Contents lists available atScienceDirect
Physics
Letters
B
www.elsevier.com/locate/physletb
Azimuthal
anisotropy
of
charged
particles
with
transverse
momentum
up
to
100 GeV/
c in
PbPb
collisions
at
√
s
NN=
5.02 TeV
.TheCMS Collaboration CERN,Switzerland
a r t i c l e i n f o a b s t ra c t
Articlehistory:
Received2February2017
Receivedinrevisedform9November2017 Accepted18November2017
Availableonline24November2017 Editor:M.Doser Keywords: CMS QGP High-pT Flow
Partonenergyloss Jetquenching
TheFouriercoefficientsv2andv3characterizingtheanisotropyoftheazimuthaldistributionofcharged
particlesproducedinPbPbcollisionsat√sNN=5.02 TeV aremeasuredwithdatacollectedbytheCMS
experiment. Themeasurements coverabroadtransverse momentumrange, 1<pT<100 GeV/c.The
analysisfocusesonthepT>10 GeV/c range,whereanisotropicazimuthaldistributionsshouldreflectthe
path-lengthdependenceofpartonenergylossinthecreatedmedium.Resultsarepresentedinseveral binsofPbPbcollisioncentrality,spanningthe60%mostcentralevents.The v2coefficientismeasured
with thescalarproductand themultiparticlecumulant methods,whichhavedifferent sensitivitiesto initial-statefluctuations.Thevaluesfrombothmethodsremainpositiveupto pT∼60–80 GeV/c,inall
examinedcentralityclasses.Thev3coefficient,onlymeasuredwiththescalarproductmethod,tendsto
zeroforpT20 GeV/c.Comparisonsbetweentheoreticalcalculationsanddataprovidenewconstraints
onthepath-lengthdependenceofpartonenergylossinheavyioncollisionsandhighlighttheimportance oftheinitial-statefluctuations.
©2017TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.
1. Introduction
SeveralobservationsmadeatRHICinAuAucollisionsat center-of-mass energy per nucleon pair √sNN=200 GeV [1–4] and at
the LHC in PbPb collisions at √sNN=2.76 and 5.02 TeV [5–10]
establish that high-energy partons lose a significant fraction of their energywhiletraversing the hotanddense medium created inthesecollisions.Measurementsofthenuclearmodification fac-tor(RAA),aratiothatquantifiesthemodificationofparticlespectra
betweenpp andheavy ioncollisions, showalargesuppressionof hightransverse-momentum(pT)chargedhadronsatRHIC[11–16]
andat LHC [7–10]. Also, a strong asymmetry is observed in the energies of the two jets in dijet events in PbPb collisions [5,6]. These observations have triggered much progress in the under-standingofjetquenchingphenomena,butdonotprovidesufficient information fora detailed understanding of how the parton en-ergylossdependsonthedistancetraversed bythepartonsinthe medium.The studyof anisotropies inthe azimuthal angle distri-butionsofhigh-pThadronscanproviderevealinginformationthat
is complementary to previous measurements. These anisotropies arecharacterized bythe vn coefficientsofa Fourierexpansion in
E-mailaddress:[email protected].
thedistributionsofazimuthalanglemeasuredwithrespecttothe eventplane,definedbythedirectionofmaximumparticledensity inthetransverseplane[17].Suchstudieshavebeenperformedat RHIC [18] andat the LHC [19–21] up to pT≈10 and 60 GeV/c,
respectively. Mostjetquenchingmodels areunable to simultane-ouslyreproducetheRAAandv2 measurements[22–24].
Neverthe-less, recentattemptstosolve thispuzzlehaveshownpromiseby considering initial-statecollision geometryasymmetriesand fluc-tuations[25,26],whicharepredictedtostronglyaffectthehigh-pT
vn coefficients, butnot theRAA values. Inparticular, the
fluctua-tionsgenerateoddharmonics[27]andthemeasurementofthev3
coefficientuptoveryhighpT isexpectedtoclarifytheimportance
ofconsidering initial-statefluctuationsinthe modeling ofparton energyloss[25,26].
InthisLetter,theazimuthalanisotropyofchargedparticles pro-duced in PbPb collisions at√sNN=5.02 TeV is measured up to
pT≈100 GeV/c.The scalarproduct (SP) method [28,29] is used
to determine the v2 and v3 coefficientsasa function of pT and
collision centrality in the pseudorapidity range |η| <1. The un-precedentedstatisticalreachofthe√sNN=5.02 TeV PbPbsample
for high-pT particles allows for the first precise measurement of
thev2andv3coefficientsathighpT.Furthermore,v2isalso
mea-suredwiththemultiparticlecumulantanalysismethod[30],using 4-,6- and8-particlecorrelations.
https://doi.org/10.1016/j.physletb.2017.11.041
0370-2693/©2017TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.
2. TheCMSdetector
Thecentralfeature oftheCMSapparatusisasuperconducting solenoidof6 m internal diameterprovidinga 3.8 Tfield. Within thesolenoidvolumethereareasiliconpixelandstriptracker de-tector,aleadtungstatecrystalelectromagneticcalorimeter(ECAL), andabrass andscintillatorhadroncalorimeter(HCAL),each com-posedof abarrel andtwo endcapsections.Muonsare measured ingas-ionizationdetectorsembeddedinthesteelflux-returnyoke outsidethe solenoid. The silicon trackermeasures charged parti-cles within |η| <2.5 andprovides a pT resolution of about1.5%
for100 GeV charged particles.Furthermore,the trackimpact pa-rameterresolutionisabout25–90 (45–150)μm inthetransverse (longitudinal) dimension, depending on η and pT [31]. Iron and
quartz-fiberCherenkovhadronforward(HF)calorimeterscoverthe range2.9 <|η| <5.2 on eithersideoftheinteractionregion.The granularityoftheHFtowersis η× φ =0.175×0.175 radians, allowingan accurate reconstructionoftheheavy ioneventplane. A moredetaileddescription oftheCMSdetector,together witha definition of the coordinate system used and the relevant kine-maticvariables,canbefoundinRef.[32].ThedetailedMonteCarlo simulationoftheCMSdetectorresponseisbasedon Geant4[33].
3. Eventandtrackselections
The analysis of PbPb collisions is based on a data set cor-responding to an integrated luminosity of 404 μb−1, collected in 2015. Events were collected with several trigger algorithms, composed of a hardware-based level 1 (L1) trigger, followed by a software-based high-level trigger (HLT). The pT region up to
14 GeV/c iscoveredbyaminimum-biastrigger,whichrequires en-ergydepositsinbothHFcalorimetersaboveapredefinedthreshold ofapproximately1 GeV.Thisminimum-biastriggerwasprescaled duringdatataking.Toextendthemeasurementtohigherorder co-efficientsandhigherpT(e.g.,upto100 GeV/c),adedicatedtrigger
thatselectseventscontainingahigh-pT particlewasused.TheL1
trigger requirement was based on the transverse energy (ET) of
the highest ET calorimeterregion (η× φ =0.348×0.348) in
thebarrelregion (|η| <1.044). IntheHLT farm,a fastversion of theoffline trackingalgorithms was employed andthe highest pT
track was required to pass the strict selection criteria described hereafter,resultinginatriggerefficiencyofnearly100%.Different ET and pT thresholds[10] were usedatL1andHLT,respectively,
toenrichthedatasamplewitheventsthatcontainhigh-pT tracks.
Intheofflineanalysis,anadditionalselectionofhadronic colli-sionsisappliedbyrequiringatleastthreetowers withan energy depositofmorethan3 GeV pertowerineachoftheHFdetectors. The events are required to have a reconstructed primary vertex, formed by two or more tracks and required to have a distance fromthe nominalinteraction pointof lessthan 15 cm alongthe beamaxisandlessthan0.15 cminthetransverseplane.The col-lision centrality in PbPb events,i.e. the degree of overlap ofthe twocollidingnuclei,isdeterminedfromthe ETdepositedinboth
HF calorimeters. Collisioncentrality bins are given in percentage rangesof thetotal hadroniccrosssection, 0–5%corresponding to the5%ofcollisionswiththelargestoverlapofthetwonuclei[34]. A standard CMShigh-purity track selection [31,35] isused to selectprimary tracks(tracks associatedwiththe primary vertex). Additionalrequirementsareappliedtoenhancethepurityofthese primarytracks.Thetrackmustbeconsistentwithoriginatingfrom the primary vertexby lessthan 3 standard deviations when es-timating both the longitudinal and transverse distances of clos-est approach. The relative uncertainty of the pT measurement, σ(pT)/pT, must be less than 10%. To ensure high tracking
effi-ciency and reduce the rate of misreconstructed tracks, primary
tracks are restricted to the |η| <1 and pT>1 GeV/c region.
Furthermore, tracks with pT>20 GeV/c are required to match
a compatible energydeposit in thecalorimeters (ECAL + HCAL). The trackingefficiencyanddetectoracceptanceinPbPbcollisions are evaluated usingsimulated hydjet 1.9[36] minimumbiasand hydjet-embedded pythia[37]dijetevents.Thecombined geomet-ricalacceptanceandefficiencyforprimarytrackreconstruction,for pT>1 GeV/c and|η| <1,is60–75%,depending oncentrality.
Fi-nally, therateofmisreconstructedtracksreachesitsmaximumin themostcentralevents,whereitapproaches10%.
4. Analysistechnique
The anisotropies of the particle azimuthal angle distributions arecharacterizedbythevn Fouriercoefficients,determinedbythe expansion dN/dφ∼1+2nvncos[n(φ− n)], where N is the numberofparticles andn is thenthharmonicsymmetryplane angle.Event-by-eventvariationsintheinitialenergydensityofthe collision leadto themeasured eventplane fluctuationsaboutthe (experimentallyinaccessible)symmetryplane[38].TheSPmethod isused tomeasureazimuthal correlationsandextract Fourier co-efficients. Inthismethod,the vn coefficientscanbe expressedin termsofQn-vectors, vn{SP} ≡ QnQn A∗ Qn AQnB∗ Qn AQnC∗ QnBQnC∗ , with Qn,Qn A,QnB,QnC≡ M k=1 ωkeinφk, (1)
where M representsthenumberoftracks orHFtowers with en-ergy abovea certainthresholdineach event, φk istheazimuthal angle ofthe kth trackorHF tower, and ωk isa weighting factor equalto unityfor Qn, pT forthetracks( QnC),and ET fortheHF
towers ( Qn A and QnB). The angular brackets denote averages overallevents.TheQn vectorisbasedontheparticlesofinterest, i.e.,trackswith|η| <1.The Qn A and QnB vectorsaredetermined from the two HF calorimeters, covering the range 3 <|η| <5, while the QnC vector is obtained using tracks with |η| <0.75. If the particle of interest comes fromthe positive-η side of the tracker, then Qn A is calculated using the negative-η side of HF, andviceversa.Thelarge ηgapimposedbetweenQn AandQn sup-pressesfew-particlecorrelations,suchasthoseinducedbyhigh-pT
jetsandparticledecays,whichdonotdependontheeventplane direction nEP.The realpart istakenforall averages of Q -vector products over theevents.Azimuthal asymmetries thatarise from theacceptanceandotherdetector-relatedeffectsaretakeninto ac-countusingatwo-stepprocess,wherethe Q -vectorisfirst recen-teredandsubsequentlyflattened [39].Thesecorrectionsandtheir effectsontheresultsarenegligiblefortheCMSdetector.Sincethe measurementsincludecorrelationsbetweenlow- andhigh-pT
par-ticles,therecentlyestablishedevent-planedecorrelationeffect[40] cannotbeneglected.Itisexpectedtoreducethevn valuesin com-parison to those determinedifthe eventplanes wouldbe estab-lished exclusively usinghigh-pT particles. The modelcalculations
that includefluctuationsintheinitial statetake intoaccountthis effect[26].
Themultiparticlecumulantmethod[30,41]isalsousedto mea-sure v2 from genuine 4-, 6-, and 8-particle correlations, with
the advantage ofbeing lesssensitive to few-particlecorrelations, e.g., jet fragmentation. The cumulants are expressed in terms of the corresponding Qn vectors. We first define the2-, 4-,6-,and 8-particlecorrelatorsas
2 = ein(φ1−φ2) , 4 =ein(φ1+φ2−φ3−φ4), 6 = ein(φ1+φ2+φ3−φ4−φ5−φ6) , 8 = ein(φ1+φ2+φ3+φ4−φ5−φ6−φ7−φ8) , (2)
wherethedoubleaveragesymbol indicatesthat theaverage istakenoverallparticlecombinationsandforallevents.The unbi-asedestimatorsofthereferencemultiparticlecumulants,cn{},are definedas[41–43] cn{4} =4 −222, cn{6} =6 −942 +1223, cn{8} =8 −1662 −1842+144422 −14424. (3)
In order to perform a measurement differential in pT in the
multiparticlecumulantframework, one oftheparticles inEq.(3) isrestrictedtobelongtoacertain pT bin.Denotingby 2 ,etc.,
themodifiedparticlecorrelators, thedifferentialmultiparticle cu-mulantsare definedinRef. [43]andcan be derived asdescribed inRef.[41], dn{4} =4 −22 2, dn{6} =6 −64 2 −32 4 +122 22, dn{8} =8 −126 2 −42 6 −184 4 +724 22+72422 −1442 23. (4)
Finally,with respectto the reference multiparticlecumulants, thedifferential4-,6-,and8-particle vn(pT, η)coefficientsare
de-rivedas
vn{4}(pT,η)= −dn{4} (−cn{4})−3/4, vn{6}(pT,η)= dn{6} (cn{6})−5/64−1/6, vn{8}(pT,η)= −dn{8} (−cn{8})−7/833−1/8.
(5)
The statistical uncertainties are evaluated with a data-driven method,as previously employed in Ref. [42]. The dataset is di-videdinto10 subsetswithroughly equalnumbers ofeventsand thestandard deviationof the resultingdistribution ofthe cumu-lantisusedtoestimatetheuncertainties.
5. Systematicuncertainties
Atlow pT,therelative systematicuncertainties forv2{SP} and
v3{SP} are found to be similar. At high pT, the v3{SP} statistical
uncertaintiesaretoolargetoproperlydisentanglestatistical fluctu-ationsfromsystematiceffects.Therefore,thev2 systematic
uncer-tainties,expressedintermsofrelative valuesin%,are appliedto v3,withtheexceptionoftheuncertaintiesduetothefew-particle
correlations,discussedbelow.The systematicuncertaintiesdueto the vertex position selection and to the pT dependence of the
trackingefficiency correctionsare common to the SP and cumu-lantanalyses.Theyarefoundtobe lessthan1% andindependent ofpTandcentrality.Thesystematicuncertaintiesdueto
misrecon-structedtracksarederivedbychangingthetrackselectioncriteria. Theresultsarefoundtodependon pT butnotcentrality,andare
alsodifferentforthecumulantandSPmethods.Thetrackselection uncertaintieshavebeenfoundto graduallyincrease from∼2% at
low pT to∼50% for pT>60 GeV/c fortheSP method,andfrom
∼2% to ∼2% for the cumulant analysis. The SP results have an additional uncertaintyarising from few-particlecorrelations. This uncertainty is determined by varying the η gap and contributes differentlytothe v2 andv3 measurements.Itisfoundtodepend
onboth pT andcentrality,andrangesinabsolutevaluefrom0to
0.022forv2 andfrom0to0.030forv3.
6. Results
Fig. 1showsthev2andv3resultsobtainedfromtheSPmethod
asafunctionofpT,uptoabout100 GeV/c,insevencollision
cen-trality ranges. From low- to high-pT, the v2 and v3 values first
increasewithincreasing pT,uptoamaximumnearpT≈3 GeV/c,
beforedecreasingagain.Inmostcentralityranges,v2 remains
pos-itive up to pT∼60–80 GeV/c, becoming consistent withzero at
higher pT.Positivev3 valuesarefoundup to pT≈20 GeV/c over
the0–40%centralityrange.AthigherpT,themeasuredv3 valueis
consistentwithzerowithin theexperimental uncertainties.Given the systematicuncertainties,the measured valuesare compatible with zero. Some negative v3 values are seen at high pT in the
40–50%centrality range,butsuchperipheral eventsare themost contaminated by back-to-back jet correlations. This is confirmed bystudyingthe ηgapdependenceoftheresultsinbothmeasured and simulated events, where the latter include dijets embedded into hydjet events with zero input anisotropy. In the centrality range 50–60%, v3 is only measured up to 20 GeV/c because of
lackofeventscontaininghigherpT particles.
The v2 and v3 results arecompared totheCUJET3.0[44] and
SHEE[25] modelsforseveralcentralitybins.A keydifference be-tween these two models is that the SHEE framework includes initial-stategeometry fluctuations, whileCUJET3.0uses a smooth hydrodynamic background. The CUJET3.0 model uses perturba-tivequantumchromodynamics(pQCD)calculationstodescribethe hardpartoninteractionsinthequark–gluonplasma(QGP), comple-mentedbyaperfect-fluidhydrodynamicexpansionofthemedium. TheSHEEcalculationsuseviscoushydrodynamicsincluding event-by-event fluctuationsin the softsector [26,45,46], in addition to an energyloss model [26,47,48]. Theyare performedwitha low shear viscosity to entropy densityratio (η/s), less than or equal to 0.12(althoughhighervaluesdonot affectthe high-pT
predic-tions),a chemicalfreezouttemperatureof 160 MeV,anda linear path-lengthdependenceoftheenergylossinspiredbypQCD, sim-ilar to that in CUJET3.0. In addition, both model calculationsare onlyvalidforpT>10 GeV/c.
Overthefullcentralityrange,theCUJET3.0calculationsdescribe qualitativelythetrendobservedinthe v2 dataforpT>10 GeV/c,
butfailtoquantitativelyreproducetheresults.Forinstance,inthe centralityrange0–30%andfor10 <pT<40 GeV/c, v2 is
overes-timated by 10–50%,whilethe modellargely underestimates it in theperipheral bins.The SHEEcalculationsofboth v2 and v3 are
ingoodagreementwiththedatafor pT>10 GeV/c overthefull
centralityrange.ThesuccessoftheSHEEframeworksuggeststhat modelingtheinitial-statefluctuationsmaybeacrucialingredient todescribetheexperimentaldatarelatedtopartonenergyloss. Al-thoughnotshowninthefigure,ascenariointheSHEEframework with a quadratic path-length dependence of the energy loss, in-spiredbygauge-gravityduality[49,50],wasalsotestedandseento disagreewiththedata.Asjustoneexample,thisalternative path-length dependence is found to overestimate the data by 30–40% forpT>20 GeV/c inthe20–30%centralityrange.
The v2 valuesarealsoobtainedfrom4-,6-,and8-particle
cu-mulantanalyses, asshowninFig. 2,wherethe SP v2 resultsare
alsoincludedforcomparison.For pT<3 GeV/c,theresultsfollow
distribu-Fig. 1. Thev2andv3resultsfromtheSPmethodasafunctionofpT,insevencollisioncentralityrangesfrom0–5%to50–60%.Theverticalbars(shadedboxes)represent
thestatistical(systematic)uncertainties.ThecurvesrepresentcalculationsmadewiththeCUJET3.0[44]andtheSHEEmodels[26](seetext).
Fig. 2. Comparisonbetweenthev2resultsfromtheSPandthe4-,6-,and8-particlecumulantmethods,asafunctionofpT,insixcentralityrangesfrom0–5%to50–60%.
Theverticalbars(shadedboxes)representthestatistical(systematic)uncertainties.
tions, whichpredict v2{SP} >v2{4}≈v2{6}≈v2{8} [51–53].The
observation that the multiparticle cumulant values remain simi-lar up to pT=100 GeV/c (v2{4}≈v2{6}≈v2{8}), further
sug-gests that the azimuthal anisotropy is strongly affected by the initial-stategeometry andits event-by-event fluctuations[25,26]. Athigher pT,the differencebetweenSP andmultiparticle
cumu-lant results shows a tendency to decrease.Nevertheless, the un-certainties are toolargetodrawa firmconclusion. Thistendency mightbedueto pT dependenceofflowvectorfluctuations,which
dependson the shear viscosityover entropy densityratio ofthe medium[26,54].Therefore,theresultspresentedinFig. 2provide importantinformationtoconstraintheQGPshearviscosityinPbPb collisions.
Fig. 3 shows the correlation between high-pT and low-pT v2
values, for investigating the connection between the azimuthal anisotropies induced by hydrodynamic flow and the path-length dependence of parton energy loss [25,26]. The most peripheral v2{SP} and v2{4}data points arethe oneswiththe largesterror
bars.Linearfitstothecentralitydependentv2correlationbetween
thelow- andhigh-pT regionsareshowninthefigure.Hereazero
intercept is assumed. The corresponding χ2 over the number of
degree of freedom values are found to be near1–1.5, except for the 26 <pT<35 GeV/c range,whereapositive interceptis
indi-catedforthev2{SP}results.Thenon-zerointerceptmightreflecta
centrality dependent event-planedecorrelation that increases go-ingtohigher pT.Theslopevaluesfor v2{SP}andv2{4}arefound
Fig. 3. Correlationbetweenthehigh-pTv2measuredinthe14–20(left),20–26(middle),and26–35 GeV/c (right)pTrangesandthelow-pTv2measuredinthe1<pT<
1.25 GeV/c range,withtheSP(closedcircles)andcumulant(opensquares)methods.Thepointsrepresentthecentralitybins0–5,5–10,10–15,15–20,20–30,30–40,40–50, and50–60%fortheSPresults.Forthecumulantmethod,thebin0–5%isnotshown.LinesrepresentalinearfittotheSPresults(red)andcumulantresults(dashedblue). (Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)
to be compatible within statisticaluncertainties and to decrease whenselecting higher pT particles.This suggeststhatthe
initial-state geometry andits fluctuations are likely to be the common causesoftheobservedparticleazimuthalanisotropiesatbothlow andhighpT.
7.Summary
The azimuthal anisotropy of charged particles produced in PbPb collisions at √sNN=5.02 TeV has beenstudied using data
collected by the CMS experiment. The v2 and v3 coefficients
are determined, as a function of collision centrality, over the widesttransversemomentumrangestudiedtodate(from1upto 100 GeV/c).Forthefirsttime,themultiparticlecumulantmethod is used for pT>20 GeV/c. Over the measured centrality range,
positive v2 values are found up to pT ∼60–80 GeV/c, while
the v3 values are consistent with zero for pT>20 GeV/c. For
pT<3 GeV/c, v2{SP} >v2{4}≈v2{6}≈v2{8},consistent with a
collective behavior arising from the hydrodynamic expansion of aquark–gluonplasma.The similarityof v2{SP}, v2{4}, v2{6},and
v2{8}athighpT suggeststhat v2 originatesfromthepath-length
dependenceofpartonenergylossassociatedwithan asymmetric initialcollisiongeometry.Inaddition,acommontrendinthe cen-tralitydependenceofv2isobservedoverthefullpTrange,further
supportingacommonconnectiontotheinitial-stategeometryand its fluctuations. A model calculation (SHEE) incorporating initial-statefluctuationswithalinearpath-lengthdependenceofparton energylossisfound tobeingoodagreement withthedata,over thewide pTandcentralityrangesprobedinthisanalysis.
Acknowledgements
WecongratulateourcolleaguesintheCERNaccelerator depart-ments for the excellent performance of the LHC and thank the technicalandadministrativestaffs atCERN andatother CMS in-stitutes for their contributions to the success of the CMS effort. Inaddition,wegratefullyacknowledgethecomputingcentersand personneloftheWorldwideLHCComputingGridfordeliveringso effectivelythecomputinginfrastructure essential toour analyses. Finally, we acknowledge the enduring support for the construc-tionandoperationofthe LHCandtheCMSdetectorprovided by thefollowingfundingagencies:BMWFWandFWF(Austria);FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil);
MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIEN-CIAS(Colombia);MSESandCSF(Croatia);RPF(Cyprus);SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Fin-land,MEC,andHIP(Finland);CEAandCNRS/IN2P3(France);BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hun-gary);DAEandDST(India);IPM(Iran);SFI(Ireland);INFN(Italy); MSIPandNRF(RepublicofKorea);LAS (Lithuania);MOEandUM (Malaysia); BUAP, CINVESTAV,CONACYT, LNS, SEP, andUASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland);FCT(Portugal);JINR(Dubna);MON, RosAtom,RAS,RFBR andRAEP(Russia);MESTD (Serbia);SEIDI,CPAN, PCTIandFEDER (Spain);SwissFundingAgencies(Switzerland);MST(Taipei); ThEP-Center, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey);NASUandSFFR(Ukraine); STFC(United Kingdom);DOE andNSF(USA).
Individuals have received support from the Marie-Curie pro-gram and the European Research Council and EPLANET (Euro-pean Union); the Leventis Foundation; the A.P. Sloan Founda-tion; the Alexander von Humboldt Foundation; the Belgian Fed-eral Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technolo-gie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) ofthe Czech Republic;the Council ofScience and Indus-trial Research, India; the HOMING PLUS program of the Foun-dation for Polish Science, cofinanced from European Union, Re-gional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/ 02861,Sonata-bis2012/07/E/ST2/01406;theNationalPriorities Re-search Program by Qatar National Research Fund; the Programa Clarín-COFUNDdelPrincipadode Asturias;theThalisandAristeia programscofinancedbyEU-ESFandtheGreekNSRF;the Rachada-pisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and theChulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Founda-tion,contractC-1845.
References
[1] K.Adcox, etal., PHENIX, Formation ofdensepartonicmatterinrelativistic nucleus–nucleus collisions atRHIC: experimentalevaluationbythePHENIX
collaboration,Nucl.Phys.A757(2005)184,https://doi.org/10.1016/j.nuclphysa. 2005.03.086,arXiv:nucl-ex/0410003.
[2] J.Adams,etal.,STAR,Experimentalandtheoreticalchallengesinthesearch forthequarkgluonplasma:theSTARCollaboration’scriticalassessmentofthe evidencefromRHICcollisions,Nucl.Phys.A757(2005)102,https://doi.org/ 10.1016/j.nuclphysa.2005.03.085,arXiv:nucl-ex/0501009.
[3] I.Arsene,etal.,BRAHMS,Quarkgluonplasmaandcolorglasscondensateat RHIC?TheperspectivefromtheBRAHMSexperiment,Nucl.Phys.A757(2005) 1,https://doi.org/10.1016/j.nuclphysa.2005.02.130,arXiv:nucl-ex/0410020. [4] B.B.Back,etal.,PHOBOS,ThePHOBOSperspectiveondiscoveriesatRHIC,Nucl.
Phys.A757(2005)28,https://doi.org/10.1016/j.nuclphysa.2005.03.084,arXiv: nucl-ex/0410022.
[5] ATLASCollaboration,Observationofacentrality-dependentdijetasymmetryin Pb-Pbcollisionsat√sNN=2.76 TeV withtheATLASdetectorattheLHC,Phys.
Rev.Lett.105(2010)252303,https://doi.org/10.1103/PhysRevLett.105.252303, arXiv:1011.6182.
[6] CMSCollaboration,ObservationandstudiesofjetquenchinginPbPbcollisions atnucleon–nucleoncenter-of-massenergy=2.76 TeV,Phys.Rev.C84(2011) 024906,https://doi.org/10.1103/PhysRevC.84.024906,arXiv:1102.1957. [7] ALICECollaboration,Suppressionofchargedparticleproductionatlarge
trans-versemomentumincentralPb-Pbcollisionsat√sNN=2.76 TeV,Phys.Lett.B
696(2011)30,https://doi.org/10.1016/j.physletb.2010.12.020,arXiv:1012.1004. [8] CMSCollaboration,Studyofhigh-pTchargedparticlesuppressioninPbPb
com-pared toppcollisions at√sNN=2.76 TeV,Eur.Phys.J. C72(2012)1945,
https://doi.org/10.1140/epjc/s10052-012-1945-x,arXiv:1202.2554.
[9] ATLAS Collaboration,Measurementofcharged-particlespectrainPb+Pb col-lisionsat √sNN=2.76 TeV withtheATLASdetectoratthe LHC,J. High
En-ergyPhys.09(2015)050,https://doi.org/10.1007/JHEP09(2015)050,arXiv:1504. 04337.
[10]CMSCollaboration,Charged-particlenuclearmodificationfactorsinPbPband pPbcollisionsat√sNN=5.02 TeV,arXiv:1611.01664,2016.
[11] I.Arsene,etal.,BRAHMS,TransversemomentumspectrainAu+Auandd+Au
collisions at √sNN=200 GeV andthe pseudorapidity dependence ofhigh
pT suppression, Phys. Rev. Lett. 91 (2003) 072305, https://doi.org/10.1103/
PhysRevLett.91.072305,arXiv:nucl-ex/0307003.
[12] K.Adcox,etal.,PHENIX,Suppressionofhadronswithlargetransverse momen-tumincentralAu+Aucollisionsat√sNN=130 GeV,Phys.Rev.Lett.88(2002)
022301,https://doi.org/10.1103/PhysRevLett.88.022301,arXiv:nucl-ex/0109003. [13] S.S.Adler,et al.,PHENIX,Suppressedπ0production atlargetransverse
mo-mentumincentral Au+Aucollisionsat √sNN=200 GeV,Phys.Rev.Lett.91
(2003) 072301, https://doi.org/10.1103/PhysRevLett.91.072301, arXiv:nucl-ex/ 0304022.
[14] B.B.Back,etal.,PHOBOS,Chargedhadrontransversemomentumdistributions inAu+Aucollisionsat√sNN=200 GeV,Phys.Lett.B578(2004)297,https://
doi.org/10.1016/j.physletb.2003.10.101,arXiv:nucl-ex/0302015.
[15] C.Adler,etal.,STAR,CentralitydependenceofhighpThadronsuppressionin
Au+Aucollisionsat√sNN=130 GeV,Phys.Rev.Lett.89(2002)202301,https://
doi.org/10.1103/PhysRevLett.89.202301,arXiv:nucl-ex/0206011.
[16] J.Adams,etal.,STAR,Transversemomentumandcollisionenergydependence ofhigh-pT hadron suppressioninAu+Aucollisions at ultrarelativistic
ener-gies,Phys.Rev.Lett.91(2003)172302,https://doi.org/10.1103/PhysRevLett.91. 172302,arXiv:nucl-ex/0305015.
[17] A.M.Poskanzer,S.A.Voloshin,Methodsforanalyzinganisotropicflowin rela-tivisticnuclearcollisions,Phys.Rev.C58(1998)1671,https://doi.org/10.1103/ PhysRevC.58.1671,arXiv:nucl-ex/9805001.
[18] A.Adare,etal.,PHENIX,Azimuthalanisotropyofπ0productioninAu+Au
col-lisionsat√sNN=200 GeV:path-lengthdependenceofjetquenchingandthe
role ofinitialgeometry,Phys.Rev.Lett. 105(2010) 142301, https://doi.org/ 10.1103/PhysRevLett.105.142301,arXiv:1006.3740.
[19] CMSCollaboration,Azimuthalanisotropyofchargedparticlesat high trans-verse momentainPbPbcollisionsat √sNN=2.76 TeV,Phys.Rev.Lett.109
(2012) 022301, https://doi.org/10.1103/PhysRevLett.109.022301, arXiv:1204. 1850.
[20] ATLASCollaboration,Measurementofflowharmonicswithmulti-particle cu-mulants inPb+Pb collisions at √sNN=2.76 TeV with the ATLAS detector,
Eur.Phys.J.C74(2014)3157,https://doi.org/10.1140/epjc/s10052-014-3157-z, arXiv:1408.4342.
[21] ALICE√ Collaboration,AnisotropicflowofchargedparticlesinPb-Pbcollisionsat
sNN=5.02 TeV,Phys.Rev.Lett.116(2016)132302,https://doi.org/10.1103/
PhysRevLett.116.132302,arXiv:1602.01119.
[22] D.Molnar,M.Gyulassy,Saturationofellipticflowandthetransportopacity ofthegluonplasmaatRHIC,Nucl.Phys.A697(2002)495,https://doi.org/10. 1016/S0375-9474(01)01224-6,arXiv:nucl-th/0104073,Erratum:https://doi.org/ 10.1016/S0375-9474(02)00859-X.
[23] J.Noronha,M.Gyulassy,G.Torrieri,Conformalholographyofbulkellipticflow andheavyquarkquenchinginrelativisticheavyioncollisions,Phys.Rev.C82 (2010)054903,https://doi.org/10.1103/PhysRevC.82.054903,arXiv:1009.2286. [24] B.Betz,M.Gyulassy,Constraintsonthepath-lengthdependenceofjet
quench-inginnuclearcollisionsatRHICandLHC,J.HighEnergyPhys.08(2014)090,
https://doi.org/10.1007/JHEP10(2014)043, arXiv:1404.6378, Erratum: https:// doi.org/10.1007/JHEP08(2014)090.
[25] J.Noronha-Hostler, B.Betz, J. Noronha,M. Gyulassy, Event-by-event hydro-dynamics+ jetenergy loss:asolutiontothe RA A⊗v2 puzzle,Phys.Rev.
Lett.116(2016)252301,https://doi.org/10.1103/PhysRevLett.116.252301,arXiv: 1602.03788.
[26] B.Betz,M.Gyulassy,M.Luzum,J.Noronha,J.Noronha-Hostler,I.Portillo,C. Ratti,CumulantsandnonlinearresponseofhighpTharmonicflowat√sN N=
5.02 TeV,Phys.Rev.C95(2017)044901,https://doi.org/10.1103/PhysRevC.95. 044901,arXiv:1609.05171.
[27] B. Alver,G. Roland, Collision geometry fluctuations and triangularflow in heavy-ioncollisions,Phys. Rev.C81(2010) 054905,https://doi.org/10.1103/ PhysRevC.81.054905, arXiv:1003.0194, Erratum: https://doi.org/10.1103/ PhysRevC.82.039903.
[28] C.Adler,etal.,STAR,Ellipticflowfromtwoandfourparticlecorrelationsin Au+Aucollisionsat√sNN=130 GeV,Phys.Rev.C66(2002)034904,https://
doi.org/10.1103/PhysRevC.66.034904,arXiv:nucl-ex/0206001.
[29] M. Luzum,J.-Y. Ollitrault, Eliminatingexperimentalbias inanisotropic-flow measurementsofhigh-energynuclearcollisions,Phys.Rev.C87(2013)044907,
https://doi.org/10.1103/PhysRevC.87.044907,arXiv:1209.2323.
[30] A.Bilandzic,R.Snellings,S.Voloshin,Flowanalysiswithcumulants:direct cal-culations,Phys.Rev.C83(2011)044913,https://doi.org/10.1103/PhysRevC.83. 044913,arXiv:1010.0233.
[31] CMSCollaboration,Descriptionandperformanceoftrackandprimary-vertex reconstruction with the CMS tracker,J. Instrum. 9(2014) P10009, https:// doi.org/10.1088/1748-0221/9/10/P10009,arXiv:1405.6569.
[32] CMSCollaboration,TheCMSexperimentattheCERNLHC,J.Instrum.3(2008) S08004,https://doi.org/10.1088/1748-0221/3/08/S08004.
[33] S. Agostinelli,et al., Geant4, Geant4—a simulationtoolkit, Nucl. Instrum. MethodsA506(2003)250,https://doi.org/10.1016/S0168-9002(03)01368-8. [34] M.L.Miller, K. Reygers,S.J. Sanders,P.Steinberg, Glaubermodelinginhigh
energynuclearcollisions,Annu.Rev.Nucl.Part.Sci.57(2007)205,https:// doi.org/10.1146/annurev.nucl.57.090506.123020,arXiv:nucl-ex/0701025. [35] CMSCollaboration,Measurementoftransversemomentumrelativetodijet
sys-temsinPbPbandppcollisionsat√sNN=2.76 TeV,J.HighEnergyPhys.01
(2016)006,https://doi.org/10.1007/JHEP01(2016)006,arXiv:1509.09029. [36] I.P.Lokhtin,A.M.Snigirev,Amodelofjetquenchinginultrarelativisticheavy
ioncollisionsand high-pThadronspectraatRHIC,Eur.Phys. J.C45(2006)
211,https://doi.org/10.1140/epjc/s2005-02426-3,arXiv:hep-ph/0506189. [37] T.Sjöstrand,S.Mrenna,P.Z.Skands,AbriefintroductiontoPYTHIA8.1,
Com-put.Phys.Commun.178(2008)852,https://doi.org/10.1016/j.cpc.2008.01.036, arXiv:0710.3820.
[38] S.Voloshin,Y.Zhang,FlowstudyinrelativisticnuclearcollisionsbyFourier expansionofazimuthalparticledistributions,Z.Phys.C70(1996)665,https:// doi.org/10.1007/s002880050141,arXiv:hep-ph/9407282.
[39] J. Barrette, et al., E877, Proton and pion production relative to the reac-tionplaneinAu+AucollisionsatAGSenergies,Phys.Rev.C56(1997)3254,
https://doi.org/10.1103/PhysRevC.56.3254,arXiv:nucl-ex/9707002.
[40] CMSCollaboration,Evidencefortransversemomentumandpseudorapidity de-pendenteventplanefluctuationsinPbPbandpPbcollisions,Phys.Rev.C92 (2015)034911,https://doi.org/10.1103/PhysRevC.92.034911,arXiv:1503.01692. [41] A. Bilandzic, C.H. Christensen,K. Gulbrandsen, A.Hansen, Y. Zhou,Generic
frameworkforanisotropicflow analyseswithmultiparticleazimuthal corre-lations,Phys. Rev.C 89(2014) 064904, https://doi.org/10.1103/PhysRevC.89. 064904,arXiv:1312.3572.
[42] CMS Collaboration, Evidence for collective multiparticle correlations in pPb collisions, Phys. Rev. Lett. 115 (2015) 012301, https://doi.org/10.1103/ PhysRevLett.115.012301,arXiv:1502.05382.
[43] N. Borghini,P.M. Dinh, J.-Y. Ollitrault, Flow analysisfrom multiparticle az-imuthalcorrelations,Phys.Rev.C64(2001)054901,https://doi.org/10.1103/ PhysRevC.64.054901,arXiv:nucl-th/0105040.
[44] J.Xu,J.Liao,M.Gyulassy,Bridgingsoft-hardtransportpropertiesofquark– gluonplasmaswithCUJET3.0,J.HighEnergyPhys.02(2016)169,https://doi. org/10.1007/JHEP02(2016)169,arXiv:1508.00552.
[45] J.Noronha-Hostler,G.S.Denicol,J.Noronha,R.P.G.Andrade,F.Grassi,Bulk vis-cosityeffects inevent-by-event relativistic hydrodynamics,Phys. Rev. C88 (2013)044916,https://doi.org/10.1103/PhysRevC.88.044916,arXiv:1305.1981. [46] J.Noronha-Hostler,J.Noronha,F.Grassi,Bulkviscosity-drivensuppressionof
shear viscosity effectson the flow harmonics at energies availableat the BNLRelativisticHeavyIon Collider,Phys. Rev.C90(2014)034907, https:// doi.org/10.1103/PhysRevC.90.034907,arXiv:1406.3333.
[47] B. Betz, M. Gyulassy, G. Torrieri, Fourier harmonics of high-pT particles
probing the fluctuatinginitial condition geometries inheavy-ion collisions, Phys. Rev. C84 (2011) 024913, https://doi.org/10.1103/PhysRevC.84.024913, arXiv:1102.5416.
[48] B.Betz,M.Gyulassy,Examiningareducedjet-mediumcouplinginPb+Pb col-lisionsattheLargeHadronCollider,Phys.Rev.C86(2012)024903,https:// doi.org/10.1103/PhysRevC.86.024903,arXiv:1201.0281.
[49] S.S.Gubser,D.R.Gulotta,S.S.Pufu,F.D.Rocha,Gluonenergylossinthe gauge-stringduality,J.HighEnergyPhys.10(2008)052, https://doi.org/10.1088/1126-6708/2008/10/052,arXiv:0803.1470.
[50] F.Dominguez,C.Marquet, A.H. Mueller,B. Wu,B.-W. Xiao,Comparing en-ergylossandp⊥-broadeninginperturbativeQCDwithstrongcouplingN=4 SYMtheory,Nucl.Phys.A811(2008)197,https://doi.org/10.1016/j.nuclphysa. 2008.07.004,arXiv:0803.3234.
[51] L.Yan, J.-Y.Ollitrault,A.M. Poskanzer,Azimuthalanisotropydistributions in high-energycollisions,Phys. Lett.B742(2015)290,https://doi.org/10.1016/ j.physletb.2015.01.039,arXiv:1408.0921.
[52] S.A.Voloshin,A.M.Poskanzer,A.Tang,G.Wang,EllipticflowintheGaussian modelofeccentricityfluctuations,Phys.Lett.B659(2008)537,https://doi.org/ 10.1016/j.physletb.2007.11.043,arXiv:0708.0800.
[53] CMSCollaboration,Multiplicityandtransversemomentumdependenceof two-and four-particle correlations inpPband PbPbcollisions, Phys.Lett. B724 (2013)213,https://doi.org/10.1016/j.physletb.2013.06.028,arXiv:1305.0609. [54] ALICECollaboration,Searchesfortransversemomentumdependentflow
vec-torfluctuationsinPb-Pbandp-PbcollisionsattheLHC,JHEP09(2017)032,
https://doi.org/10.1007/JHEP09(2017)032,arxiv:1707.05690
.
TheCMSCollaboration
A.M. Sirunyan,A. Tumasyan
YerevanPhysicsInstitute,Yerevan,Armenia
W. Adam, E. Asilar,T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö,M. Flechl, M. Friedl,
R. Frühwirth1, V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec,M. Jeitler1,A. König, I. Krätschmer, D. Liko,
T. Matsushita,I. Mikulec, D. Rabady, N. Rad, B. Rahbaran,H. Rohringer, J. Schieck1,J. Strauss,
W. Waltenberger, C.-E. Wulz1
InstitutfürHochenergiephysik,Wien,Austria
O. Dvornikov,V. Makarenko, V. Mossolov,J. Suarez Gonzalez, V. Zykunov
InstituteforNuclearProblems,Minsk,Belarus N. Shumeiko
NationalCentreforParticleandHighEnergyPhysics,Minsk,Belarus
S. Alderweireldt, E.A. De Wolf,X. Janssen,J. Lauwers, M. Van De Klundert, H. Van Haevermaet,
P. Van Mechelen,N. Van Remortel, A. Van Spilbeeck
UniversiteitAntwerpen,Antwerpen,Belgium
S. Abu Zeid,F. Blekman, J. D’Hondt, N. Daci,I. De Bruyn, K. Deroover, S. Lowette,S. Moortgat, L. Moreels,
A. Olbrechts,Q. Python, K. Skovpen, S. Tavernier,W. Van Doninck, P. Van Mulders, I. Van Parijs
VrijeUniversiteitBrussel,Brussel,Belgium
H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella,L. Favart, R. Goldouzian, A. Grebenyuk,
G. Karapostoli,T. Lenzi,A. Léonard, J. Luetic, T. Maerschalk,A. Marinov, A. Randle-conde,T. Seva,
C. Vander Velde, P. Vanlaer,D. Vannerom, R. Yonamine,F. Zenoni, F. Zhang2
UniversitéLibredeBruxelles,Bruxelles,Belgium
A. Cimmino,T. Cornelis, D. Dobur,A. Fagot, M. Gul, I. Khvastunov,D. Poyraz, S. Salva, R. Schöfbeck,
M. Tytgat,W. Van Driessche, E. Yazgan, N. Zaganidis
GhentUniversity,Ghent,Belgium
H. Bakhshiansohi,C. Beluffi3,O. Bondu, S. Brochet,G. Bruno, A. Caudron, S. De Visscher, C. Delaere,
M. Delcourt,B. Francois, A. Giammanco, A. Jafari,M. Komm, G. Krintiras,V. Lemaitre, A. Magitteri,
A. Mertens, M. Musich, K. Piotrzkowski,L. Quertenmont,M. Selvaggi, M. Vidal Marono, S. Wertz
UniversitéCatholiquedeLouvain,Louvain-la-Neuve,Belgium N. Beliy
W.L. Aldá Júnior, F.L. Alves,G.A. Alves, L. Brito,C. Hensel,A. Moraes, M.E. Pol, P. Rebello Teles CentroBrasileirodePesquisasFisicas,RiodeJaneiro,Brazil
E. Belchior Batista Das Chagas, W. Carvalho,J. Chinellato4,A. Custódio, E.M. Da Costa, G.G. Da Silveira5,
D. De Jesus Damiao,C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson,
D. Matos Figueiredo, C. Mora Herrera,L. Mundim, H. Nogima,W.L. Prado Da Silva, A. Santoro,
A. Sznajder,E.J. Tonelli Manganote4, F. Torres Da Silva De Araujo,A. Vilela Pereira
UniversidadedoEstadodoRiodeJaneiro,RiodeJaneiro,Brazil
S. Ahujaa, C.A. Bernardesa, S. Dograa,T.R. Fernandez Perez Tomeia,E.M. Gregoresb,P.G. Mercadanteb,
C.S. Moona, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abadb,J.C. Ruiz Vargasa
aUniversidadeEstadualPaulista,SãoPaulo,Brazil bUniversidadeFederaldoABC,SãoPaulo,Brazil
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev,M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova
InstituteforNuclearResearchandNuclearEnergy,Sofia,Bulgaria
A. Dimitrov, I. Glushkov,L. Litov, B. Pavlov,P. Petkov
UniversityofSofia,Sofia,Bulgaria
W. Fang6
BeihangUniversity,Beijing,China
M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen,M. Chen, Y. Chen7,T. Cheng, C.H. Jiang, D. Leggat, Z. Liu,
F. Romeo,M. Ruan, S.M. Shaheen, A. Spiezia,J. Tao, C. Wang, Z. Wang, H. Zhang,J. Zhao
InstituteofHighEnergyPhysics,Beijing,China
Y. Ban, G. Chen, Q. Li, S. Liu,Y. Mao, S.J. Qian, D. Wang,Z. Xu
StateKeyLaboratoryofNuclearPhysicsandTechnology,PekingUniversity,Beijing,China
C. Avila,A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, C.F. González Hernández,J.D. Ruiz Alvarez,
J.C. Sanabria
UniversidaddeLosAndes,Bogota,Colombia
N. Godinovic, D. Lelas, I. Puljak,P.M. Ribeiro Cipriano, T. Sculac
UniversityofSplit,FacultyofElectricalEngineering,MechanicalEngineeringandNavalArchitecture,Split,Croatia
Z. Antunovic, M. Kovac
UniversityofSplit,FacultyofScience,Split,Croatia
V. Brigljevic,D. Ferencek, K. Kadija,B. Mesic, T. Susa
InstituteRudjerBoskovic,Zagreb,Croatia
M.W. Ather,A. Attikis, G. Mavromanolakis, J. Mousa,C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski
UniversityofCyprus,Nicosia,Cyprus
M. Finger8, M. Finger Jr.8
CharlesUniversity,Prague,CzechRepublic E. Carrera Jarrin
A. Ellithi Kamel9,M.A. Mahmoud10,11, A. Radi11,12
AcademyofScientificResearchandTechnologyoftheArabRepublicofEgypt,EgyptianNetworkofHighEnergyPhysics,Cairo,Egypt
M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken
NationalInstituteofChemicalPhysicsandBiophysics,Tallinn,Estonia
P. Eerola,J. Pekkanen, M. Voutilainen
DepartmentofPhysics,UniversityofHelsinki,Helsinki,Finland
J. Härkönen,T. Järvinen, V. Karimäki,R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti,T. Lindén,
P. Luukka, J. Tuominiemi,E. Tuovinen, L. Wendland
HelsinkiInstituteofPhysics,Helsinki,Finland
J. Talvitie,T. Tuuva
LappeenrantaUniversityofTechnology,Lappeenranta,Finland
M. Besancon,F. Couderc, M. Dejardin, D. Denegri,B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour,
S. Ghosh,A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci,M. Machet,
J. Malcles,J. Rander, A. Rosowsky, M. Titov
IRFU,CEA,UniversitéParis-Saclay,Gif-sur-Yvette,France
A. Abdulsalam,I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon,C. Charlot,
O. Davignon,R. Granier de Cassagnac, M. Jo, S. Lisniak,P. Miné, M. Nguyen, C. Ochando, G. Ortona,
P. Paganini,P. Pigard, S. Regnard, R. Salerno,Y. Sirois, A.G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi,
A. Zghiche
LaboratoireLeprince-Ringuet,EcolePolytechnique,IN2P3-CNRS,Palaiseau,France
J.-L. Agram13,J. Andrea, A. Aubin,D. Bloch, J.-M. Brom,M. Buttignol, E.C. Chabert,N. Chanon, C. Collard,
E. Conte13,X. Coubez, J.-C. Fontaine13, D. Gelé, U. Goerlach,A.-C. Le Bihan, P. Van Hove
InstitutPluridisciplinaireHubertCurien(IPHC),UniversitédeStrasbourg,CNRS-IN2P3,France S. Gadrat
CentredeCalculdel’InstitutNationaldePhysiqueNucleaireetdePhysiquedesParticules,CNRS/IN2P3,Villeurbanne,France
S. Beauceron,C. Bernet, G. Boudoul,C.A. Carrillo Montoya, R. Chierici,D. Contardo, B. Courbon,
P. Depasse,H. El Mamouni, J. Fay, S. Gascon,M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh,
M. Lethuillier,L. Mirabito, A.L. Pequegnot, S. Perries,A. Popov14,D. Sabes, V. Sordini,M. Vander Donckt,
P. Verdier,S. Viret
UniversitédeLyon,UniversitéClaudeBernardLyon1,CNRS-IN2P3,InstitutdePhysiqueNucléairedeLyon,Villeurbanne,France
A. Khvedelidze8
GeorgianTechnicalUniversity,Tbilisi,Georgia
I. Bagaturia15
TbilisiStateUniversity,Tbilisi,Georgia
C. Autermann,S. Beranek, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten,C. Schomakers, J. Schulz,
T. Verlage
A. Albert, M. Brodski,E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann,S. Erdweg, T. Esch,
R. Fischer,A. Güth, M. Hamer, T. Hebbeker,C. Heidemann, K. Hoepfner, S. Knutzen,M. Merschmeyer,
A. Meyer, P. Millet,S. Mukherjee, M. Olschewski, K. Padeken,T. Pook,M. Radziej, H. Reithler, M. Rieger,
F. Scheuch,L. Sonnenschein, D. Teyssier, S. Thüer
RWTHAachenUniversity,III.PhysikalischesInstitutA,Aachen,Germany
V. Cherepanov, G. Flügge, B. Kargoll, T. Kress, A. Künsken, J. Lingemann, T. Müller,A. Nehrkorn,
A. Nowack,C. Pistone, O. Pooth,A. Stahl16
RWTHAachenUniversity,III.PhysikalischesInstitutB,Aachen,Germany
M. Aldaya Martin,T. Arndt, C. Asawatangtrakuldee, K. Beernaert,O. Behnke, U. Behrens,A.A. Bin Anuar,
K. Borras17,A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos,G. Dolinska,
G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo18,J. Garay Garcia, A. Geiser, A. Gizhko,
J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, A. Harb,J. Hauk, M. Hempel19,H. Jung,
A. Kalogeropoulos, O. Karacheban19, M. Kasemann,J. Keaveney, C. Kleinwort, I. Korol,D. Krücker,
W. Lange, A. Lelek, T. Lenz,J. Leonard, K. Lipka,A. Lobanov, W. Lohmann19, R. Mankel,
I.-A. Melzer-Pellmann,A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, D. Pitzl,R. Placakyte, A. Raspereza,
B. Roland, M.Ö. Sahin,P. Saxena, T. Schoerner-Sadenius,S. Spannagel, N. Stefaniuk,G.P. Van Onsem,
R. Walsh, C. Wissing
DeutschesElektronen-Synchrotron,Hamburg,Germany
V. Blobel, M. Centis Vignali, A.R. Draeger,T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, M. Hoffmann,
A. Junkes, R. Klanner, R. Kogler,N. Kovalchuk, T. Lapsien, I. Marchesini, D. Marconi,M. Meyer,
M. Niedziela, D. Nowatschin, F. Pantaleo16,T. Peiffer, A. Perieanu, C. Scharf, P. Schleper, A. Schmidt,
S. Schumann,J. Schwandt, H. Stadie,G. Steinbrück, F.M. Stober,M. Stöver, H. Tholen, D. Troendle,
E. Usai, L. Vanelderen,A. Vanhoefer, B. Vormwald
UniversityofHamburg,Hamburg,Germany
M. Akbiyik, C. Barth,S. Baur, C. Baus, J. Berger,E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer,
A. Dierlamm, S. Fink,B. Freund,R. Friese, M. Giffels,A. Gilbert, P. Goldenzweig,D. Haitz, F. Hartmann16,
S.M. Heindl,U. Husemann, I. Katkov14, S. Kudella, H. Mildner,M.U. Mozer, Th. Müller, M. Plagge,
G. Quast, K. Rabbertz,S. Röcker, F. Roscher, M. Schröder,I. Shvetsov, G. Sieber, H.J. Simonis,R. Ulrich,
S. Wayand,M. Weber, T. Weiler, S. Williamson, C. Wöhrmann, R. Wolf
InstitutfürExperimentelleKernphysik,Karlsruhe,Germany
G. Anagnostou, G. Daskalakis,T. Geralis,V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, I. Topsis-Giotis
InstituteofNuclearandParticlePhysics(INPP),NCSRDemokritos,AghiaParaskevi,Greece
S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi
NationalandKapodistrianUniversityofAthens,Athens,Greece
I. Evangelou, G. Flouris,C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos,E. Paradas
UniversityofIoánnina,Ioánnina,Greece
N. Filipovic, G. Pasztor
MTA-ELTELendületCMSParticleandNuclearPhysicsGroup,EötvösLorándUniversity,Budapest,Hungary
G. Bencze,C. Hajdu, D. Horvath20,F. Sikler, V. Veszpremi,G. Vesztergombi21,A.J. Zsigmond
N. Beni,S. Czellar, J. Karancsi22,A. Makovec,J. Molnar, Z. Szillasi InstituteofNuclearResearchATOMKI,Debrecen,Hungary
M. Bartók21,P. Raics, Z.L. Trocsanyi, B. Ujvari
InstituteofPhysics,UniversityofDebrecen,Hungary J.R. Komaragiri
IndianInstituteofScience(IISc),India
S. Bahinipati23,S. Bhowmik24, S. Choudhury25,P. Mal, K. Mandal, A. Nayak26, D.K. Sahoo23, N. Sahoo,
S.K. Swain
NationalInstituteofScienceEducationandResearch,Bhubaneswar,India
S. Bansal,S.B. Beri, V. Bhatnagar, R. Chawla, U. Bhawandeep, A.K. Kalsi,A. Kaur, M. Kaur, R. Kumar,
P. Kumari,A. Mehta, M. Mittal, J.B. Singh, G. Walia
PanjabUniversity,Chandigarh,India
Ashok Kumar,A. Bhardwaj, B.C. Choudhary, R.B. Garg,S. Keshri, S. Malhotra,M. Naimuddin, K. Ranjan,
R. Sharma,V. Sharma
UniversityofDelhi,Delhi,India
R. Bhattacharya,S. Bhattacharya, K. Chatterjee, S. Dey,S. Dutt, S. Dutta, S. Ghosh, N. Majumdar,
A. Modak, K. Mondal,S. Mukhopadhyay, S. Nandan,A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury,
S. Sarkar,M. Sharan, S. Thakur
SahaInstituteofNuclearPhysics,Kolkata,India P.K. Behera
IndianInstituteofTechnologyMadras,Madras,India
R. Chudasama,D. Dutta, V. Jha, V. Kumar, A.K. Mohanty16, P.K. Netrakanti,L.M. Pant, P. Shukla,A. Topkar
BhabhaAtomicResearchCentre,Mumbai,India
T. Aziz,S. Dugad, G. Kole, B. Mahakud, S. Mitra, G.B. Mohanty, B. Parida,N. Sur, B. Sutar
TataInstituteofFundamentalResearch-A,Mumbai,India
S. Banerjee, R.K. Dewanjee,S. Ganguly, M. Guchait,Sa. Jain, S. Kumar, M. Maity24, G. Majumder,
K. Mazumdar,T. Sarkar24, N. Wickramage27
TataInstituteofFundamentalResearch-B,Mumbai,India
S. Chauhan,S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma
IndianInstituteofScienceEducationandResearch(IISER),Pune,India
S. Chenarani28, E. Eskandari Tadavani,S.M. Etesami28, M. Khakzad, M. Mohammadi Najafabadi,
M. Naseri, S. Paktinat Mehdiabadi29,F. Rezaei Hosseinabadi, B. Safarzadeh30,M. Zeinali
InstituteforResearchinFundamentalSciences(IPM),Tehran,Iran
M. Felcini,M. Grunewald
UniversityCollegeDublin,Dublin,Ireland
M. Abbresciaa,b, C. Calabriaa,b, C. Caputoa,b, A. Colaleoa,D. Creanzaa,c, L. Cristellaa,b,N. De Filippisa,c, M. De Palmaa,b, L. Fiorea, G. Iasellia,c, G. Maggia,c, M. Maggia,G. Minielloa,b,S. Mya,b,S. Nuzzoa,b,
A. Pompilia,b,G. Pugliesea,c,R. Radognaa,b,A. Ranieria,G. Selvaggia,b,A. Sharmaa,L. Silvestrisa,16,
R. Vendittia,b,P. Verwilligena
aINFNSezionediBari,Bari,Italy bUniversitàdiBari,Bari,Italy cPolitecnicodiBari,Bari,Italy
G. Abbiendia,C. Battilana, D. Bonacorsia,b, S. Braibant-Giacomellia,b, L. Brigliadoria,b, R. Campaninia,b,
P. Capiluppia,b,A. Castroa,b,F.R. Cavalloa,S.S. Chhibraa,b, G. Codispotia,b, M. Cuffiania,b,
G.M. Dallavallea,F. Fabbria, A. Fanfania,b, D. Fasanellaa,b,P. Giacomellia,C. Grandia,L. Guiduccia,b,
S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa,b,A. Perrottaa, A.M. Rossia,b,T. Rovellia,b,
G.P. Sirolia,b,N. Tosia,b,16
aINFNSezionediBologna,Bologna,Italy bUniversitàdiBologna,Bologna,Italy
S. Albergoa,b,S. Costaa,b,A. Di Mattiaa,F. Giordanoa,b,R. Potenzaa,b,A. Tricomia,b,C. Tuvea,b
aINFNSezionediCatania,Catania,Italy bUniversitàdiCatania,Catania,Italy
G. Barbaglia, V. Ciullia,b,C. Civininia, R. D’Alessandroa,b,E. Focardia,b,P. Lenzia,b, M. Meschinia, S. Paolettia,L. Russoa,31, G. Sguazzonia, D. Stroma, L. Viliania,b,16
aINFNSezionediFirenze,Firenze,Italy bUniversitàdiFirenze,Firenze,Italy
L. Benussi, S. Bianco, F. Fabbri,D. Piccolo, F. Primavera16
INFNLaboratoriNazionalidiFrascati,Frascati,Italy
V. Calvellia,b, F. Ferroa, M.R. Mongea,b,E. Robuttia, S. Tosia,b
aINFNSezionediGenova,Genova,Italy bUniversitàdiGenova,Genova,Italy
L. Brianzaa,b,16,F. Brivioa,b,V. Ciriolo, M.E. Dinardoa,b,S. Fiorendia,b,16,S. Gennaia,A. Ghezzia,b,
P. Govonia,b,M. Malbertia,b, S. Malvezzia, R.A. Manzonia,b,D. Menascea,L. Moronia,M. Paganonia,b,
D. Pedrinia,S. Pigazzinia,b,S. Ragazzia,b,T. Tabarelli de Fatisa,b
aINFNSezionediMilano-Bicocca,Milano,Italy bUniversitàdiMilano-Bicocca,Milano,Italy
S. Buontempoa, N. Cavalloa,c, G. De Nardo, S. Di Guidaa,d,16, M. Espositoa,b, F. Fabozzia,c,F. Fiengaa,b,
A.O.M. Iorioa,b, G. Lanzaa,L. Listaa, S. Meolaa,d,16,P. Paoluccia,16, C. Sciaccaa,b, F. Thyssena
aINFNSezionediNapoli,Napoli,Italy bUniversitàdiNapoli’FedericoII’,Napoli,Italy cUniversitàdellaBasilicata,Potenza,Italy dUniversitàG.Marconi,Roma,Italy
P. Azzia,16, N. Bacchettaa, L. Benatoa,b,D. Biselloa,b, A. Bolettia,b,M. Dall’Ossoa,b,
P. De Castro Manzanoa, T. Dorigoa,U. Dossellia, F. Gasparinia,b, U. Gasparinia,b,A. Gozzelinoa,
M. Gulminia,32,S. Lacapraraa, M. Margonia,b, G. Marona,32, A.T. Meneguzzoa,b,M. Michelottoa,
J. Pazzinia,b, N. Pozzobona,b,P. Ronchesea,b, F. Simonettoa,b,E. Torassaa, M. Zanettia,b,P. Zottoa,b,
G. Zumerlea,b
aINFNSezionediPadova,Padova,Italy bUniversitàdiPadova,Padova,Italy cUniversitàdiTrento,Trento,Italy
A. Braghieria,F. Fallavollitaa,b, A. Magnania,b, P. Montagnaa,b,S.P. Rattia,b, V. Rea, C. Riccardia,b, P. Salvinia, I. Vaia,b, P. Vituloa,b
aINFNSezionediPavia,Pavia,Italy bUniversitàdiPavia,Pavia,Italy
L. Alunni Solestizia,b, G.M. Bileia,D. Ciangottinia,b,L. Fanòa,b, P. Laricciaa,b, R. Leonardia,b,
G. Mantovania,b, V. Mariania,b,M. Menichellia,A. Sahaa,A. Santocchiaa,b
aINFNSezionediPerugia,Perugia,Italy bUniversitàdiPerugia,Perugia,Italy
K. Androsova,31,P. Azzurria,16,G. Bagliesia,J. Bernardinia,T. Boccalia,R. Castaldia, M.A. Cioccia,31,
R. Dell’Orsoa,S. Donatoa,c,G. Fedi, A. Giassia,M.T. Grippoa,31,F. Ligabuea,c, T. Lomtadzea, L. Martinia,b,
A. Messineoa,b, F. Pallaa,A. Rizzia,b,A. Savoy-Navarroa,33, P. Spagnoloa,R. Tenchinia, G. Tonellia,b,
A. Venturia,P.G. Verdinia
aINFNSezionediPisa,Pisa,Italy bUniversitàdiPisa,Pisa,Italy
cScuolaNormaleSuperiorediPisa,Pisa,Italy
L. Baronea,b, F. Cavallaria,M. Cipriania,b, D. Del Rea,b,16, M. Diemoza, S. Gellia,b, E. Longoa,b,
F. Margarolia,b, B. Marzocchia,b,P. Meridiania, G. Organtinia,b,R. Paramattia, F. Preiatoa,b,
S. Rahatloua,b,C. Rovellia, F. Santanastasioa,b
aINFNSezionediRoma,Roma,Italy bUniversitàdiRoma,Roma,Italy
N. Amapanea,b,R. Arcidiaconoa,c,16,S. Argiroa,b,M. Arneodoa,c,N. Bartosika,R. Bellana,b, C. Biinoa, N. Cartigliaa,F. Cennaa,b, M. Costaa,b,R. Covarellia,b,A. Deganoa,b,N. Demariaa, L. Fincoa,b, B. Kiania,b,
C. Mariottia, S. Masellia,E. Migliorea,b, V. Monacoa,b, E. Monteila,b, M. Montenoa,M.M. Obertinoa,b,
L. Pachera,b,N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b,F. Raveraa,b,A. Romeroa,b, M. Ruspaa,c,
R. Sacchia,b, K. Shchelinaa,b, V. Solaa,A. Solanoa,b,A. Staianoa,P. Traczyka,b
aINFNSezionediTorino,Torino,Italy bUniversitàdiTorino,Torino,Italy
cUniversitàdelPiemonteOrientale,Novara,Italy
S. Belfortea,M. Casarsaa, F. Cossuttia,G. Della Riccaa,b, A. Zanettia
aINFNSezionediTrieste,Trieste,Italy bUniversitàdiTrieste,Trieste,Italy
D.H. Kim,G.N. Kim, M.S. Kim, S. Lee, S.W. Lee, Y.D. Oh,S. Sekmen, D.C. Son,Y.C. Yang
KyungpookNationalUniversity,Daegu,RepublicofKorea A. Lee
ChonbukNationalUniversity,Jeonju,RepublicofKorea H. Kim
ChonnamNationalUniversity,InstituteforUniverseandElementaryParticles,Kwangju,RepublicofKorea
J.A. Brochero Cifuentes,T.J. Kim
HanyangUniversity,Seoul,RepublicofKorea
S. Cho,S. Choi, Y. Go,D. Gyun, S. Ha,B. Hong, Y. Jo, Y. Kim, K. Lee,K.S. Lee,S. Lee,J. Lim, S.K. Park, Y. Roh
KoreaUniversity,Seoul,RepublicofKorea
J. Almond,J. Kim, H. Lee,S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang,H.D. Yoo, G.B. Yu
SeoulNationalUniversity,Seoul,RepublicofKorea
M. Choi,H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu, M.S. Ryu
Y. Choi,J. Goh, C. Hwang, J. Lee,I. Yu SungkyunkwanUniversity,Suwon,RepublicofKorea
V. Dudenas, A. Juodagalvis,J. Vaitkus
VilniusUniversity,Vilnius,Lithuania
I. Ahmed,Z.A. Ibrahim, M.A.B. Md Ali34,F. Mohamad Idris35,W.A.T. Wan Abdullah, M.N. Yusli,
Z. Zolkapli
NationalCentreforParticlePhysics,UniversitiMalaya,KualaLumpur,Malaysia
H. Castilla-Valdez, E. De La Cruz-Burelo,I. Heredia-De La Cruz36,A. Hernandez-Almada,
R. Lopez-Fernandez, R. Magaña Villalba, J. Mejia Guisao,A. Sanchez-Hernandez
CentrodeInvestigacionydeEstudiosAvanzadosdelIPN,MexicoCity,Mexico
S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia
UniversidadIberoamericana,MexicoCity,Mexico
S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada
BenemeritaUniversidadAutonomadePuebla,Puebla,Mexico A. Morelos Pineda
UniversidadAutónomadeSanLuisPotosí,SanLuisPotosí,Mexico D. Krofcheck
UniversityofAuckland,Auckland,NewZealand P.H. Butler
UniversityofCanterbury,Christchurch,NewZealand
A. Ahmad, M. Ahmad, Q. Hassan,H.R. Hoorani, W.A. Khan, A. Saddique,M.A. Shah, M. Shoaib, M. Waqas
NationalCentreforPhysics,Quaid-I-AzamUniversity,Islamabad,Pakistan
H. Bialkowska, M. Bluj,B. Boimska, T. Frueboes,M. Górski, M. Kazana, K. Nawrocki,
K. Romanowska-Rybinska, M. Szleper,P. Zalewski
NationalCentreforNuclearResearch,Swierk,Poland
K. Bunkowski,A. Byszuk37, K. Doroba,A. Kalinowski, M. Konecki,J. Krolikowski, M. Misiura,
M. Olszewski, M. Walczak
InstituteofExperimentalPhysics,FacultyofPhysics,UniversityofWarsaw,Warsaw,Poland
P. Bargassa,C. Beirão Da Cruz E Silva, B. Calpas, A. Di Francesco, P. Faccioli,P.G. Ferreira Parracho,
M. Gallinaro,J. Hollar, N. Leonardo,L. Lloret Iglesias, M.V. Nemallapudi,J. Rodrigues Antunes, J. Seixas,
O. Toldaiev, D. Vadruccio,J. Varela
LaboratóriodeInstrumentaçãoeFísicaExperimentaldePartículas,Lisboa,Portugal
S. Afanasiev,P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev,V. Karjavin, A. Lanev,
A. Malakhov,V. Matveev38,39,V. Palichik, V. Perelygin, S. Shmatov, S. Shulha,N. Skatchkov, V. Smirnov,
N. Voytishin,A. Zarubin
L. Chtchipounov,V. Golovtsov, Y. Ivanov, V. Kim40, E. Kuznetsova41,V. Murzin, V. Oreshkin, V. Sulimov, A. Vorobyev
PetersburgNuclearPhysicsInstitute,Gatchina(St.Petersburg),Russia
Yu. Andreev,A. Dermenev,S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov,N. Krasnikov,
A. Pashenkov,D. Tlisov, A. Toropin
InstituteforNuclearResearch,Moscow,Russia
V. Epshteyn,V. Gavrilov, N. Lychkovskaya,V. Popov, I. Pozdnyakov,G. Safronov, A. Spiridonov, M. Toms,
E. Vlasov,A. Zhokin
InstituteforTheoreticalandExperimentalPhysics,Moscow,Russia
T. Aushev,A. Bylinkin39
MoscowInstituteofPhysicsandTechnology,Moscow,Russia
M. Chadeeva42, E. Popova,E. Tarkovskii
NationalResearchNuclearUniversity’MoscowEngineeringPhysicsInstitute’(MEPhI),Moscow,Russia
V. Andreev,M. Azarkin39,I. Dremin39, M. Kirakosyan, A. Leonidov39,A. Terkulov
P.N.LebedevPhysicalInstitute,Moscow,Russia
A. Baskakov,A. Belyaev, E. Boos,A. Demiyanov,A. Ershov, A. Gribushin, O. Kodolova,V. Korotkikh,
I. Lokhtin,I. Miagkov, S. Obraztsov,S. Petrushanko, V. Savrin, A. Snigirev, I. Vardanyan
SkobeltsynInstituteofNuclearPhysics,LomonosovMoscowStateUniversity,Moscow,Russia
V. Blinov43, Y. Skovpen43,D. Shtol43
NovosibirskStateUniversity(NSU),Novosibirsk,Russia
I. Azhgirey,I. Bayshev,S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov,
V. Krychkine, V. Petrov, R. Ryutin, A. Sobol,S. Troshin, N. Tyurin,A. Uzunian, A. Volkov
StateResearchCenterofRussianFederation,InstituteforHighEnergyPhysics,Protvino,Russia
P. Adzic44,P. Cirkovic, D. Devetak,M. Dordevic, J. Milosevic,V. Rekovic
UniversityofBelgrade,FacultyofPhysicsandVincaInstituteofNuclearSciences,Belgrade,Serbia
J. Alcaraz Maestre,M. Barrio Luna, E. Calvo,M. Cerrada,M. Chamizo Llatas, N. Colino, B. De La Cruz,
A. Delgado Peris,A. Escalante Del Valle, C. Fernandez Bedoya,J.P. Fernández Ramos, J. Flix, M.C. Fouz,
P. Garcia-Abia,O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa,E. Navarro De Martino,
A. Pérez-Calero Yzquierdo,J. Puerta Pelayo, A. Quintario Olmeda,I. Redondo, L. Romero,M.S. Soares
CentrodeInvestigacionesEnergéticasMedioambientalesyTecnológicas(CIEMAT),Madrid,Spain
J.F. de Trocóniz,M. Missiroli, D. Moran
UniversidadAutónomadeMadrid,Madrid,Spain
J. Cuevas,J. Fernandez Menendez, I. Gonzalez Caballero, J.R. González Fernández,E. Palencia Cortezon,
S. Sanchez Cruz,I. Suárez Andrés, P. Vischia, J.M. Vizan Garcia
I.J. Cabrillo, A. Calderon, E. Curras, M. Fernandez,J. Garcia-Ferrero, G. Gomez, A. Lopez Virto,J. Marco,
C. Martinez Rivero,F. Matorras, J. Piedra Gomez, T. Rodrigo, A. Ruiz-Jimeno,L. Scodellaro, N. Trevisani,
I. Vila, R. Vilar Cortabitarte
InstitutodeFísicadeCantabria(IFCA),CSIC-UniversidaddeCantabria,Santander,Spain
D. Abbaneo, E. Auffray, G. Auzinger, P. Baillon, A.H. Ball, D. Barney, P. Bloch,A. Bocci, C. Botta,
T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, Y. Chen, D. d’Enterria, A. Dabrowski,V. Daponte,
A. David,M. De Gruttola, A. De Roeck, E. Di Marco45, M. Dobson, B. Dorney,T. du Pree, D. Duggan,
M. Dünser, N. Dupont, A. Elliott-Peisert,P. Everaerts, S. Fartoukh, G. Franzoni, J. Fulcher,W. Funk, D. Gigi,
K. Gill,M. Girone, F. Glege, D. Gulhan, S. Gundacker, M. Guthoff, P. Harris,J. Hegeman, V. Innocente,
P. Janot, J. Kieseler, H. Kirschenmann,V. Knünz, A. Kornmayer16, M.J. Kortelainen, K. Kousouris,
M. Krammer1,C. Lange, P. Lecoq, C. Lourenço,M.T. Lucchini,L. Malgeri, M. Mannelli,A. Martelli,
F. Meijers, J.A. Merlin, S. Mersi, E. Meschi,P. Milenovic46,F. Moortgat, S. Morovic, M. Mulders,
H. Neugebauer,S. Orfanelli, L. Orsini, L. Pape,E. Perez, M. Peruzzi,A. Petrilli, G. Petrucciani, A. Pfeiffer,
M. Pierini,A. Racz, T. Reis,G. Rolandi47, M. Rovere,H. Sakulin, J.B. Sauvan, C. Schäfer, C. Schwick,
M. Seidel,A. Sharma, P. Silva,P. Sphicas48,J. Steggemann, M. Stoye,Y. Takahashi, M. Tosi, D. Treille,
A. Triossi,A. Tsirou, V. Veckalns49,G.I. Veres21,M. Verweij, N. Wardle, H.K. Wöhri, A. Zagozdzinska37,
W.D. Zeuner
CERN,EuropeanOrganizationforNuclearResearch,Geneva,Switzerland
W. Bertl,K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski,U. Langenegger,
T. Rohe, S.A. Wiederkehr
PaulScherrerInstitut,Villigen,Switzerland
F. Bachmair, L. Bäni, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donegà, C. Grab, C. Heidegger,
D. Hits, J. Hoss,G. Kasieczka, W. Lustermann,B. Mangano,M. Marionneau, P. Martinez Ruiz del Arbol,
M. Masciovecchio, M.T. Meinhard,D. Meister, F. Micheli,P. Musella, F. Nessi-Tedaldi, F. Pandolfi, J. Pata,
F. Pauss,G. Perrin, L. Perrozzi,M. Quittnat, M. Rossini, M. Schönenberger, A. Starodumov50,
V.R. Tavolaro, K. Theofilatos, R. Wallny
InstituteforParticlePhysics,ETHZurich,Zurich,Switzerland
T.K. Aarrestad, C. Amsler51, L. Caminada,M.F. Canelli, A. De Cosa, C. Galloni,A. Hinzmann, T. Hreus,
B. Kilminster, J. Ngadiuba,D. Pinna,G. Rauco, P. Robmann, D. Salerno, C. Seitz,Y. Yang, A. Zucchetta
UniversitätZürich,Zurich,Switzerland
V. Candelise,T.H. Doan, Sh. Jain,R. Khurana, M. Konyushikhin, C.M. Kuo, W. Lin, A. Pozdnyakov,S.S. Yu
NationalCentralUniversity,Chung-Li,Taiwan
Arun Kumar, P. Chang, Y.H. Chang,Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu,
R.-S. Lu, M. Miñano Moya,E. Paganis, A. Psallidas, J.f. Tsai
NationalTaiwanUniversity(NTU),Taipei,Taiwan
B. Asavapibhop, G. Singh, N. Srimanobhas,N. Suwonjandee
ChulalongkornUniversity,FacultyofScience,DepartmentofPhysics,Bangkok,Thailand
A. Adiguzel, M.N. Bakirci52, S. Cerci53,S. Damarseckin, Z.S. Demiroglu, C. Dozen, I. Dumanoglu, S. Girgis,
G. Gokbulut, Y. Guler, I. Hos54, E.E. Kangal55, O. Kara, A. Kayis Topaksu,U. Kiminsu,M. Oglakci,
G. Onengut56,K. Ozdemir57,B. Tali53,S. Turkcapar,I.S. Zorbakir, C. Zorbilmez
CukurovaUniversity- PhysicsDepartment,ScienceandArtFaculty,Turkey
B. Bilin, S. Bilmis, B. Isildak58, G. Karapinar59, M. Yalvac, M. Zeyrek
E. Gülmez,M. Kaya60,O. Kaya61, E.A. Yetkin62, T. Yetkin63 BogaziciUniversity,Istanbul,Turkey
A. Cakir,K. Cankocak, S. Sen64
IstanbulTechnicalUniversity,Istanbul,Turkey B. Grynyov
InstituteforScintillationMaterialsofNationalAcademyofScienceofUkraine,Kharkov,Ukraine
L. Levchuk,P. Sorokin
NationalScientificCenter,KharkovInstituteofPhysicsandTechnology,Kharkov,Ukraine
R. Aggleton,F. Ball, L. Beck, J.J. Brooke, D. Burns,E. Clement, D. Cussans, H. Flacher,J. Goldstein,
M. Grimes, G.P. Heath, H.F. Heath,J. Jacob, L. Kreczko, C. Lucas, D.M. Newbold65, S. Paramesvaran,
A. Poll, T. Sakuma,S. Seif El Nasr-storey, D. Smith,V.J. Smith
UniversityofBristol,Bristol,UnitedKingdom
A. Belyaev66, C. Brew, R.M. Brown, L. Calligaris,D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder,
S. Harper, E. Olaiya,D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams
RutherfordAppletonLaboratory,Didcot,UnitedKingdom
M. Baber,R. Bainbridge, O. Buchmuller, A. Bundock,D. Burton, S. Casasso,M. Citron, D. Colling, L. Corpe,
P. Dauncey,G. Davies, A. De Wit, M. Della Negra, R. Di Maria, P. Dunne, A. Elwood, D. Futyan,Y. Haddad,
G. Hall,G. Iles, T. James, R. Lane, C. Laner, R. Lucas65,L. Lyons, A.-M. Magnan,S. Malik, L. Mastrolorenzo,
J. Nash, A. Nikitenko50,J. Pela, B. Penning, M. Pesaresi, D.M. Raymond, A. Richards,A. Rose,E. Scott,
C. Seez,S. Summers,A. Tapper, K. Uchida, M. Vazquez Acosta67,T. Virdee16,J. Wright, S.C. Zenz
ImperialCollege,London,UnitedKingdom
J.E. Cole, P.R. Hobson,A. Khan, P. Kyberd,I.D. Reid, P. Symonds, L. Teodorescu, M. Turner
BrunelUniversity,Uxbridge,UnitedKingdom
A. Borzou,K. Call,J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika
BaylorUniversity,Waco,USA
R. Bartek,A. Dominguez
CatholicUniversityofAmerica,UnitedStates
A. Buccilli, S.I. Cooper,C. Henderson, P. Rumerio, C. West
TheUniversityofAlabama,Tuscaloosa,USA
D. Arcaro, A. Avetisyan, T. Bose,D. Gastler, D. Rankin, C. Richardson,J. Rohlf, L. Sulak,D. Zou
BostonUniversity,Boston,USA
G. Benelli, D. Cutts, A. Garabedian,J. Hakala, U. Heintz, J.M. Hogan,O. Jesus, K.H.M. Kwok,E. Laird,
G. Landsberg, Z. Mao,M. Narain, S. Piperov,S. Sagir, E. Spencer, R. Syarif
BrownUniversity,Providence,USA
R. Breedon,D. Burns, M. Calderon De La Barca Sanchez,S. Chauhan, M. Chertok, J. Conway,R. Conway,
P.T. Cox,R. Erbacher, C. Flores, G. Funk, M. Gardner,W. Ko, R. Lander, C. Mclean,M. Mulhearn, D. Pellett,
J. Pilot, S. Shalhout, M. Shi,J. Smith, M. Squires, D. Stolp, K. Tos, M. Tripathi