• Sonuç bulunamadı

HPLC-FRAP methodology and biological activities of different stem bark extracts of Cajanus cajan (L.) Millsp

N/A
N/A
Protected

Academic year: 2021

Share "HPLC-FRAP methodology and biological activities of different stem bark extracts of Cajanus cajan (L.) Millsp"

Copied!
10
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Journal

of

Pharmaceutical

and

Biomedical

Analysis

jou rn al h om e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / j p b a

HPLC-FRAP

methodology

and

biological

activities

of

different

stem

bark

extracts

of

Cajanus

cajan

(L.)

Millsp

Kouadio

Ibrahime

Sinan

a

,

Mohamad

Fawzi

Mahomoodally

b,∗

,

Ozan

Emre

Eyupoglu

c

,

Ouattara

Katinan

Etienne

d

,

Nabeelah

Bibi

Sadeer

b

,

Gunes

Ak

a

,

Tapan

Behl

e

,

Gokhan

Zengin

a,∗

aDepartmentofBiology,ScienceFaculty,SelcukUniversity,Campus,Konya,Turkey

bDepartmentofHealthSciences,FacultyofMedicineandHealthSciences,UniversityofMauritius,230Réduit,Mauritius cDepartmentofBiochemistry,SchoolofPharmacy,IstanbulMedipolUniversity,Turkey

dLaboratoiredeBotanique,UFRBiosciences,UniversitéFélixHouphouët-Boigny,Abidjan,Coted’Ivoire eChitkaraCollegeofPharmacy,ChitkaraUniversity,Punjab,India

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received2September2020 Receivedinrevisedform 28September2020 Accepted5October2020 Availableonline12October2020 Keywords: Antioxidants Bioactivecompounds Pigeonpea Enzymeinhibition Naturalproducts

a

b

s

t

r

a

c

t

Cajanuscajan.(L.)Millsp.(C.cajan)(Family:Fabaceae)alsoknownaspigeonpea,isafamousfoodand cover/foragecropbearingahighamountofkeyaminoacids(methionine,lysineandtryptophan).This studyinvestigatedintothetotalphenolic(TPC),flavonoidcontent(TFC),antioxidant [2,2-diphenyl-1-picrylhydrazyl(DPPH),2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonicacid)(ABTS),ferricreducing antioxidantpower(FRAP),cupricreducingantioxidantcapacity,totalantioxidantcapacity(TAC) (phos-phomolybdenum)andmetalchelating]activitiesandenzyme[␣-amylase,␣-glucosidase,tyrosinase, acetyl-(AChE),butyryl-(BChE)cholinesterase]inhibitoryeffectsoffourextracts(methanol,hexane,ethyl acetate,aqueous) preparedfromC. cajanstem bark.Directidentification ofantioxidants was also conductedusingthehighperformanceliquidchromatography-ferricreducingantioxidantpower (HPLC-FRAP)system.ThehighestTPCandTFCwererecordedwiththemethanolic(23.22±0.17mgGAE/g) andethylacetateextracts(19.43±0.24mgRE/g),respectively.Themethanolicextractexhibited impor-tantantioxidantactivitywithDPPH(38.41±0.05mgTroloxequivalent(TE)/g),ABTS(70.49±3.62mg TE/g),CUPRAC(81.86±2.40mgTE/g),FRAP(42.96±0.59mgTE/g)andmetalchelating(17.00±1.26 mgethylenediaminetetraaceticacidequivalent/g).p-coumaricandcaffeicacidwerethepredominant antioxidantsinthesamples.Resultsfromenzymaticassaysshowedthepotentialabilitiesofhexane extractininhibitingtheAChE,BChE,␣-amylaseand␣-glucosidaseenzymes.Fromtheresultsobtained inthisstudy,itcanbeconcludedthatC.cajancanbeconsideredasapromisingsourceofantioxidants andkeyenzymeinhibitorsthatcanbeexploitedforfuturebioproductdevelopment.

©2020ElsevierB.V.Allrightsreserved.

1. Introduction

Oxidative stress is one of the most burning topics among

researchers around the globe as it is the underlying causative

factorofnumerouschronicdiseasesnamelycancer,

neurodegener-ativedisorders,cardiovasculardiseases,dermatologicalproblems,

diabetes mellitus, among others. Continuously searching for

antioxidantsshouldbeanongoingchallengeasithasbeenreported

thatantioxidantsmayhampertheoxidationprocesswhich

conse-∗ Correspondingauthors.

E-mailaddresses:f.mahomoodally@uom.ac.mu(M.F.Mahomoodally),

gokhanzengin@selcuk.edu.tr(G.Zengin).

quentlypreventorpostponeoxidativestressrelateddiseases[1].

Antioxidantsfromplantmaterialshavegarneredfair amountof

attentionfromresearchersaswellasthepublicbecauseoftheir

demonstratedefficacyandsafety.Atpresent,mostoftheplant

sam-plesarescreenedinpursuitofnovelandnaturalantioxidantswith

substantiallyhighactivity.Forinstance,intheyear2019,

ScienceDi-rectrecorded12,901articlesrelatedtothescreeningofplantsin

termsoftheirantioxidantactivity.Tobeinlinewiththecurrent

trends,thepresent studyaims toscreen a nutritionally

impor-tantplant,Cajanuscajan(L.)Millsp.(C.cajan)(Family:Fabaceae)

alsoknownaspigeonpea,foritsantioxidativepropertyusingtwo

differenttechniquesnamelyspectrometryandchromatography.

Sinceamajorgapexistsinthecurrentinvitroantioxidantassays

aswelldetailedin arecentreview byBibiSadeeretal.[2],we

https://doi.org/10.1016/j.jpba.2020.113678

(2)

alsoassessedtheantioxidantspresentinC.cajanusingarecently

developedsystem:highperformanceliquidchromatography-ferric

reducingantioxidantpower(HPLC-FRAP)forthedirect

identifica-tionofantioxidantsinthecomplexmatricesofplantsamples.

TheHPLC-FRAPsystemhasbeenpopularlyusedbynumerous

researcherseliminatingtedioussamplepre-treatmentprocedures

andproved tobeefficientand rapid [3]. Accordingtoprevious

reports,in vitroantioxidantassays suggested that C.cajanmay

beconsideredasanimportant naturalantioxidant source[4,5].

However,tothebestofourknowledge,therehasbeennoreport

abouttheprofiling of antioxidant compoundsof C. cajanusing

HPLC-FRAP system.Thus, oneof theaims of thepresent study

istoidentifyantioxidantsin thestem barkof C.cajanbysuch

technique.Otherwise,thisCajanusspecies,beingaplantfood,is

commonlyusedin traditionalmedicine.For instance,theleafis

usedagainstdiabetes,dysentery,hepatitis,measlesandinChina

itisbelievedtotreatblood-relateddiseasesandalleviatepain[4].

InTrinidad,theleafisusedinfoodpoisoningandtoprevent

con-stipation[6].Cajanuscajanisahighlynutritiousperenniallegume

andagoodsourceofcrudefibre,iron,sulphur,calcium,potassium,

manganeseandwater-solublevitamins[7].Morphologically,itis

anon-climbingshrub,erect,silkypubescentribbedstems,spindly

branches,leavespinnatelytrifoliolate,leafletsinshortstalks,

flow-ersborne oncorymbiform racemes,petals yellow,standard red

outsideandyellowinside,wingsyellow,oblonglinearpods

con-strictedbetweentheseeds[8].

Severalpharmacologicalvalidationsshowedthat pigeon pea

possessedimportantbiologicalproperties.Inaclinicalevaluation,

theextractofC.cajanwasreportedtoreducepainfulcrisesinsickle

cellanaemiaontheliver[9].Compoundsidentifiedintherootand

leafextractsdisplayedmoderateactivityagainstthe

chloroquine-sensitivePlasmodiumfalciparum strain 3D7 [10]. Liu et al. [11]

reportedthatthefourstilbenes(cajaninstilbeneacid,longistyline

A,longistylineC, andcajanolactone A)isolatedfromtheleafof

pigeonpeapossessedneuroprotectiveeffects.Anotherrecentstudy

showedthatanaturalstilbene(longistylinA)producedbyC.cajan

cansignificantlyinhibitthegrowthofmethicillin-resistant

Staphy-lococcusaureus[12].

Asevidencedbyanumberofpublications,important

pharma-cologicalpropertieshavebeenrecordedfromleavesandrootsofC.

cajan.Inaddition,thechemicalcompositionhasalsobeenreported.

However,nochemicalandbiologicalinformation’shavereported

fromthestembarkofC.cajan.Therefore,toaddressthisresearch

gapinthecorpusofscientificknowledgeonthisplant,theotheraim

ofthisstudywastovalidatetheuseofthisplantforitschemical

pro-fileandbiologicalproperties.Takentogether,thepresentedresults

couldfillthegaponC.cajanstembarkwhichsubsequentlycould

opennewresearchavenues,particularlyindevelopment

therapeu-ticbioproductsdevelopment.

2. Materialsandmethods

2.1. Plantmaterialandextractionprocedure

ThestembarkofC.cajanwascollectedinthevillageofTenikro

(districtofYamoussoukro-Côted’Ivoire,6◦ 33 10 N,5◦15 11

W, 293 m) in the year 2019 and it was authenticated by the

botanist Ouattara Katinan Etienne(Université Félix Houphouet

Boigny,Abidjan,Côted’Ivoire).Theplantmaterials(aerialparts)

weredriedinshadeforabout10daysandthengroundedusinga

laboratorymill.

Macerationwasusedforsamplepreparationwithethylacetate,

hexaneandmethanolasextractionsolvents,separately.For this

purpose, 5 gof thesamples weremaceratedfor 24 hat room

temperature.Afterthis,theextractswerefilteredandthenthe

sol-ventswereremovedviaarotary-evaporator.Withrespecttothe

waterextracts,5goftheplantmaterialwereinfusedwith100mL

boiledwater.Thereafter,thewaterwasdriedusingfreeze-drying.

Allextractswerestoredat+4◦Cuntilfurtherstudies.

2.2. Profileofbioactivecompounds

Thetotalphenolic (TPC),andflavonoid(TFC)contentsofthe

extractsweremeasuredanddetailedmethodsweredescribedin

ourpreviouspaper[13].Standards,namelygallicacid(GAE)for

phenolics,andrutin(RE)forflavonoids,wereusedtoexpressthe

results.

2.3. HPLC-Method

TheShimadzuLC-2010C-HTHPLCcompactsystem(Japan)used

fortheanalysisincludedthermostablecolumnunit,the

autosam-plerunit,degasser,gradientmanagerpumpandUV-Diodearray

detectors combined with a second supported on-line reagent

programmable single channel syringe pump (IPS 12-RS model,

Inovensolaboratorydevices,Turkey).Theexperimentswere

con-ductedusingaPurospherstarRP-18encapped,C18columnwith

guard column (4.6 × 250 mm,5 ␮m)(Merck, Germany). Data

procurement(peakarea,retentiontime)wasexecutedby

utiliz-ingShimadzuChemStationProgram.Theinjectionvolumeofall

sampleswas50␮L.Analysistimewas30min.Themobilephase

consistedoffoursolvents:solventAwasmethanol,solventBwas

amixtureofaceticacid/water/acetonitrile(0.5/49.75/49.75,v/v/v),

solventCwasamixtureof0.2%aceticacid:water(v/v)andsolvent

Dwasultra-puregradeacetonitrile[14].

HPLC-FRAPmethodology,oneofthemethodsthatallows

simul-taneousapplication ofHPLCseparation andantioxidantactivity

determination,wasused.DADsignalwassetat280nm(maximum

absorptionforphenoliccontents)andUVon-lineantioxidant

activ-itydetectionsignalwassetat595nm(maximumabsorptionafter

thepostcolumnFRAPreaction).Mobilephaseflowratewasset

at1.2mL/min.Theflowrateofthesyringepumpwassetat0.25

mL/min(optimizedvalue).Columntemperaturewassetatroom

temperature,25−30◦C.Thereactioncoil,whichmadeof

polyte-trafluoroethylene (PTFE)tubing (0.25mm i.d.), wasadjustedas

2.5mlength(optimizedvalue)[14].TheFRAPreagentwas

pre-paredsuchasinthestudyofBenzieandStrain[15]andadaptedto

post-columnassay.ForHPLC-FRAPassay,FRAPreagentwasfreshly

prepared,drawnintothesyringe,coveredwithaluminiumfoiland

putintothesyringepump.HPLC-FRAPsystemreactswiththe

open-ingofthesplitterswitchsystemconnectedtothemanifoldinthe

1.5cmreactioncoilofthepigeonpeaplantsampleextracts

sepa-ratedaccordingtothepolaritydifferencewiththesolventflowfrom

themainpump,andthisreactionpeakswithextrapeakdetectionin

theUVdetectorbesidestheDADseparationwereanalysed(Fig.1).

Lyophilizedandpowdered(5mg)formsofC.cajanstembarks

forfourdifferentextracts(ethylacetate,hexane, methanol,and

infusion)weresolubilizedwithHPLCgradehighpuritymethanol

(10mL).Firstly,theywerefilteredthrougha0.45␮mfilterpriorto

HPLCanalysis.Theirfinalconcentrationswereadjustedto0.5mg/

mLbeforeHPLCanalysis.Ethylacetate,hexane,methanol,and

infu-sionextractsofC.cajanstembarkswasrunwithHPLC-FRAPsystem

atleastthreeparalleleachother.Limitofdetection(LOD)andlimit

ofquantitation(LOQ)aretheanalyticalprocessingargumentsof

ananalytethatcanbeaccuratelymeasuredbytheanalytical

pro-cedure.Forthisstudy,validationparametersaboutLODandLOQ

weredeterminedaccordingtotheInternationalConferenceon

Har-monization guidelines.While attheend of therunningoffour

differentextracts(ethylacetate,hexane,methanol,infusion)from

C.cajanstembarks,chromatogramswithpositiveFRAPpeakswere

(3)

detec-Fig.1.HPLC-FRAPantioxidantanalysissystem.

tionlimitsofHPLC-FRAPmethodaboutphenolicacidcontentsofC.

cajanstembarksextractsweredeterminedas3timesand10times

oftheaveragestandarddeviationofnoise.Linearityofthemethod

wastestedintherange of0.4−9ppmfordetected12 phenolic

acids(p−OHbenzoicacid,chlorogenicacid, caffeicacid,syringic

acid,ferulicacid,p-coumaricacid,vanillin,vanillicacid,rosmarinic

acid,gentisicacid,syringaldehyde,protocatechuicacid).TheLOD

andLOQdataobtainedfor280nmand595nmwascalculated.All

statisticalChemStationdetectionlimitanalysisdatawerereported

significantly(p<0.05)withstandarddeviation.TherearenoFRAP

peakequivalentsofp−OHbenzoicacid,p-coumaricacid,vanillin

andvanillicacid

2.4. Determinationofantioxidantandenzymeinhibitoryeffects

To detect antioxidant properties, we used several chemical

assays with different mechanisms namely, radical scavenging,

reducingpowerandmetalchelating.Trolox(TE)and

ethylenedi-aminetetraaceticacid(EDTA)wereusedasstandardantioxidant

compounds. Obtained resultswere expressedas equivalents of

thesecompoundsGrochowskietal.[16].Todetectinhibitoryeffects

onenzymes,weusedcolorimetricenzymeinhibitionassaysand

theseassays includedtyrosinase, ␣-glucosidase,␣-amylase and

cholinesterases.Somestandardinhibitors(galantamine,kojicacid

andacarbose)wereusedaspositivecontrols.

2.5. Dataanalysis

Allexperimentswereperformedintriplicateandresultswere

aggregatedandgaveasmean±SDstandarddeviation.Datawere

statisticallyanalysedbyusingOne-wayanalysisofvariance,

prin-cipalcomponentandhierarchicalclusteredanalysisrespectively.R

v3.6.2softwarewasusedfortheanalysis.

Table1

TotalbioactivecomponentsofC.cajanstembark.

Extracts Totalphenolic content(mgGAE/g extract) Totalflavonoid content(mgRE/g extract) Hexane 5.55±0.08d 1.25±0.03c EA 21.69±0.30b 19.43±0.24a MeOH 23.22±0.17a 11.49±0.06b Infusion 19.14±0.18c 1.51±0.23c

*Valuesexpressedaremeans±S.D.ofthreeparallelmeasurements.GAE:Gallic acidequivalent;RE:Rutinequivalent;EA:Ethylacetate;MeOH:Methanol.Different superscriptsindicatesignificantdifferencesintheextracts(p<0.05).

3. Resultsanddiscussion

3.1. Totalbioactivecompoundsandinvitroantioxidant properties

Phenoliccompoundsarewidelydistributedinplantfoods.In addition to fruits,coloured vegetablesand spices,legumes are equallyrichinphenoliccompounds.Asamatteroffact,C.cajanis expectedtobeaboundedbypolyphenolsasitisahighlynutritious legumeandthishasindeedbeenconfirmedseveraltimesby pre-viouspublicationsindicatingthattheseedcontainedhighquantity ofphenolic,flavonoid,andtannincontents[7].Sincelittleisknown

onthephytochemicalprofileofstembarkoftheplantofinterest,

thepresentstudyattemptedtoquantifythetotalphenolic(TPC)

andtotalflavonoidcontent(TFC)ofdifferentextractsofstembark.

ResultsareshowninTable1.Incontrasttoseedswherebysome

studiesrevealedlow TPC rangingfrom1.054to18.3mgGAE/g

[17,18],thedatapresentedhereinshowedrelativelyhigher

quan-tityofphenolicandflavonoidcontentsinstembark.Forinstance,

(4)

Table2

AntioxidantactivitiesofC.cajanstembark.

Extracts DPPH(mgTE/g extract) ABTS(mgTE/g extract) CUPRAC(mgTE/g extract) FRAP(mgTE/g extract) Phosphomolybdenum (mmolTE/g) Metalchelating ability(mg EDTAE/g) Hexane na 4.75±0.32d 13.48±0.30d 8.54±0.19d 0.31±0.02d 6.52±0.29c EA 12.39±0.09c 22.45±0.70c 72.09±1.40b 25.91±0.44c 1.68±0.09a 10.24±0.03b MeOH 38.41±0.05a 70.49±3.62a 81.86±2.40a 42.96±0.59a 1.32±0.06b 17.00±1.26a Infusion 25.84±0.64b 64.40±1.09b 53.51±0.34c 36.43±0.08b 1.00±0.05c 10.16±0.69b

*Valuesexpressedaremeans±S.D.ofthreeparallelmeasurements.TE:Troloxequivalent;EDTAE:EDTAequivalent;EA:Ethylacetate;MeOH:Methanol;na:notactive. Differentsuperscriptsindicatesignificantdifferencesintheextracts(p<0.05).

(23.22±0.17mgGAE/g)andethylacetateextract(19.43±0.24mg RE/g),respectively.However,thelowestyieldforbothTPCandTFC wasobtainedfromthehexaneextracts(5.55±0.08mgGAE/gand 1.25±0.03mgRE/g,respectively).

Eversinceepidemiologicalstudiescorrelatedietsrichin nat-uralantioxidantswithadecreasedriskofoxidativestress-related diseases,phenoliccompoundsandtheirantioxidantactivitieshave beenofgreatconcerntobothconsumersandresearcherssincethe pastdecades[19].Duetothiskeeninterest,assessmentof

antiox-idantspresentintheextractsofC.cajanwereconductedherein.

Sincethereisstillnouniversalmethodtodetermineantioxidative

powerinvitro,sixdifferenttestsinvolvingdifferentmechanismof

antioxidantdefencesystemwereconductedtoevaluatethe

antiox-idantactivityofpigeonpea. Forinstance,DPPHand ABTSwere

performedtoevaluatethefreeradicalscavengingcapacity ofC.

cajan,FRAPandCUPRACtoinvestigateintothereducingpotential,

phosphomolybdenumtodeterminetotalantioxidantcapacityand

ferrousionchelatingassaytomeasurethechelatingabilityofthe

extracts.ResultsareshowninTable2.

Overall, it can be observed that a good correlation existed

between the different assays. Additionally, extracts with high

antioxidantactivitywereassociatedwithhighphenoliccontents.

Forinstance,methanolicextractyieldingthehighestTPC,exhibited

thehighestactivityinfiveassaysnamelyDPPH(38.41±0.05mg

TE/g),ABTS(70.49±3.62mgTE/g),FRAP(42.96±0.59mgTE/g),

CUPRAC(81.86±2.40mgTE/g)andmetalchelating(17.00±1.26

mgEDTAE/g).Scientistshaveclaimedthatextractsobtainedfrom

highlypolarsolvents,especiallymethanol,havehighantioxidant

effects[20],hencesupportingourresults.Suchresponseiscommon

amongplantextractsandwasobservedwithseveralotherstudies

[21,22].Ontheotherhand,hexaneextractpossessingthelowest

TPC,displayedthelowestantioxidativepowerwithallsixmethods

(DPPH:inactive;ABTS:4.75±0.32mgTE/g;FRAP:8.54±0.19mg

TE/g;CUPRAC:13.48±0.30mgTE/g;phosphomolybdenum:0.31

±0.02mmolTE/gandmetalchelating:6.52±0.29mgEDTAE/g).

3.2. -HPLC-FRAPanalysis

Tofurtherscrutinizeourextractsintermsofantioxidantsand

bearinginmindthatthecurrentinvitroantioxidantassaysdonot

alwaysgiverealisticresults[2],wealsoscreenedoursamplesusing

amoreextensivetechniquesuchasHPLC-FRAP.

Antioxidantactivitydetermination,correspondingtotheirferric

reducingidentity,wasbased ontheability ofantioxidant

com-poundstoreduceFe3+toFe2+.Therefore,theresearchgroupof

ShifromChinasuggestedthatHPLC–FRAPassaycouldbedesigned

bydetectingthebluecolouredFe2+-TPTZcomplexat593nm[3].

OntheHPLC-FRAPsystem,morephenolicpeaksweredetectedas

positivepeaksat280nmcomparedat595nm.Forinstance,for

sample1(ethylacetate)sevenphenolic peaksweredetectedat

280nmwhilefourat595nm,forsample2(hexane)eightphenolic

peaksweredetectedat280nmwhilefourat595nm,forsample3

(methanol)fivepeakswereconfirmedwhereastwoweredetected

aspositiveat595nmandforsample4(infusion)fourpeakswere

detectedat280nmbutonlytwowereconfirmedat595nm.

Iden-tificationofatotalof12differentantioxidants(suchasp-coumaric

acid,p−OHbenzoicacid,syringicacid,ferulicacid,vanillin,caffeic

acid,chlorogenicacid,syringaldehyde,protocatechuicacid,vanillic

acid,rosmarinicacidandgentisicacid)wasachievedat280nmby

systematicanalysisoftheirretentiontime(Tables3–6)fromthe

foursamplesofC.cajan.Thechemicalstructuresoftheidentified

antioxidantsareillustratedinFig.2.TheHPLCchromatogramsare

giveninFigs.3–6.

Insample1,thesevenantioxidantsdetectedat280nmwere

p-coumaricacid(or4-hydroxycinnamicacid),p−OHbenzoicacid

(or4-hydroxybenzoicacid),syringicacid,ferulicacid,vanillin,

caf-feicacidandchlorogenicacid.At280nm,p-coumaricacidwasthe

predominantantioxidantwitha peakareaof247.3.At595nm,

thepeaksofp−OHbenzoicandp-coumaricacidwereabsentand

caffeicacidwasmostpredominant(210.3).Interestingly,thesame

predominantantioxidantcompoundswerefoundinabundancein

sample3wherebythepeakareaofp-coumaricacidwas213.5at

280nmandthatofcaffeicacidwas227.6at595nm.Despitethis

similarityinthemainantioxidantcompounds,theinvitrorevealed

differentantioxidantactivities.Inadditiontothefactthatinvitro

assaysdonotalwaysgiverealisticresults,thisdifferencecanalso

belinkedtothechemicalstructuresofthephenolicantioxidants.

Manystudieshaveassociatedthechemicalstructuresof

phe-noliccompoundswithhighantioxidantpower.Basically,phenolic

compoundscontainoneormorehydroxylgroups(−OH)attached

toabenzenering[23].Theantioxidantactivitycentreofphenolic

acidsisphenolichydroxyl(−OH),thusthenumberandpositionof

phenolichydroxylshaveadirectlinkwiththeantioxidantactivity

ofphenolic acids[24].Furthermore,methoxy(−OCH3)and

car-boxylicacid(−COOH)groupsalsohavesignificanteffectsonthe

antioxidantpropertyofphenolicacids[25].Inthisstudy,eight

typ-icalphenolicacidshavebeenidentifiedandtheyarep−OHbenzoic

acid,vanillicacid,protocatechuicacid,caffeicacid,ferulicacid,

p-coumaricacid,syringicacidandgentisicacid.Natellaetal.[26]

reportedthathydroxycinnamicacid(−CH=CHCOOH)hasstronger

antioxidantactivitythanhydroxybenzoicacid(−COOH)whenthe

othersubstituentsofthebenzeneringremainthesame[26].These

resultscanbeattributedtotheelectron-donatingability of

car-boxylicacidgroups.Theconjugation effectandinductioneffect

togetherdeterminethat−COOHisastrongelectron-withdrawing

groupand−CH=CHCOOHisaweakelectron-withdrawinggroup.

Anelectron-donatinggroupcanincreasetheelectronclouddensity

ofabenzenering,decreasingthedissociationenergyofthe

pheno-lichydroxylbondwhichconsequentlypromoteitsfreescavenging

ability.Therefore,itisspeculatedthatcarboxylicacidgroupsaffect

theantioxidantactivityofphenolicacidsbasedontheir

electron-donating ability (−CH = CHCOOH > −COOH) [27]. Nonetheless,

thesefactsdonotcorroboratewiththeinvitroresultsofsample2

(hexane).Forinstance,thesampleshowedlowornoactivitywith

ABTSandDPPHassaysdespitefivephenolicacidswereidentified

init.

Inadditiontocarboxylicacidgroups,methoxygroupscanalso

(5)

Table3

Detectionandquantitationlimitsofthepeaksdefinedat280nmand595nmforhexaneextractfromC.cajanstembark.

Peak Numbers Component Name Retention Time(RT) (min.) PeakArea (280nm) (mAUx min.) Concent-ration(for 280nm) (ppm) PeakArea(595 nm)(mAUx min.) Concent-ration(for 595nm) (ppm) Limitof Detection (LOD,ppm, 280nm) Limitof Quantita-tion(LOQ, ppm,280 nm) Limitof Detection (LOD,ppm, 595nm) Limitof Quantita-tion(LOQ, ppm,595 nm) 1 Protocatechuic acid 8.1 115.5 12.2 92.8 15.4 1.2±0.03 4.0±0.04 1.0±0.03 3.3±0.04 2 Gentisicacid 11.9 68.8 7.3 77.6 12.9 0.4±0.02 1.3±0.02 0.6±0.02 2.0±0.03 3 Chlorogenic acid 13.9 158.3 16.7 230.3 38.3 1.6±0.03 5.3±0.04 2.8±0.03 9.2±0.04 4 P-OHbenzoic acid 15.3 280.7 29.6 * * 1.8±0.04 6.0±0.04 * * 5 Vanillicacid 17.5 83.5 8.8 * * 0.8±0.02 2.6±0.03 * * 6 Vanillin 20.3 78.6 8.3 * * 0.6±0.02 2.0±0.03 * * 7 Syringaldehyde 23.2 86.6 9.1 200.4 33.3 0.9±0.02 3.0±0.04 2.5±0.03 8.2±0.04 8 p-Coumaric acid 24.9 75.2 7.9 * * 0.5±0.01 1.7±0.02 * *

±SD:AverageStandardDeviation,95%confidenceinterval,criticalratio:p<0.05,*:non-detected,ppm:partspermillion.

Table4

Detectionandquantitationlimitsofthepeaksdefinedat280nmand595nmforethylacetateextractfromC.cajanstembark. Peak Numbers Component Name Retention Time(RT) (min.) PeakArea (280nm) (mAUx min.) Concentration (for280 nm)(ppm) PeakArea (595nm) (mAUx min.) Concentration (for595 nm)(ppm) Limitof Detection (LOD,ppm, 280nm) Limitof Quantita-tion(LOQ, ppm,280 nm) Limitof Detection (LOD,ppm, 595nm) Limitof Quantita-tion(LOQ, ppm,595 nm) 1 p-OH benzoic acid 9.2 31.5 3.8 * * 0.2±0.01 0.7±0.02 * * 2 Chlorogenic acid 10.4 130.8 15.6 87.6 15.6 0.8±0.02 2.6±0.04 0.6±0.02 2.0±0.03 3 Caffeicacid 12.6 178.3 21.3 210.3 37.4 1.2±0.03 4.0±0.04 1.4±0.03 4.6±0.04 4 Syringic acid 16.6 180.7 21.6 205.6 36.6 1.3±0.03 4.3±0.04 1.5±0.03 5.0±0.04 5 Ferulicacid 21.3 46.2 5.5 58.3 10.4 0.4±0.01 1.3±0.03 0.5±0.01 1.7±0.03 6 p-Coumaric acid 25.0 247.3 29.5 * * 1.6±0.03 5.3±0.04 * * 7 Vanillin 29.1 21.6 2.6 * * 0.1±0.01 0.3±0.01 * *

±SD:AverageStandardDeviation,95%confidenceinterval,criticalratio:p<0.05,*:non-detected,ppm:partspermillion.

Table5

Detectionandquantitationlimitsofthepeaksdefinedat280nmand595nmformethanolextractfromC.cajanstembark. Peak Numbers Component Name Retention Time(RT) (min.) PeakArea (280nm) (mAUx min.) Concentration (for280 nm)(ppm) PeakArea (595nm) (mAUx min.) Concentration (for595 nm)(ppm) Limitof Detection (LOD,ppm, 280nm) Limitof Quantita-tion(LOQ, ppm,280 nm) Limitof Detection (LOD,ppm, 595nm) Limitof Quantita-tion(LOQ, ppm,595 nm) 1 p-OH benzoic acid 11.8 71.5 10.3 * * 0.7±0.02 2.3±0.03 * * 2 Caffeicacid 13.9 168.8 24.4 227.6 70.4 1.9±0.03 6.3±0.04 2.4±0.03 7.9±0.04 3 Vanillic acid 15.1 198.3 28.6 * * 2.1±0.03 6.9±0.04 * * 4 Syringic acid 19.5 40.7 5.9 95.6 29.5 0.4±0.01 1.3±0.03 0.8±0.02 2.6±0.03 5 p-Coumaric acid 25.7 213.5 30.8 * * 2.2±0.03 7.3±0.04 * *

±SD:AverageStandardDeviation,95%confidenceinterval,criticalratio:p<0.05,*:non-detected,ppm:partspermillion.

accordingtoa recentstudy,thehigherthenumberofmethoxy groupspresent,thehigheristheantioxidantactivityofphenolic acids[27].Itisworthmentioningthatthedifferencebetweenthe

chemicalstructureofvanillicacid(identifiedasmajorantioxidant

insample4)andp−OHbenzoicacid(identifiedasmajor

antioxi-dantinsample2)isthepresenceofonemethoxy(−OCH3)group.

Since,−OCH3 increasesantioxidantpower,sample4canbesaid

tobestrongerthansample2intermsofantioxidantactivity.This

findingisconsistentwiththeinvitroresultswhichalsorevealed

sample4tobestrongerthansample2.

Since−CH=CHCOOH >−COOHin termsofelectron-donating

ability,bothsamples1and3arethusconsideredtobestrongerthan

sample2intermsofantioxidantactivityduetothepredominant

presenceofp-coumaricacidinsamples1and3whichcontainsthe

−CH=CHCOOHgroupattachedtothephenolgroupwhilep−OH

benzoicacid,presentinmajorityinsample2,doesnotpossessthe

−CH=CHCOOHgroupbutinsteadthe−COOHgroup.However,this

resultisnotinlinewiththeinvitrofindings.Instead,invitroassays

classifiedonlysample3asthestrongestantioxidant.Itisimportant

(6)

antioxi-Table6

Detectionandquantitationlimitsofthepeaksdefinedat280nmand595nmforinfusionfromC.cajanstembark.

Peak Numbers Component Name Retention Time(RT) (min.) PeakArea (280nm) (mAUx min.) Concentration (for280 nm)(ppm) PeakArea (595nm) (mAUx min.) Concentration (for595 nm)(ppm) Limitof Detection (LOD,ppm, 280nm) Limitof Quantita-tion(LOQ, ppm,280 nm) Limitof Detection (LOD,ppm, 595nm) Limitof Quantita-tion(LOQ, ppm,595 nm) 1 p-OH benzoic acid 11.8 75.5 16.8 * * 0.7±0.02 2.3±0.03 * * 2 Caffeicacid 16.7 68.8 15.3 207.6 54.9 0.5±0.02 1.7±0.03 1.4±0.03 4.6±0.04 3 Vanillic acid 19.5 218.3 48.7 * * 1.5±0.03 5.0±0.04 * * 4 Rosmarinic acid 28.9 85.7 19.1 170.6 45.1 0.9±0.02 3.0±0.04 1.2±0.03 4.0±0.04

±SD:AverageStandardDeviation,95%confidenceinterval,criticalratio:p<0.05,*:non-detected,ppm:partspermillion.

dantspresentinthesamplescanbesynergistic,thusexplaining suchinvitroresponse.

3.3. Enzymeinhibitioneffects

Inhibiting digestive enzymes such as ␣-amylase and ␣-glucosidasecanbeconsideredasaneffectivewaytomonitorblood glucoselevel.Type2diabetesisglobalandchroniccondition affect-ingabout422millionpeoplearoundtheglobe(WHO).Diabetes isassociatedwithmicrovascularandmacrovascularcomplications damagingvitalorgansincludingkidney,heart,eyes,brain,andalso causecutaneousmanifestations[28].Itisreportedthatthereisa

30%riskthatpeoplewithdiabetesdevelopcutaneous

manifesta-tionsduetothedamagecausedtothevascularandnervestructures

byhighbloodsugarlevels[29].Nowadays,agentswhicharebased

onnaturalresourcesarepreferredtomanagediseasessinceside

effectsareminimalandthetherapiesarewell-toleratedcompared

tosyntheticoraldrugscurrentlyavailableonthemarket[30].The

presentstudywasthusdesignedtoevaluatetheextractsofC.cajan

fortheirantidiabeticactivity(anti-amylaseandanti-glucosidase),

cutaneousmanifestations(anti-tyrosinase)and Alzheimer’s

dis-ease(anti-cholinesterase).ResultsareshowninTable7.

Overall,thehexaneextractexhibitedthehighestactivitywith

mostenzymeswhereas theaqueousextract was least

success-fulindepressingmostenzymaticactivities.Intheamylaseassay,

theethylacetate extractexertedthehighestamylaseinhibitory

activitywithan acarbose equivalentof 0.74 mmol/g.However,

thesameextract exhibitedlowerglucosidaseinhibition (0.68±

0.01mmolACAE/g).Instead,thehexaneextractshowedthe

high-estglucosidase inhibition (0.81 ± 0.01 mmol ACAE/g)but low

anti-amylaseeffect(0.42±0.01mmolACAE/g),nearlytwotimes

lowerthanglucosidaseinhibitoryactivity.␣-Amylasebreakdown

polysaccharidestoformdisaccharides whicharefurtherbroken

downbyglucosidasetoproducemonosaccharides.Theinhibition

of ␣-amylase is sometimes linked withgastrointestinal

distur-bancedue todigestionof carbohydrates[31]. Thus,antidiabetic

drugs exhibiting moderate␣-amylase but higher ␣-glucosidase

inhibitorypotentialispreferred.

Thehighest tyrosinaseactivitywasrecorded with

methano-licextract(55.90±1.20mgKAE/g)followedbytheethylacetate

extract(47.31±1.22mgKAE/g),hexane(38.02±4.04mgKAE/g)

and aqueous (no activity was reported). These results may be

attributedtothepresenceofhighphenoliccontentinthe

methano-licextract.Previousstudieshavealsoreportedthepotentinhibitory

activityofplantextractsontyrosinaseisattributedtotheir

phe-nolicprofiles[32],andarethusinagreementwithourfindings.

Hexaneextract wasthebestcholinesterase inhibitor withboth

AChE (2.61 ± 0.06 mg GALAE/g) and BChE (4.87 ± 0.25 mg

GALAE/g)enzymes.Althoughflavonoidsarereportedtobeefficient

cholinesteraseinhibitors,resultsfromthisstudydonotcorrelate

withtheobservedactivities.For instance,hexane extractwhich

containedtheleastamountofflavonoiddemonstratedthe

high-estanti-AChEandanti-BChEactivityandtheethylacetateextract

yieldingthehighestTFC,wasleastsuccessfulindepressingAChE

enzymeactivity(1.25±0.14mgGALAE/g).Therefore,itcanbesaid

thatthelevelofflavonoidpresentinextractsmaynotalwaysbe

linkedwithcholinesteraseactivity.In additiontothisapproach,

severalstudies[6,33]reportedthatC.cajancontains other

clas-sisofphytochemicalsincludingsaponins,terpenoidsandstilbenes

(cajaninetc.)andtheycouldberesponsibleforthementioned

dif-ferencesinenzymeinhibitionassays.

3.4. Multivariateanalysis

Firstly, principal component analysis (PCA)was achieved in

ordertoreducethedimensionalityofthedatawhilstpreserving

asfaraspossiblemostoftherelevantinformationinthedataset.It

accomplishesthisreductionbygeneratingafewnumbersof

dimen-sionsalongwhichthevariabilityinthedatasetismaximal.Through

thefactorialplanerectedbyafewdimensions,itispossibleto

visu-allyassessdifferencesandsimilaritiesbetweensamples.ThePCA

resultsareshownasFig.7,beforestartingtheinterpretationofthe

obtainedresults,theoptimalnumberofdimensionsthatmustbe

consideredwereidentified.Thus,wefollowedtworulessuggested

bySolanasetal.[34].Accordingly,threedimensionswerefoundto

satisfytheabove-mentionedrule;theyhadaneigenvalueabove1

andencompassedtogether99.7%oftheinformationinthe

origi-naldata(Fig.7A).Thecontributionoftheoriginalvariablesonthe

retaineddimensionswasdeterminedbyreferringtothecircleof

correlation(Fig.7B).thefirstdimensionwhichcapturedthe

maxi-mumquantityofinformation,waspositivelycorrelatedwithABTS,

DPPH,FRAPandnegativelylinkedtoBChEandglucosidase.This

wouldsuggestthatthefirstdimensionseparatedthesamples

pre-dominantlyinrelationtotheirabilitytoscavengeABTSandDPPH

radical,reduceFe3+ionandinhibittheactivityofBChEand

glu-cosidaseenzymes.Dimension2optimized31.3%ofthevariance

andwaspositivelydeterminedbyCUPRAC,PPBD,MCA,amylase

andtyrosinase.Asaresult,itdistinguishedthesamplesinterms

ofsaidbiological activities.Dimension 3whichrepresentedthe

leftoverinformationwashighlypositiveloadedforAChEand

nega-tiveloadedforPPBDandamylase.Accordingly,itdiscriminatedthe

samplesaccordingtotheirtotalantioxidant,anti-AChEand

anti-amylaseactivities.Afterthereductionofthedimensionalityofthe

data,hierarchicalclusteredanalysiswassubjectedtotheresults

ofPCAinordertobringoutthedifferentclusters.Theobtained

factormaprevealedfourclusters(Fig.7C),howeverethylacetate

andmethanol extractswereclosetogetherrelativelytohexane

andinfusionextracts.Thisimpliesthatamongthefourextraction

solvents,ethylacetateandmethanolpresentedsomesimilarities

(7)

publica-Fig.2.Chemicalstructuresof12differentphenolicantioxidantsidentifiedbyHPLC-FRAPfromsample1(ethylacetate),2(hexane),3(methanol)and4(infusion).

tionscanbefoundontheinfluencedoftheextractionsolventonthe

recoveryofbiopharmaceuticalmoleculesfromplants.This

influ-encefocusesonthequalityandnumberofsecondarymetabolites

extractedfromtherawmaterials.Methanolandethylacetate

pro-videdoverall excellentbiological activities;theyexhibited high

phenoliccontent,strongantioxidantactivitiesandrelativelygood

enzymeinhibitoryproperties.However,fromtheperspectiveof

(8)

sol-Fig.3.OverlappedchromatogramswithHPLC-FRAP595nmandDAD280nmdetectionsofhexaneextractfromC.cajanstembark.

Fig.4.OverlappedchromatogramswithHPLC-FRAP595nmandDAD280nmdetectionsofethylacetateextractfromC.cajanstembark.

Fig.5. OverlappedchromatogramswithHPLC-FRAP595nmandDAD280nmdetectionsofmethanolextractfromC.cajanstembark.

Table7

EnzymeinhibitorypropertiesofC.cajanstembark.

Extracts AChE(mgGALAE/g extract) BChE(mgGALAE/g extract) Tyrosinase(mgKAE/g extract) ␣-amylase(mmol ACAE/gextract) ␣-glucosidase(mmol ACAE/gextract) Hexane 2.61±0.06a 4.87±0.25a 38.02±4.04c 0.42±0.01b 0.81±0.01a EA 1.25±0.14c 4.66±0.07a 47.31±1.22b 0.74±0.03a 0.68±0.01b MeOH 2.01±0.01b 2.49±0.12b 55.90±1.20a 0.42±0.01b 0.39±0.02c Infusion na na na 0.12±0.01c na

*Valuesexpressedaremeans±S.D.ofthreeparallelmeasurements.GALAE:Galantamineequivalent;KAE:Kojicacidequivalent;ACAE:Acarboseequivalent;EA:Ethyl acetate;MeOH:Methanol.na:notactive.Differentsuperscriptsindicatesignificantdifferencesintheextracts(p<0.05).

(9)

Fig.6. OverlappedchromatogramswithHPLC-FRAP595nmandDAD280nmdetectionsofinfusionfromC.cajanstembark.

Fig.7. PrincipalcomponentandhierarchicalclusteredanalysesappliedtobiologicalactivitiesofC.cajanstembark.A.eigenvalueandpercentageofexplainedvariancesof dimensionsofprincipalcomponentanalysis.B.Appreciationofthebiologicalcontributiononthefirstthreedimensionsofprincipalcomponentanalysisthroughthecircle ofcorrelation.C.FactormapofHierarchicalclusteringanalysis.

ventsuchethanolorethanol-watersincetheyareincompliance withsafelymanufacturingpractice.

4. Conclusion

Thepresentstudy,forthefirsttime,hasemployedthe HPLC-FRAPsystemtoidentifyatotalof12phenolicantioxidantsinthe differentextractsofC.cajan.Plantswithhighlevelofphenolicsare consideredasagoodsourceofantioxidantsandthereforeitcanbe saidthatC.cajanmightbeconsideredasafuturesourceof antiox-idantsfordevelopmentofbioproducts.However,cytotoxicitytest shouldbeconductedonthe plantfoodtodetermineitssafety. Contrarytootherstudies[35],inthispresentwork,theobserved

biological activities(antioxidantand enzymaticactivities) could

notbefullyattributedtothepolyphenolicprofileoftheextracts

astheactivitiesvaried;wherebycertainextractspossessinghigh

bioactivecompoundsdemonstratedlowbiologicalactivityandvice

versa.Asafuturework,thehexaneextract,depressingmost

stud-iedenzymes,canbesubjectedtokineticstudiestodeterminethe

typeofinhibitioninvolved.

CRediTauthorshipcontributionstatement

KouadioIbrahimeSinan:Methodology,Formalanalysis,

Inves-tigation.MohamadFawziMahomoodally:Investigation,Writing

(10)

Eyu-poglu:Methodology,Formalanalysis.OuattaraKatinanEtienne:

Methodology.NabeelahBibiSadeer:Investigation,Writing-

orig-inal draft,Writing -review & editing.Gunes Ak:Investigation,

Writing-originaldraft,Writing-review&editing.TapanBehl:

Writing-review&editing.GokhanZengin:Investigation,Writing

-originaldraft,Writing-review&editing,Validation.

DeclarationofCompetingInterest

Theauthorsdeclarethattheyhavenoknowncompeting

finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto

influencetheworkreportedinthispaper.

References

[1]A.Rahal,A.Kumar,V.Singh,B.Yadav,R.Tiwari,S.Chakraborty,K.Dhama, Oxidativestress,prooxidants,andantioxidants:theinterplay,BiomedRes. Int.2014(2014).

[2]N.BibiSadeer,D.Montesano,S.Albrizio,G.Zengin,M.F.Mahomoodally,The versatilityofantioxidantassaysinfoodscienceandsafety—chemistry, applications,strengths,andlimitations,Antioxidants9(8)(2020)709.

[3]S.Shi,K.Guo,R.Tong,Y.Liu,C.Tong,M.Peng,Onlineextraction–HPLC–FRAP systemfordirectidentificationofantioxidantsfromsolidDu-zhongbricktea, FoodChem.288(2019)215–220.

[4]Y.-S.Lai,W.-H.Hsu,J.-J.Huang,S.-C.Wu,Antioxidantandanti-inflammatory effectsofpigeonpea(CajanuscajanL.)extractsonhydrogenperoxide-and lipopolysaccharide-treatedRAW264.7macrophages,FoodFunct.3(12) (2012)1294–1301.

[5]B.Mahitha,P.Archana,M.H.Ebrahimzadeh,K.Srikanth,M.Rajinikanth,N. Ramaswamy,Invitroantioxidantandpharmacognosticstudiesofleaf extractsofCajanuscajan(L.)millsp,IndianJ.Pharm.Sci.77(2)(2015)170.

[6]D.Pal,P.Mishra,N.Sachan,A.K.Ghosh,Biologicalactivitiesandmedicinal propertiesofCajanuscajan(L)Millsp,J.Adv.Pharm.Technol.Res.2(4)(2011) 207–214.

[7]J.Sekhon,S.K.Grewal,I.Singh,J.Kaur,Evaluationofnutritionalqualityand antioxidantpotentialofpigeonpeagenotypes,J.FoodSci.Technol.54(11) (2017)3598–3611.

[8]U.Quattrocchi,CRCWorldDictionaryofMedicinalandPoisonousPlants: CommonNames,ScientificNames,Eponyms,Synonyms,andEtymology(5 VolumeSet),CRCpress,2012.

[9]A.O.Akinsulie,E.O.Temiye,A.S.Akanmu,F.E.A.Lesi,C.O.Whyte,Clinical evaluationofextractofCajanuscajan(ciklavit®)insicklecellanaemia,J.Trop.

Pediatr.51(4)(2005)200–205.

[10]G.Duker-Eshun,J.W.Jaroszewski,W.A.Asomaning,F.Oppong-Boachie,S. BrøggerChristensen,AntiplasmodialconstituentsofCajanuscajan,Phytother. Res.18(2)(2004)128–130.

[11]Y.-m.Liu,S.-n.Shen,F.-b.Xia,Q.Chang,X.-m.Liu,R.-l.Pan,Neuroprotection ofstilbenesfromleavesofCajanuscajanagainstoxidativedamageinducedby corticosteroneandglutamateindifferentiatedPC12Cells,Chin.Herb.Med.7 (3)(2015)238–246.

[12]J.Wu,B.Li,W.Xiao,J.Hu,J.Xie,J.Yuan,L.Wang,A.Longistylin,Anatural stilbeneisolatedfromtheleavesofCajanuscajan,exhibitssignificant anti-MRSAactivity,Int.J.Antimicrob.Agents55(1)(2020),105821.

[13]G.Zengin,A.Aktumsek,Investigationofantioxidantpotentialsofsolvent extractsfromdifferentanatomicalpartsofAsphodelineanatolicaE.Tuzlaci:an endemicplanttoTurkey,Afr.J.Tradit.Complement.Altern.Med.11(2) (2014)481–488.

[14]N.A.Burnaz,M.Küc¸ük,Z.Akar,Anon-lineHPLCsystemfordetectionof antioxidantcompoundsinsomeplantextractsbycomparingthreedifferent methods,J.Chrom.B1052(2017)66–72.

[15]I.F.Benzie,J.J.Strain,Theferricreducingabilityofplasma(FRAP)asameasure of ¨antioxidantpower¨:theFRAPassay,Anal.Biochem.239(1)(1996)70–76.

[16]D.M.Grochowski,S.Uysal,A.Aktumsek,S.Granica,G.Zengin,R.Ceylan,M. Locatelli,M.Tomczyk,Invitroenzymeinhibitoryproperties,antioxidant activities,andphytochemicalprofileofPotentillathuringiaca,Phytochem.Lett. 20(2017)365–372.

[17]K.Saxena,R.Kumar,C.Gowda,Vegetablepigeonpea–areview,J.FoodLegu. 23(2)(2010)91–98.

[18]S.A.Marathe,V.Rajalakshmi,S.N.Jamdar,A.Sharma,Comparativestudyon antioxidantactivityofdifferentvarietiesofcommonlyconsumedlegumesin India,FoodChem.Toxicol.49(9)(2011)2005–2012.

[19]N.Pourreza,Phenoliccompoundsaspotentialantioxidant,JundishapurJ.Nat. Pharm.Prod.8(4)(2013)149–150.

[20]A.Altemimi,N.Lakhssassi,A.Baharlouei,D.G.Watson,D.A.Lightfoot, Phytochemicals:Extraction,isolation,andidentificationofbioactive compoundsfromplantextracts,Plants6(4)(2017)42.

[21]N.B.Sadeer,G.Rocchetti,B.Senizza,D.Montesano,G.Zengin,A.Uysal,R. Jeewon,L.Lucini,M.F.Mahomoodally,Untargetedmetabolomicprofiling, multivariateanalysisandbiologicalevaluationofthetruemangrove (RhizophoramucronataLam.),Antioxidants8(10)(2019)489.

[22]N.B.Sadeer,K.I.Sinan,Z.Cziáky,J.Jek"o,G.Zengin,R.Jeewon,H.H.Abdallah, K.R.R.Rengasamy,M.F.Mahomoodally,Assessmentofthepharmacological propertiesandphytochemicalprofileofBruguieragymnorhiza(L.)lamusing invitrostudies,insilicodocking,andmultivariateanalysis,Biomolecules10 (5)(2020)731.

[23]R.SanMiguel-Chávez,Phenolicantioxidantcapacity:areviewofthestateof theart,PhenolicCompounds-BiologicalActivity(2017).

[24]P.Rodríguez-Bonilla,F.Gandía-Herrero,A.Matencio,F.García-Carmona,J.M. López-Nicolás,Comparativestudyoftheantioxidantcapacityoffourstilbenes usingORAC,ABTS+,andFRAPtechniques,FoodAnal.Method.10(9)(2017) 2994–3000.

[25]S.Johnny,M.Asnaashari,N.Molaahmadibahraseman,A.Sharif,

Structure–antioxidantactivityrelationshipsofo-hydroxyl,o-methoxy,and alkylesterderivativesofp-hydroxybenzoicacid,FoodChem.194(2016) 128–134.

[26]F.Natella,M.Nardini,M.DiFelice,C.Scaccini,Benzoicandcinnamicacid derivativesasantioxidants:structure−activitytelation,J.Agri.FoodChem.47 (4)(1999)1453–1459.

[27]J.Chen,J.Yang,L.Ma,J.Li,N.Shahzad,C.K.Kim,Structure-antioxidantactivity relationshipofmethoxy,phenolichydroxyl,andcarboxylicacidgroupsof phenolicacids,Sci.Rep.10(1)(2020)2611.

[28]W.T.Cade,Diabetes-relatedmicrovascularandmacrovasculardiseasesinthe physicaltherapysetting,Phys.Ther.88(11)(2008)1322–1335.

[29]E.BaselgaTorres,M.Torres-Pradilla,Cutaneousmanifestationsinchildren withdiabetesmellitusandobesity,ActasDermosifiliogr.105(6)(2014) 546–557.

[30]V.Gulati,I.H.Harding,E.A.Palombo,Enzymeinhibitoryandantioxidant activitiesoftraditionalmedicinalplants:potentialapplicationinthe managementofhyperglycemia,BMCComplement,Altern.Med.12(1)(2012) 77.

[31]S.A.Tucci,E.J.Boyland,J.C.Halford,Theroleoflipidandcarbohydrate digestiveenzymeinhibitorsinthemanagementofobesity:areviewof currentandemergingtherapeuticagents,DiabetesMetab,Syndr.Obes.3 (2010)125–143.

[32]S.Zolghadri,A.Bahrami,M.T.HassanKhan,J.Munoz-Munoz,F.

Garcia-Molina,F.Garcia-Canovas,A.A.Saboury,Acomprehensivereviewon tyrosinaseinhibitors,J.EnzymeInhib.Med.Chem.34(1)(2019)279–309.

[33]Q.-F.Luo,L.Sun,J.-Y.Si,D.-H.Chen,Hypocholesterolemiceffectofstilbenes containingextract-fractionfromCajanuscajanL.ondiet-induced hypercholesterolemiainmice,Phytomedicine15(11)(2008)932–939.

[34]A.Solanas,R.Manolov,D.Leiva,Retainingprincipalcomponentsfordiscrete variables,Anu.Psicol.41(1–3)(2011)33–50.

[35]G.Zengin,A.Aktumsek,A.Mocan,K.R.R.Rengasamy,C.M.N.Picot,M.F. Mahomoodally,AsphodelinecilicicaTuzlaci:fromtheplanttoitsmostactive partextractanditsbroadbioactiveproperties,S.Afr.J.Bot.120(2019) 186–190.

Şekil

Fig. 1. HPLC-FRAP antioxidant analysis system.
Fig. 2. Chemical structures of 12 different phenolic antioxidants identified by HPLC-FRAP from sample 1 (ethyl acetate), 2 (hexane), 3 (methanol) and 4 (infusion).
Fig. 4. Overlapped chromatograms with HPLC-FRAP 595 nm and DAD 280 nm detections of ethyl acetate extract from C
Fig. 6. Overlapped chromatograms with HPLC-FRAP 595 nm and DAD 280 nm detections of infusion from C

Referanslar

Benzer Belgeler

ANLATIM BİÇİMLERİ VE DÜŞÜNCEYİ GELİŞTİRME YOLLARI Anlatım Biçimleri Açıklayıcı Anlatım (Açıklama) Öyküleyici Anlatım (Öyküleme) Betimleyici Anlatım

coccifera stems extracts by determining their gallic acid equivalent total pheno- lic content and their radical scavenging activity using different radicals: DPPH, NO and

Bir insan başına gelen bela musibet ve felaketin sebebi olarak kaderini veya Cenabı Hakkı görüyor, “tanrım neden ben” diyerek Cenabı Hakka noksanlık isnat ediyorsa

The assignment was designed to incorporate 8 different usage scenarios: 1) finding texts on a predefined topic; 2) finding images on a predefined topic; 3) finding audio and

radical scavenging and inhibition of lipid peroxidation of water and ethanol extracts of Achillea millefolium of leaves, flowers and

The compounds which were found active in terms of analgesic and anti-inflammatory activities were chosen to investigate their in vitro inhibitory activity on COX-1 and COX-2 enzymes

wilhelmsii has the same amount of phenolic compounds at 50 μg/ml concentration, while antioxidant activity of methanolic extracts is markedly higher than water extract.. In

Antioxidant activities of methanol and water extracts of Nasturtium officinale were determined by different in vitro methods such as DPPH, ABTS, DMPD, CUPRAC, FRAP, and