• Sonuç bulunamadı

Decomposing modular coinvariants

N/A
N/A
Protected

Academic year: 2021

Share "Decomposing modular coinvariants"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Contents lists available atScienceDirect

Journal

of

Algebra

www.elsevier.com/locate/jalgebra

Decomposing

modular

coinvariants

Müfit Sezer1

DepartmentofMathematics,BilkentUniversity,Ankara06800, Turkey

a r t i c l e i n f o a b s t r a c t

Articlehistory: Received18June2014

Availableonline24October2014 CommunicatedbyGunterMalle Keywords:

Coinvariants Modularactions

Weconsidertheringofcoinvariantsforamodular represen-tationofa cyclicgroupof primeorderp.Weshowthat the classesoftheterminalvariablesinthecoinvariantshave nilpo-tencydegreep andthatthecoinvariantsare afreemoduleover thesubalgebrageneratedby these classes.Anincidental re-sultwehaveisadescriptionofaGröbnerbasisfortheHilbert idealandadecompositionofthecorrespondingmonomial ba-sisforthecoinvariantswithrespecttothemonomialsinthe terminalvariables.

© 2014ElsevierInc.All rights reserved.

Introduction

LetV denoteafinitedimensionalrepresentationofafinitegroupG overafieldF.The inducedaction onthedual V∗ extendsas degreepreserving algebraautomorphisms to thesymmetricalgebraS(V∗) whichwedenotebyF[V ].Theringofinvariantpolynomials

F[V ]G :={f ∈ F[V ]| g(f)= f ∀g ∈ G} isagraded finitely generatedsubalgebra. The

HilbertidealI istheidealF[V ]G

+·F[V ] inF[V ] generatedbyinvariantsofpositivedegree.

Inthispaperwestudytheringofcoinvariantswhichisthequotientring

F[V ]G:= F[V ]/I.

E-mailaddress:sezer@fen.bilkent.edu.tr.

1

TheauthorissupportedbyagrantfromTübitak:112T113. http://dx.doi.org/10.1016/j.jalgebra.2014.08.059

(2)

Since G isfinite,F[V ]G isafinitedimensionalvectorspace. Notealsothatcoinvariants

arenaturallyaG-moduleasI isclosedundertheactionofG.Coinvariantsoftencontain information abouttheinvariants.Forinstance,if|G| isaunitinF,thenF[V ]G is

poly-nomial ifandonlyifF[V ]G satisfiesPoincaréduality,see[4,6,13].Eveninthemodular

case,thatiswhen|G| isdivisiblebythecharacteristicofF,someweakerversionsofthis equivalence stillholdinsmalldimensionssee [8,12].SinceF[V ]G isafinite dimensional

vector space,the largestdegreeof anon-zerocomponentisalsofinite.It iswell known thatinthenon-modularcasethetopdegreeisboundedbythegrouporderbutitcanbe arbitrarilylargeotherwise[7].Inmanymodularcasesthetopdegreeofthecoinvariants also coincides with the maximum degree of an indecomposable invariant and getting efficient bounds forthe topdegreehasbeen criticalwhen studying effectivegeneration of invariantrings,seeforexample[5,10].

We now fix our setup. Let p be a prime integer and F a field of characteristic p.

For the rest of the paper, G denotes the cyclic group of prime order p. Fix a gen-erator σ of G. There are exactly p indecomposable G-modules V1,. . . ,Vp over F and

each indecomposable module Vi is afforded by a Jordan blockof dimension i with 1’s

on the diagonal. Let V be an arbitrary G-module over F. Assume that V has l

sum-mands so we canwrite V =1≤j≤lVnj.Since adding atrivialsummand to a module

does not affect the coinvariants we assume as well that nj > 1 for 1 ≤ j ≤ l. We

set F[V ] = F[Xi,j | 1 ≤ i ≤ nj, 1 ≤ j ≤ l] and the action of σ is given by

σ(Xi,j) = Xi,j + Xi−1,j for 1 < i ≤ nj and σ(X1,j) = X1,j. Following the

estab-lished convention, we call thevariables Xnj,j for 1≤ j ≤ l terminal variables. We use

graded reverse lexicographic order on themonomials inF[V ] withX1,j <· · · < Xnj,j.

We denote the leadingmonomial of apolynomialf by LM(f ). Wealso use lower case lettersto denotetheimagesofthevariablesinthecoinvariants.

Certain examplesof coinvariantsfor modularrepresentationsof G are studiedin[9]

and for each example, among other things, a reduced Gröbner basis for the Hilbert ideal andthe corresponding monomialbasis forthecoinvariants aregiven. Thegoal of this paper is to demonstrate that some of the properties of the coinvariants and the Hilbert ideal thatare identified in the casesstudied inthatsource hold ingeneral for an arbitrary module V . We show that the Hilbert ideal I is generated by the orbit products of Xnj,j for 1 ≤ j ≤ l (which we denote by N (Xnj,j)) and polynomials in

A:= F[Xi,j| 1≤ i≤ nj− 1, 1≤ j ≤ l].NoticethatLM(N (Xnj,j))= X p

nj,j.Therefore

we getthat,apartfrom themonomialsXnpj,j for1≤ j ≤ l,nomonomial intheunique minimalgeneratingsetfortheleadtermidealofI isdivisiblebyanyXnj,jfor1≤ j ≤ l.

Wegoonto provethatthereisanisomorphismofgradedF-algebras F[xn1,1, . . . , xnl,l] ∼= F[t1, . . . , tl]/



tp1, . . . , tpl,

wheret1,. . . ,tlareindependentvariables.Moreover,weshowthatF[V ]Gisafreemodule

over F[xn1,1,. . . ,xnl,l].

(3)

1. Reductionsandresults

For apolynomial f ∈ F[V ] and 1≤ j ≤ l, let f(i,j) denote thei-th partial

deriva-tive of f with respect to Xnj,j. We first observe that the action of σ commutes with

differentiationwithrespecttoXnj,j.

Lemma1. Letf ∈ F[V ] and fix 1≤ j ≤ l. Thenσ(f(1,j))= σ(f )(1,j).ThereforeF[V ]G

isclosed underdifferentiation with respecttoXnj,j.

Proof. Sincebothdifferentiationandtheactionofσ are additiveitisenoughtoassume that f = gXk

nj,j, where g is a polynomial in the variables except Xnj,j and k is a

non-negativeinteger.Firstassumethatk ispositive.Noticethat

σf(1,j)= σkgXnkj−1,j= kσ(g)(Xnj,j+ Xnj−1,j) k−1.

Ontheotherhandwe alsohave

σ(f )(1,j)=σ(g)(Xnj,j+ Xnj−1,j) k(1,j)

= kσ(g)(Xnj,j+ Xnj−1,j) k−1.

Sincethe actionof σ does notincreasethe Xnj,j degree ofapolynomial,both sides of

theidentityintheassertionofthelemmaarezeroifk = 0.Hencetheresultfollows. 2 NoticethatsinceI consistsoffinite sumsfigi withfi ∈ F[V ]G+ andgi ∈ F[V ],by

the Leibniz rule and the previous lemma we get that I is closed under differentiation with respect to Xnj,j for 1 ≤ j ≤ l as well. We also note a combinatorialresult that

applies to any polynomial inF[V ] whose degree in a terminal variable is strictly less thanp.

Lemma2.Letf ∈ F[V ] beapolynomialofdegree k < p inoneoftheterminalvariables, say Xnj,j.Write f = fkX

k

nj,j+ fk−1X k−1

nj,j+· · · + f0, where fk,. . . ,f0 are polynomials

inthevariablesexceptXnj,j.Thenwehave

 0≤i≤k (−1)i i! X i nj,jf (i,j)= f 0.

Proof. Fix d forsome0≤ d≤ k. Consider0≤i≤k (−1)i! iXnij,j(fdXndj,j)

(i,j).This

sum-mationisequalto 2  0≤i≤d (−1)i i! X i nj,j  fdXndj,j (i,j) =  0≤i≤d (−1)i i! X i nj,jd· · · (d − i + 1)fdX d−i nj,j =  0≤i≤d (−1)i  d i  fdXndj,j.

(4)

Notice thatthis sumis f0 ifd= 0 andis zerootherwise. This givesthedesired

equal-ity. 2

Theorem3.TheHilbertidealI is generatedbytheorbitproductsN (Xnj,j) for1≤ j ≤ l

and polynomials in A. Moreover, the lead term ideal of I is generated by Xnpj,j for

1≤ j ≤ l andmonomialsin A.

Proof. Let f ∈ F[V ]G. By[11, Proposition 2.1] f hasadecomposition

f = g1N (Xn1,1) + g2N (Xn2,2) +· · · + glN (Xnl,l) + r,

where r ∈ F[V ]G is the normal form of f with respect to the Gröbner basis

{N(Xn1,1),. . . ,N (Xnl,l)} of the ideal (N (Xn1,1),. . . ,N (Xnl,l)) in F[V ]. Therefore we

mayassumethatf ∈ F[V ]G isofdegree< p asapolynomialinXnj,j for1≤ j ≤ l.Say,

asapolynomialinXn1,1,f hasdegreek < p andwritef = fkX

k

n1,1+fk−1X

k−1

n1,1+· · ·+f0,

wherefk,. . . ,f0arepolynomialsinallvariablesexceptXn1,1.ByLemma 1allderivatives

off withrespecttoXn1,1arealsoinvariant.Thentheidentity

 0≤i≤k(−1) i i! X i n1,1f (i,1)=

f0 from the previouslemma gives thatf0 ∈ I. Furthermore, since thecoefficients of f

and f0 areunitsinthisidentity italsogivestheequalityoftheideals



f, f(1,1), . . . , f(k,1)=f0, f(1,1), . . . , f(k,1)



in F[V ]. Therefore f is in the ideal generated by f0,f(1,1),. . . ,f(k,1). Note that these

polynomials have degree < k in Xn1,1. Moreover since differentiation with respect to Xn1,1doesnotincreasethedegreewithrespecttoanyvariable,theirdegreeswithrespect

to other terminal variables are still strictly lessthan p. Therefore by inductionon the degreek wegetthatI isgeneratedbythenormsN (Xnj,j) for1≤ j ≤ l andpolynomials

that are ofdegree zeroin Xn1,1 and of degree < p inthe Xnj,j for2≤ j ≤ l. Since I

is closedunderdifferentiationwithrespect toany terminalvariable,wecanrepeatthis process byapplying theidentity ofthepreviouslemma (withrespectto other terminal variables)tothesuccessiveconstantterms.SowegetthatI isgeneratedbyN (Xnj,j) for

1≤ j ≤ l andpolynomialsinA.Finally,recallthatbyBuchberger’salgorithmaGröbner basisisobtainedbyreductionofS-polynomialsbypolynomialdivision,see[1, §1.7].But the S-polynomialof twopolynomials inA is alsoinA andviapolynomials inA italso reducestoapolynomialinA.Moreover,theS-polynomialofN (Xnj,j) andapolynomial

inA andtheS-polynomialofapairN (Xnj,j) andN (Xnj,j) reducetozerosincetheir

leadingmonomialsarepairwiserelativelyprimeforany1≤ j = j≤ l.Hencetheresult follows. 2

Remark 4.Let Λ denote theset of monomials inF[V ] that donot belong to the lead term ideal of I. Then the images of monomials in Λ in F[V ]G form a vector space

basis forF[V ]G.Theprevioustheorem givesus thatamonomialM ∈ A isinΛ ifand

only if M Xk1

n1,1· · · X

kl

(5)

(1+ t+ t2+· · · + tp−1)l dividesthe Hilbertpolynomial ofF[V ]G and thatthe vector

spacedimensionofF[V ]G isdivisiblebypl.Inthenexttheoremweshowthatthisisnot

acombinatorialaccident.

Theorem5.Wehave anisomorphismof gradedF-algebras

F[xn1,1, . . . , xnl,l] ∼= F[t1, . . . , tl]/



tp1, . . . , tpl,

where t1,. . . ,tl are independent variables. Moreover, F[V ]G is a free module over F[xn1,1,. . . ,xnl,l].Inparticular,

HF[V ]G(t)

(1+t+t2+···+tp−1)l ∈ Z[t],whereHF[V ]G(t) istheHilbert

polynomialof F[V ]G.

Proof. We first show that the nilpotency degree of xnj,j in F[V ]G is p for1 ≤ j ≤ l.

Pick 0 < i < p. Then xinj,j = 0 for some 1 ≤ j ≤ l implies that Xnij,j ∈ I. This is a contradiction to the description of the lead term ideal of I given by the previous theorem.Nextweshow thatxpnj,j = 0 for 1≤ j ≤ l.Equivalently,we proveXnpj,j ∈ I.

Without loss of generality takej = 1.Set N = N (X˜ n1,1)− X

p

n1,1. Notice that N is˜ a

polynomialofdegree < p inXn1,1. Callthis degreek. SoLemma 2 applies andwe get

 0≤i≤k(−1) i i! X i n1,1N˜ (i,1)= f

0,wheref0 istheconstantterm(asapolynomialinXn1,1)

ofN .˜ But sincetheydifferbyXnp1,1, theconstanttermsofN and˜ N (Xn1,1) are equal.

Ontheother handsinceN (Xn1,1) is theorbitproduct of Xn1,1,alltermsinN (Xn1,1)

aredivisiblebyXn1,1.Itfollowsthatf0= 0.Moreover,sinceN and˜ N (Xn1,1) differbya

polynomialwhosederivativewithrespecttoXn1,1iszero,theirderivativesareallequal.

ButallderivativesofN (Xn1,1) areinvariantbyLemma 1.ItfollowsthatN˜

(i,1)∈ F[V ]G

for0< i≤ k.Thereforetheequality 0≤i≤k (−1)i! iXni1,1N˜(i,1)= 0 gives us thatN˜∈ I.

SoXnp1,1∈ I aswell.

Let t1,. . . ,tl be independent variables and consider the natural graded surjection

fromF[t1,. . . ,tl] toF[xn1,1,. . . ,xnl,l].Sincenilpotencydegreeofxnj,jisp for1≤ j ≤ l,

thekernel of this map contains theideal (tp1,. . . ,tpl). If this idealdoes notcontain the kernel, thenI containsapolynomialinXn1,1,. . . ,Xnl,l suchthatnomonomialinthat

polynomial is divisible by any Xnpj,j for 1 ≤ j ≤ l. This is a contradiction to the description of the lead term ideal of I in the previous theorem. So we establish the isomorphismintheassertionofthetheorem.

Secondly,letΛdenotethesetofmonomialsinA thatdonotbelongtotheleadterm idealofI,i.e.,Λ= Λ∩ A.Thenbythepreviousremarktheimagesofthesemonomials inF[V ]GgenerateF[V ]GasamoduleoverF[xn1,1,. . . ,xnl,l].Infacttheygeneratefreely

sinceM Xk1

n1,1· · · X

kl

nl,l is inΛ forallM ∈ Λ

 and 0≤ k

j ≤ p− 1 for 1≤ j ≤ l and the

imagesofmonomialsinΛ formavectorspacebasisforF[V ]G.

FinalstatementfollowseasilyfromthesecondonebecausetheHilbertpolynomialof

F[t1,. . . ,tl]/(tp1,. . . ,t p

(6)

Acknowledgments

This studywasdoneduringmyvisittoUniversityofNebraskaonFulbrightVisiting ScholarProgram.IthankLuchezarAvramovformanyhelpfuldiscussions.Also,initially this paper was targeting indecomposable representations only. I thank Jim Shank for pointingoutthattheargumentgeneralizestodecomposablerepresentationsaswelland therefereeforhelpfulcomments.

References

[1]WilliamW.Adams,PhilippeLoustaunau,AnIntroductiontoGröbnerBases,Grad.Stud.Math., vol. 3,AmericanMathematicalSociety,Providence,RI,1994.

[2]H.E.A. Eddy Campbell, David L.Wehlau, Modular invariant theory, in: Invariant Theory and AlgebraicTransformationGroups,in:EncyclopaediaMath.Sci.,vol. 139,Springer-Verlag,Berlin, 2011,p. 8.

[3]HarmDerksen,GregorKemper,Computationalinvarianttheory,in:InvariantTheoryandAlgebraic TransformationGroups,I,in:EncyclopaediaMath.Sci.,vol. 130,Springer-Verlag,Berlin,2002. [4]W.G.Dwyer,C.W.Wilkerson,PoincarédualityandSteinberg’stheorem onringsofcoinvariants,

Proc.Amer.Math.Soc.138 (10)(2010)3769–3775.

[5]P.Fleischmann,M.Sezer,R.J.Shank,C.F.Woodcock,TheNoethernumbersforcyclicgroupsof primeorder,Adv.Math.207 (1)(2006)149–155.

[6]RichardKane, Poincaré dualityand thering of coinvariants, Canad.Math. Bull.37 (1) (1994) 82–88.

[7] M. Kohls, M. Sezer, On the top degree of coinvariants, Int. Math. Res. Not. IMRN (2014), http://dx.doi.org/10.1093/imrn/rnt158,inpress.

[8]Tzu-Chun Lin, Rings of coinvariants andp-subgroups, Proc. Amer. Math.Soc. 138 (12) (2010) 4243–4247.

[9]MüfitSezer,R.James Shank,Onthecoinvariants ofmodular representationsofcyclicgroupsof primeorder,J.PureAppl.Algebra205 (1)(2006)210–225.

[10]MüfitSezer, R. James Shank, Rings of invariants for modular representationsof theklein four group,Trans.Amer.Math.Soc.(2014),inpress.

[11]R. James Shank,David L. Wehlau, Noethernumbers for subrepresentations of cyclic groups of primeorder,Bull.Lond.Math.Soc.34 (4)(2002)438–450.

[12]LarrySmith,OnatheoremofR.Steinbergonringsofcoinvariants,Proc.Amer.Math.Soc.131 (4) (2003)1043–1048(electronic).

[13]RobertSteinberg,Differentialequationsinvariantunderfinitereflectiongroups,Trans.Amer.Math. Soc.112(1964)392–400.

Referanslar

Benzer Belgeler

Bu kısmın ana gayesi birinci kısım faaliyetleri sonunda tespit edilen ve ümitli görülen maden sa­ halarında yeni maden yatağı bulmak veya bilinen bir maden yatağının

göstermemiştir.. Türkçe belâgat-edebî bilgiler-edebiyat sözlükleri kitapları klasik belâgate en uygun ve en doğru tasnif Saraç’ın tasnifidir. Ne var ki Saraç’ın

In this study, two iterative reconstruction methods are analyzed for the field free line magnetic particle imaging in terms of image quality and reconstruction time.

Moreover, this downtrend was confirmed at cellular level by intracellular cytokine staining as healthy controls had significantly higher IFNγ producing T cells then SCI patients

If that value is unknown (missing), that feature does not participate in the classification process. Hence, the features containing missing values are simply ignored. Ignoring

Considering both the calculations on the adsorption of a single Ir atom and measured STM images, we came up with a model of Ir-silicide nanowires (see Figure 4 ).. The local

A transcendental logarithmic (translog) profit function is estimated with share equations for disaggregated 2 digit Canadian manufacturing industries which are

Case report: A rare condition of secondary synovial osteochondromatosis of the shoulder joint in a young female patient. Davis RI, Hamilton A,