• Sonuç bulunamadı

Generalized Hermite - Hadamard Type Integral Inequalities for Fractional Integrals

N/A
N/A
Protected

Academic year: 2021

Share "Generalized Hermite - Hadamard Type Integral Inequalities for Fractional Integrals"

Copied!
12
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

DOI 10.2298/FIL1605315S University of Niˇs, Serbia

Available at: http://www.pmf.ni.ac.rs/filomat

Generalized Hermite - Hadamard Type Integral

Inequalities for Fractional Integrals

Mehmet Zeki Sarikayaa, H ¨useyin Budaka

aDepartment of Mathematics, Faculty of Science and Arts, D ¨uzce University, D ¨uzce, Turkey

Abstract.In this paper, we have established Hermite-Hadamard type inequalities for fractional integrals depending on a parameter.

1. Introduction

Definition 1.1. The function f : [a, b] ⊂ R → R, is said to be convex if the following inequality holds f (tx+ (1 − λ)y) ≤ t f (x) + (1 − t) f (y)

for all x, y ∈ [a, b] and t ∈ [0, 1] . We say that f is concave if (− f ) is convex.

The inequalities discovered by C. Hermite and J. Hadamard for convex functions are very important in the literature (see, e.g.,[16, p.137], [9]). These inequalities state that if f : I → R is a convex function on the interval I of real numbers and a, b ∈ I with a < b, then

f a+ b 2 ! ≤ 1 b − a Z b a f (x)dx ≤ f(a)+ f (b) 2 . (1)

Both inequalities hold in the reversed direction if f is concave. We note that Hadamard’s inequality may be regarded as a refinement of the concept of convexity and it follows easily from Jensen’s inequality. Hadamard’s inequality for convex functions has received renewed attention in recent years and a remarkable variety of refinements and generalizations have been found (see, for example, [1, 2, 9, 10, 15, 16]) and the references cited therein.

In [10], Dragomir and Agarwal proved the following results connected with the right part of (1). Lemma 1.2. Let f : I◦

⊆ R → R be a differentiable mapping on I◦

(I◦is the interior of I), a, b ∈ I

with a< b. If f0∈ L[a, b], then the following equality holds:

f(a)+ f (b) 2 − 1 b − a Z b a f (x)dx= b − a 2 Z 1 0 (1 − 2t) f0(ta+ (1 − t)b)dt. (2)

2010 Mathematics Subject Classification. Primary 26D07, 26D10, 26D15; Secondary 26A33

Keywords. Hermite-Hadamard’s inequalities, Riemann-Liouville fractional integral, integral inequalities Received: 04 August 2014; Accepted: 20 January 2015

Communicated by Dragan S. Djordjevi´c

(2)

Theorem 1.3. Let f : I◦

⊆ R → R be a differentiable mapping on I◦

(I◦ is the interior of I), a, b ∈ I

with a< b. If f 0

is convex on [a, b], then the following inequality holds: f(a)+ f (b) 2 − 1 b − a Z b a f (x)dx ≤ (b − a) 8  f 0 (a) + f 0 (b)  . (3)

Meanwhile, Sarikaya et al.[19] presented the following important integral identity including the first-order derivative of f to establish many interesting Hermite-Hadamard type inequalities for convexity functions via Riemann-Liouville fractional integrals Jαof the orderα > 0.

Lemma 1.4. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b. If f0 ∈ L [a, b] , then the following

equality for fractional integrals holds: f (a)+ f (b) 2 − Γ (α + 1) 2 (b − a)α h Jαa+f (b)+ Jαb−f (a)i = b − a 2 Z 1 0 (1 − t)α− tα f0 (ta+ (1 − t)b) dt. (4)

It is remarkable that Sarikaya et al.[19] first gave the following interesting integral inequalities of Hermite-Hadamard type involving Riemann-Liouville fractional integrals.

Theorem 1.5. Let f : [a, b] → R be a positive function with 0 ≤ a < b and f ∈ L1[a, b] . If f is a convex function on

[a, b], then the following inequalities for fractional integrals hold:

f a+ b 2 ! ≤ Γ(α + 1) 2 (b − a)α h Jaα+f (b)+ Jb−α f (a) i ≤ f(a)+ f (b) 2 (5) withα > 0.

In the following we will give some necessary definitions and mathematical preliminaries of fractional calculus theory which are used further in this paper. More details, one can consult [11, 12, 14, 17].

Definition 1.6. Let f ∈ L1[a, b]. The Riemann-Liouville integrals Jαa+f and Jαb−f of orderα > 0 with a ≥ 0 are defined

by Jαa+f (x)= Γ(α)1 Z x a (x − t)α−1 f (t)dt, x > a and Jαb−f (x)= 1 Γ(α) Z b x (t − x)α−1 f (t)dt, x < b

respectively. Here,Γ(α) is the Gamma function and Ja+0 f (x)= Jb−0 f (x)= f (x).

For some recent results connected with fractional integral inequalities see ([3–8],[13],[18],[20],[21],[22]) The aim of this paper is to establish generalized Hermite-Hadamard type integral inequalities for Riemann-Liouville fractional integral and some other integral inequalities using the generalized identity are obtained for fractional integrals. The results presented in this paper provide extensions of those given in earlier works.

2. Main Results

(3)

Lemma 2.1. Let f : [a, b] → R be a differentiable mapping on (a, b) with 0 ≤ a < b. If f0 ∈ L [a, b] , then the

following equality for fractional integrals hold:

−f (λa + (1 − λ)b) + f (λb + (1 − λ)a)

(1 − 2λ)(b − a) +

Γ(α + 1) (1 − 2λ)α+1(b − a)α+1

×hJα

(λb+(1−λ)a)+f (λa + (1 − λ)b) + J(αλa+(1−λ)b)−f (λb + (1 − λ)a)

i (6) = 1 Z 0 [(1 − t)α− tα] f0[t(λa + (1 − λ)b) + (1 − t)(λb + (1 − λ)a)] dt whereλ ∈ [0, 1] \{12} andα > 0.

Proof. It suffices to note that

I = 1 Z 0 [(1 − t)α− tα] f0[t(λa + (1 − λ)b) + (1 − t)(λb + (1 − λ)a)] dt = 1 Z 0 (1 − t)αf0[t(λa + (1 − λ)b) + (1 − t)(λb + (1 − λ)a)] dt − 1 Z 0 tαf0[t(λa + (1 − λ)b) + (1 − t)(λb + (1 − λ)a)] dt = I1− I2 Integrating by parts I1 = 1 Z 0 (1 − t)αf0[t(λa + (1 − λ)b) + (1 − t)(λb + (1 − λ)a)] dt = (1 − t)αf [t(λa + (1 − λ)b) + (1 − t)(λb + (1 − λ)a)](1 − 2λ)(b − a) 1 0 +(1 − 2λ)(b − a)α 1 Z 0 (1 − t)α−1 f [t(λa + (1 − λ)b) + (1 − t)(λb + (1 − λ)a)] dt

(4)

= −f (λb + (1 − λ)a)(1 − 2λ)(b − a) + α (1 − 2λ)(b − a) 1 Z 0 (1 − t)α−1 f [t(λa + (1 − λ)b) + (1 − t)(λb + (1 − λ)a)] dt = −f (λb + (1 − λ)a) (1 − 2λ)(b − a) + α (1 − 2λ)α+1(b − a)α+1 λa+(1−λ)b Z λb+(1−λ)a [(λa + (1 − λ)b) − x] f (x)dx = −f (λb + (1 − λ)a)(1 − 2λ)(b − a) +(1 − 2λ)Γ(α + 1)α+1 (b − a)α+1J α (λb+(1−λ)a)+f (λa + (1 − λ)b)

and similarly we get

I2 = 1 Z 0 tαf0[t(λa + (1 − λ)b) + (1 − t)(λb + (1 − λ)a)] dt = f (λa + (1 − λ)b)(1 − 2λ)(b − a) − α (1 − 2λ)α+1(b − a)α+1 λa+(1−λ)b Z λb+(1−λ)a [x − (λb + (1 − λ)a)] f (x)dx = f (λa + (1 − λ)b)(1 − 2λ)(b − a) − Γ(α + 1) (1 − 2λ)α+1(b − a)α+1Jα(λa+(1−λ)b)−f (λb + (1 − λ)a)

From I1and I2, it follows that

I = I1− I2

= −f (λa + (1 − λ)b) + f (λb + (1 − λ)a)(1 − 2λ)(b − a)

+(1 − 2λ)Γ(α + 1)α+1 (b − a)α+1

h

(λb+(1−λ)a)+f (λa + (1 − λ)b) + J(λa+(1−λ)b)α −f (λb + (1 − λ)a)i .

This completes the proof.

Remark 2.2. If we take λ = 0 in Lemma 2.1, then the identity (6) reduces the identity (4) which is proved in [19]. Similarly, if we takeλ = 1 in Lemma 2.1, then

f (b)+ f (a) (b − a) + Γ(α + 1) (−1)α+1(b − a)α+1 h Jαb+f (a)+ Jαa−f (b)i = 1 Z 0 [(1 − t)α− tα] f0(ta+ (1 − t)b) dt. (7) By using Jαb+f (a)+ Jaα−f (b)= (−1)α h Jαa+f (b)+ Jαb−f (a) i in (7), it follows that f (b)+ f (a) 2 − Γ (α + 1) 2(b − a)α h Jαa+f (b)+ Jαb−f (a)i = (b − a) 2 1 Z 0 [(1 − t)α− tα] f0(ta+ (1 − t)b) dt. (8)

(5)

Theorem 2.3. Let f : [a, b] → R be a differentiable mapping on (a, b) with 0 ≤ a < b. If f 0 q , q ≥ 1 is convex on [a, b] , then the following inequality for fractional integrals holds:

f (λa + (1 − λ)b) + f (λb + (1 − λ)a) (1 − 2λ)(b − a) − Γ(α + 1) (1 − 2λ)α+1(b − a)α+1 ×hJα

(λb+(1−λ)a)+f (λa + (1 − λ)b) + Jα(λa+(1−λ)b)−f (λb + (1 − λ)a)

i ≤ 2 α + 1  1 − 1 2α         f 0(λa + (1 − λ)b) q + f 0(λb + (1 − λ)a) q 2        1 q . (9) whereλ ∈ [0, 1] \{1 2} andα > 0.

Proof. Firstly, we suppose that q= 1. Using Lemma 2.1 and convexity of f 0 q , we find that f (λa + (1 − λ)b) + f (λb + (1 − λ)a) (1 − 2λ)(b − a) − Γ(α + 1) (1 − 2λ)α+1(b − a)α+1 ×hJα

(λb+(1−λ)a)+f (λa + (1 − λ)b) + Jα(λa+(1−λ)b)−f (λb + (1 − λ)a)

i ≤ 1 Z 0 |(1 − t)α− tα| f 0[t(λa + (1 − λ)b) + (1 − t)(λb + (1 − λ)a)] dt ≤ 1 Z 0 |(1 − t)α− tα|ht f 0(λa + (1 − λ)b) + (1 − t) f 0(λb + (1 − λ)a) i dt = 1 2 Z 0 [(1 − t)α− tα]ht f 0(λa + (1 − λ)b) + (1 − t) f 0(λb + (1 − λ)a) i dt + 1 Z 1 2 [tα− (1 − t)α]ht f 0(λa + (1 − λ)b) + (1 − t) f 0(λb + (1 − λ)a) i dt = K1+ K2. (10)

(6)

Hence, conculating K1ve K2, we have K1 = 1 2 Z 0 [(1 − t)α− tα]ht f 0 (λa + (1 − λ)b) + (1 − t) f 0 (λb + (1 − λ)a) i dt = f 0 (λa + (1 − λ)b) 1 2 Z 0 h (1 − t)αt − tα+1idt + f 0(λb + (1 − λ)a) 1 2 Z 0 h (1 − t)α+1− tα(1 − t)idt = f 0 (λa + (1 − λ)b) " 1 (α + 1)(α + 2)− 1 2α+1(α + 1) # + f 0(λb + (1 − λ)a) " 1 α + 2 − 1 2α+1(α + 1) # (11) and K2 = 1 Z 1 2 [tα− (1 − t)α]ht f 0(λa + (1 − λ)b) + (1 − t) f 0(λb + (1 − λ)a) i dt = f 0 (λa + (1 − λ)b) " 1 α + 2− 1 2α+1(α + 1) # + f 0(λb + (1 − λ)a) " 1 (α + 2)(α + 1)− 1 2α+1(α + 1) # . (12)

Using (11) and (12) in (10), it follows that

f (λa + (1 − λ)b) + f (λb + (1 − λ)a) (1 − 2λ)(b − a) − Γ(α + 1) (1 − 2λ)α+1(b − a)α+1 ×hJα

(λb+(1−λ)a)+f (λa + (1 − λ)b) + Jα(λa+(1−λ)b)−f (λb + (1 − λ)a)

i ≤ 1 α + 1  1 − 1 2α h f 0(λa + (1 − λ)b) + f 0(λb + (1 − λ)a) i .

(7)

Secondly, we suppose that q> 1. Using Lemma 2.1 and power mean inequality, we obtain 1 Z 0 |(1 − t)α− tα| f 0[t(λa + (1 − λ)b) + (1 − t)(λb + (1 − λ)a)] dt ≤          1 Z 0 |(1 − t)α− tα|dt          1−1 q ×          1 Z 0 |(1 − t)α− tα| f 0[t(λa + (1 − λ)b) + (1 − t)(λb + (1 − λ)a)] q dt          1 q . (13)

Hence, using convexity of f 0 q and (13) we obtain f (λa + (1 − λ)b) + f (λb + (1 − λ)a) (1 − 2λ)(b − a) − Γ(α + 1) (1 − 2λ)α+1(b − a)α+1 ×hJα

(λb+(1−λ)a)+f (λa + (1 − λ)b) + Jα(λa+(1−λ)b)−f (λb + (1 − λ)a)

i ≤          1 Z 0 |(1 − t)α− tα|dt          1−1 q ×          1 Z 0 |(1 − t)α− tα| f 0 [t(λa + (1 − λ)b) + (1 − t)(λb + (1 − λ)a)] q dt          1 q ≤            1 2 Z 0 [(1 − t)α− tα] dt+ 1 Z 1 2 [tα− (1 − t)α] dt            1−1 q ×          1 Z 0 |(1 − t)α− tα|ht f 0(λa + (1 − λ)b) q + (1 − t) f 0(λb + (1 − λ)a) qi dt          1 q ≤  2 α + 1  1 − 1 2α 1−1q  1 α + 1  1 − 1 2α 1q ×h f 0(λa + (1 − λ)b) q + f 0(λb + (1 − λ)a) qi1q ≤ 2 q−1 q  1 α + 1  1 − 1 2α h f 0 (λa + (1 − λ)b) q + f 0 (λb + (1 − λ)a) qi1q .

(8)

Corollary 2.4. Under assumptation Theorem 2.3 withλ = 0 and λ = 1, we have f (a)+ f (b) (b − a) − Γ (α + 1) (b − a)α+1 h Jaα+f (b)+ Jbα−f (a) i (14) ≤ 2 α + 1  1 − 1 2α         f 0 (a) q + f 0 (b) q 2        1 q . where q ≥ 1.

Proof. By using Jbα+f (a)+Jaα−f (b)= (−1)α

h

Jaα+f (b)+ Jαb−f (a)

i

in Theorem 2.3 withλ = 1, we obtain the inequality (14).

Remark 2.5. If we takeα = 1 in Corollary 2.4, we have

f (a)+ f (b) 2 − 1 b − a b Z a f (x)dx ≤ b − a 4        f 0 (a) q + f 0 (b) q 2        1 q , q ≥ 1 (15)

which is proved by Pearce and Pecaric in [15] Choosing q = 1 in last inequality, the inequality (15) reduces the inequality (3).

Theorem 2.6. Let f : [a, b] → R be a differentiable mapping on (a, b) with 0 ≤ a < b. If f

0

q

convex on [a, b] for some fixed q> 1, then the following inequality for fractional integrals holds:

f (λa + (1 − λ)b) + f (λb + (1 − λ)a) (1 − 2λ)(b − a) − Γ(α + 1) (1 − 2λ)α+1(b − a)α+1 ×hJα

(λb+(1−λ)a)+f (λa + (1 − λ)b) + Jα(λa+(1−λ)b)−f (λb + (1 − λ)a)

i ≤ " 2 αp + 1  1 − 1 2αp # 1 p       f 0(λa + (1 − λ)b) q + f 0(λb + (1 − λ)a) q 2        1 q where 1 p+ 1 q = 1, α > 0 and λ ∈ [0, 1] \{ 1 2}.

(9)

Proof. Using Lemma 2.1, convexity of f q

and the well-known H ¨older’s inequality, we obtain f (λa + (1 − λ)b) + f (λb + (1 − λ)a) (1 − 2λ)(b − a) − Γ(α + 1) (1 − 2λ)α+1(b − a)α+1 ×hJα

(λb+(1−λ)a)+f (λa + (1 − λ)b) + Jα(λa+(1−λ)b)−f (λb + (1 − λ)a)

i ≤ 1 Z 0 |(1 − t)α− tα| f 0 [t(λa + (1 − λ)b) + (1 − t)(λb + (1 − λ)a)] dt ≤          1 Z 0 |(1 − t)α− tα|pdt          1 p         1 Z 0 f 0 [t(λa + (1 − λ)b) + (1 − t)(λb + (1 − λ)a)] q dt          1 q ≤            1 2 Z 0 (1 − t)α− tαp dt+ 1 Z 1 2 [tα− (1 − t)α]pdt            1 p ×          1 Z 0 h t f 0 (λa + (1 − λ)b) q + (1 − t) f 0 (λb + (1 − λ)a) qi dt          1 q ≤            1 2 Z 0 (1 − t)αp− tαp dt+ 1 Z 1 2 [tαp− (1 − t)αp] dt            1 p ×        f 0(λa + (1 − λ)b) q + f 0(λb + (1 − λ)a) q 2        1 q ≤ " 2 αp + 1  1 − 1 2αp # 1 p     f 0(λa + (1 − λ)b) q + f 0(λb + (1 − λ)a) q 2        1 q . Here, we use (A − B)p≤ Ap− Bp, for any A> B ≥ 0 and p ≥ 1.

Corollary 2.7. Under assumptation Theorem 2.6 withλ = 0 and λ = 1, we have f (a)+ f (b) (b − a) − Γ (α + 1) (b − a)α+1 h Jaα+f (b)+ Jbα−f (a) i (16) ≤ " 2 αp + 1  1 − 1 2αp # 1 p       f 0 (a) q + f 0 (b) q 2        1 q .

Proof. By using Jbα+f (a)+Jaα−f (b)= (−1)α

h

Jaα+f (b)+ Jαb−f (a)

i

in Theorem 2.6 withλ = 1, we obtain the inequality (16).

(10)

Corollary 2.8. Under assumptation Corollary 2.7 withα = 1, we have f (a)+ f (b) 2 − 1 b − a b Z a f (x)dx ≤ b − a 4 " 2 (2p− 1) p+ 1 #1p       f 0 (a) q + f 0 (b) q 2        1 q (17)

Remark 2.9. For p> 1, we have an improvement of the constants in (15) and (17), since 2p > p + 1 if p > 1 and accordingly 1 4 ≤ 1 4 " 2 (2p− 1) p+ 1 #1p .

Theorem 2.10. Let f : [a, b] → R be a differentiable mapping on (a, b) with 0 ≤ a < b. If f

0

q

is convex on [a, b] for some fixed q ≥ 1,then the following inequality for fractional integrals holds:

f (λa + (1 − λ)b) + f (λb + (1 − λ)a) (1 − 2λ)(b − a) − Γ(α + 1) (1 − 2λ)α+1(b − a)α+1 ×hJα

(λb+(1−λ)a)+f (λa + (1 − λ)b) + Jα(λa+(1−λ)b)−f (λb + (1 − λ)a)

i ≤ " 1 qα + 1  1 − 1 2qα+1 # 1 q        f 0(λa + (1 − λ)b) q + f 0(λb + (1 − λ)a) q 2        1 q whereλ ∈ [0, 1] \{1 2} andα > 0.

Proof. Using Lemma 2.1, convexity of f

0

q

, and the well-known H¨older’s inequality, we have

f (λa + (1 − λ)b) + f (λb + (1 − λ)a) (1 − 2λ)(b − a) − Γ(α + 1) (1 − 2λ)α+1(b − a)α+1 ×hJα

(λb+(1−λ)a)+f (λa + (1 − λ)b) + Jα(λa+(1−λ)b)−f (λb + (1 − λ)a)

i ≤ 1 Z 0 |(1 − t)α− tα| f 0 [t(λa + (1 − λ)b) + (1 − t)(λb + (1 − λ)a)] dt ≤          1 Z 0 1pdt          1 p         1 Z 0 |(1 − t)α− tα|q f 0[t(λa + (1 − λ)b) + (1 − t)(λb + (1 − λ)a)]q dt          1 q =            1 2 Z 0 [(1 − t)α− tα]q f 0[t(λa + (1 − λ)b) + (1 − t)(λb + (1 − λ)a)] q dt + 1 2 Z 0 [tα− (1 − t)α]q f 0[t(λa + (1 − λ)b) + (1 − t)(λb + (1 − λ)a)] q dt            1 q

(11)

≤            f 0 (λa + (1 − λ)b) q 1 2 Z 0 h (1 − t)qαt − tqα+1idt + f 0 (λb + (1 − λ)a) q 1 2 Z 0 h (1 − t)qα+1− tqα(1 − t)idt + f 0(λa + (1 − λ)b) q 1 Z 1 2 h tqα+1− (1 − t)qαtidt + f 0(λb + (1 − λ)a) q 1 Z 1 2 h tqα(1 − t) − (1 − t)qα+1idt            1 q =  1 α + 1  1 − 1 2α 1qh f 0(λa + (1 − λ)b) + f 0(λb + (1 − λ)a) i1q . Here, we use (A − B)p≤ Ap− Bp, for any A > B ≥ 0 and q ≥ 1.

Corollary 2.11. Under assumptation Theorem 2.10 withλ = 0 and λ = 1, we have f (a)+ f (b) (b − a) − Γ (α + 1) (b − a)α+1 h Jaα+f (b)+ Jbα−f (a) i (18) ≤ " 1 qα + 1  1 − 1 2qα+1 # 1 q        f 0 (a) q + f 0 (b) q 2        1 q .

Proof. By using Jαb+f (a)+ Jαa−f (b) = (−1)α

h

a+f (b)+ Jbα−f (a)

i

in Theorem 2.10 with λ = 1, we obtain the inequality (18).

Corollary 2.12. Under assumptation Corollary 2.11 withα = 1, we have f (a)+ f (b) 2 − 1 b − a b Z a f (x)dx ≤ b − a 2 " 1 q+ 1  1 − 1 2q+1 # 1 q       f 0 (a) q + f 0 (b) q 2        1 q . References

[1] A.G. Azpeitia, Convex functions and the Hadamard inequality, Rev. Colombiana Math., 28 (1994), 7-12.

[2] M. K. Bakula and J. Peˇcari´c, Note on some Hadamard-type inequalities, Journal of Inequalities in Pure and Applied Mathematics, vol. 5, no. 3, article 74, 2004.

[3] S. Belarbi and Z. Dahmani, On some new fractional integral inequalities, J. Ineq. Pure and Appl. Math., 10(3) (2009), Art. 86. [4] Z. Dahmani, New inequalities in fractional integrals, International Journal of Nonlinear Scinece, 9(4) (2010), 493-497.

[5] Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal. 1(1) (2010), 51-58. [6] Z. Dahmani, L. Tabharit, S. Taf, Some fractional integral inequalities, Nonl. Sci. Lett. A, 1(2) (2010), 155-160.

[7] Z. Dahmani, L. Tabharit, S. Taf, New generalizations of Gruss inequality usin Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2(3) (2010), 93-99.

[8] J. Deng and J. Wang, Fractional Hermite-Hadamard inequalities for (α, m)-logarithmically convex functions. J. Inequal.Appl. 2013, Article ID 364 (2013)

[9] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.

(12)

[10] S. S. Dragomir and R.P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. lett., 11(5) (1998), 91-95.

[11] R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order, Springer Verlag, Wien (1997), 223-276.

[12] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathe-matics Studies, 204, Elsevier Sci. B.V., Amsterdam, 2006.

[13] M.A. Latif, S.S. Dragomir and A.E. Matouk, New inequalities of Ostrowski type for co-ordinated convex functions via fractional integrals, J. Fract. Calc. Appl. 2, 1-15 (2012)

[14] S. Miller and B. Ross, An introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, USA, 1993, p.2.

[15] C.E.M. Pearce and J. Peˇcari´c, Inequalities for diferentiable mappings with application to special means and quadrature formalae, Appl. Math. Lett., 13(2) (2000), 51-55.

[16] J.E. Peˇcari´c, F. Proschan and Y.L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992.

[17] I. Podlubni, Fractional Differential Equations, Academic Press, San Diego, 1999.

[18] M.Z. Sarikaya and H. Ogunmez, On new inequalities via Riemann-Liouville fractional integration, Abstract and Applied Analysis, Volume 2012 (2012), Article ID 428983, 10 pages.

[19] M.Z. Sarikaya, E. Set, H. Yaldiz and N., Basak, Hermite -Hadamard’s inequalities for fractional integrals and related fractional inequalities, Mathematical and Computer Modelling, DOI:10.1016/j.mcm.2011.12.048, 57 (2013) 2403–2407.

[20] M.Z.Sarikaya, H. Filiz and M.E. Kiris, On some generalized integral inequalities for Riemann-Liouville fractional integrals, Filomat, accepted.

[21] M. Tunc, On new inequalities for h-convex functions via Riemann-Liouville fractional integration, Filomat 27:4 (2013), 559-565. [22] Y. Zhang and J. Wang, On some new Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals, J. Inequal. Appl.

Referanslar

Benzer Belgeler

Methods: We analyzed blood gas data in patients that underwent cardiopulmonary arrest out-of-hospital, had intervention by an ambulance first-aid team and Then were

Düzce İli fındık bahçelerinde Mayıs böceği popülasyon yoğunluğu ekonomik zarar eşiği açısından incelendiğinde; İl genelinde incelenen 32 bahçenin 3’ünde,

Analysis of variance (ANOVA) results of total color change (ΔE*) values of samples applied with acetic acid, ammonia, hydrogen peroxide and sodium silicate at different

Of the mechanical properties; experiments of compression strength parallel to grain were conducted in accordance with TS 2595 (1977), bending strength in accordance with TS

The comparison results of the Duncan test on the factor levels of moisture content, type of varnish, thermal processing temperature, and thermal processing time,

The aim of this study was to investigate the effect of the Tinuvin derivatives widely used as UV stabilizers in the plastics industry on EPDM rubber.. The EPDM rubber plates

However, the most successful results for all tested properties were determined in the styrene pretreated samples in which hygroscopicity decreased and dimensional stability

Benzer şekilde bu ünite sonrası uygulanan hatırlama testi sonuçlarına bakıldığında işbirlikli öğrenme yönteminin uygulandığı deney grubu ile geleneksel yöntemin