchurch,NewZealand

A. Ahmad, M. Ahmad, Q. Hassan,H.R. Hoorani, W.A. Khan,M.A. Shah, M. Shoaib, M. Waqas

NationalCentreforPhysics,Quaid-I-AzamUniversity,Islamabad,Pakistan

H. Bialkowska,M. Bluj, B. Boimska,T. Frueboes, M. Górski, M. Kazana, K. Nawrocki,

K. Romanowska-Rybinska,M. Szleper, P. Zalewski

NationalCentreforNuclearResearch,Swierk,Poland

K. Bunkowski, A. Byszuk35,K. Doroba, A. Kalinowski, M. Konecki,J. Krolikowski, M. Misiura,

M. Olszewski,M. Walczak

InstituteofExperimentalPhysics,FacultyofPhysics,UniversityofWarsaw,Warsaw,Poland

P. Bargassa,C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli,P.G. Ferreira Parracho, M. Gallinaro,

J. Hollar,N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Rodrigues Antunes,J. Seixas, O. Toldaiev,

D. Vadruccio,J. Varela, P. Vischia

LaboratóriodeInstrumentaçãoeFísicaExperimentaldePartículas,Lisboa,Portugal

S. Afanasiev,P. Bunin, M. Gavrilenko,I. Golutvin, I. Gorbunov, A. Kamenev,V. Karjavin, A. Lanev,

A. Malakhov,V. Matveev36,37, P. Moisenz, V. Palichik,V. Perelygin, S. Shmatov, S. Shulha,N. Skatchkov,

V. Smirnov,N. Voytishin, A. Zarubin

JointInstituteforNuclearResearch,Dubna,Russia

L. Chtchipounov,V. Golovtsov, Y. Ivanov, V. Kim38, E. Kuznetsova39,V. Murzin, V. Oreshkin, V. Sulimov,

A. Vorobyev

PetersburgNuclearPhysicsInstitute,Gatchina(St.Petersburg),Russia

Yu. Andreev,A. Dermenev,S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov,N. Krasnikov,

A. Pashenkov,D. Tlisov, A. Toropin

InstituteforNuclearResearch,Moscow,Russia

V. Epshteyn,V. Gavrilov, N. Lychkovskaya,V. Popov, I. Pozdnyakov,G. Safronov, A. Spiridonov, M. Toms,

E. Vlasov,A. Zhokin

InstituteforTheoreticalandExperimentalPhysics,Moscow,Russia

A. Bylinkin37

MoscowInstituteofPhysicsandTechnology,Moscow,Russia

M. Chadeeva40, E. Popova,E. Tarkovskii

NationalResearchNuclearUniversity‘MoscowEngineeringPhysicsInstitute’(MEPhI),Moscow,Russia

V. Andreev,M. Azarkin37,I. Dremin37, M. Kirakosyan, A. Leonidov37,S.V. Rusakov, A. Terkulov

Şekil

Fig. 1. Distributions of (top) the four-lepton invariant mass m  +  −  +  − and (bot- (bot-tom) the invariant mass of the dilepton candidates in all selected four-lepton events, including both Z 1 and Z 2 in each event
Fig. 2. (top) The distribution of the reconstructed mass of the Z 1 candidate. Points
Fig. 4. Distributions of (top) the four-lepton invariant mass m  +  −  +  − and (bottom) dilepton candidate mass for four-lepton events selected with both Z bosons on-shell
Fig. 5. The total ZZ cross section as a function of the proton–proton center-of-mass energy

Referanslar

Benzer Belgeler

Shatanawi, Common fixed points of almost generalized (ψ, φ)s- contractive mappings in ordered b-metric spaces, Fixed Point Theory Appl., 2013 (2013), 23 pages. Kumam,

Retrospective review of these case files revealed 1,005 cases, 86% female, and 45.7% both sexually abused and exposed to other forms of abuse.. Sexual abuse was often accompanied

sağlar. Hızlı bir şekilde bilgi alan tüketicinin geribildirimi hızlı yapma ihtimali de artmaktadır. c) Yüksek oranda farkındalık sağlar: Cep telefonlarıyla

Health care and nutritional status of the babies and contraception methods used by adolescent mothers were obtained at 24 and 36 months of the postnatal period with

Bu araştırma özellikle organize perakende sektöründe personel devir hızı ve ciro arasında bir neden-sonuç ilişkisi olmamakla birlikte personel devir hızının

Thus, this study examines the relationships among crisis management practices such as income and cost reductions and efficiency and competitivity improvement, strategic responds

To estimate the uncertainty from the radiative correction, we change the line shape to a coherent sum of ψð4160Þ, ψð4260Þ, and ψð4415Þ resonances; a coherent sum of

Every historical building is a unique research subject with its inestimable cultural value; nevertheless the Florya Ataturk Marine Mansion can serve as a reference for the huge number