• Sonuç bulunamadı

Poly-cyclodextrin cryogels with aligned porous structure for removal of polycyclic aromatic hydrocarbons (PAHs) from water

N/A
N/A
Protected

Academic year: 2021

Share "Poly-cyclodextrin cryogels with aligned porous structure for removal of polycyclic aromatic hydrocarbons (PAHs) from water"

Copied!
9
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Journal

of

Hazardous

Materials

j ou rn a l h om epa ge :w w w . e l s e v i e r . c o m / l o c a t e / j h a z m a t

Poly-cyclodextrin

cryogels

with

aligned

porous

structure

for

removal

of

polycyclic

aromatic

hydrocarbons

(PAHs)

from

water

Fuat

Topuz

a,∗

,

Tamer

Uyar

a,b,∗∗

aUNAM-NationalNanotechnologyResearchCenter,BilkentUniversity,06800Ankara,Turkey

bInstituteofMaterialsScience&Nanotechnology,BilkentUniversity,06800Ankara,Turkey

h

i

g

h

l

i

g

h

t

s

•Polycyclodextrin (polyCD) cryogels

weresuccessfullysynthesizedusing

PEGdiepoxidecross-linkers.

•The cryogels displayed an aligned

porousnetworkstructureduetothe

directionalfreezingofthematrix.

•The polyCD cryogels showed very

highPAHsorptioncapacitiesvarying

between105and1250␮gpergram

material.

•Thematerialscouldberecycledand

reusedwithoutanysignificantlossin

PAHadsorptioncapacity.

g

r

a

p

h

i

c

a

l

a

b

s

t

r

a

c

t

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received15November2016

Receivedinrevisedform5April2017

Accepted6April2017

Availableonline7April2017

Keywords: Cyclodextrin Cryogel Poly-cyclodextrin PAH Waterremediation

a

b

s

t

r

a

c

t

Cyclodextrins(CDs)aresugar-basedcyclicoligosaccharides,whichforminclusioncomplexeswithsmall

guestmoleculesthroughtheirhydrophobiccavity.Herewesuccessfullysynthesizedhighly porous

poly-cyclodextrin(poly-CD)cryogels,whichwereproducedundercryogenicconditionsbythe

cross-linkingofamine-functionalCDswithPEG-baseddiepoxidecross-linker.Thepoly-CDcryogelsshowed

alignedporousnetworkstructuresowingtothedirectionalfreezingofthematrix,ofwhichtheporesize

andarchitectureexposedvariationsdependingonthecompositionofthereactants.Thecryogelswere

employedfortheremovalofgenotoxicpolycyclicaromatichydrocarbons(PAHs)fromaqueous

solu-tions.TheyreachedPAHsorptioncapacitiesashighas1.25mgPAHpergramcryogel.Thishighsorption

performanceisduetointeractionsbetweenPAHsandthecompleteswollennetwork,andthus,isnot

restrictedbyinterfacialadsorption.Giventhatthehydrophilicnatureofthecomponents,thesorption

performancecouldonlybeattributedtotheinclusioncomplexformationofCDswithPAHmolecules.

Thepoly-CDcryogelscouldberecycledwithanexposuretoethanolandreusedwithoutanysignificant

lossinthesorptioncapacityofPAHs.

©2017ElsevierB.V.Allrightsreserved.

∗ Correspondingauthor.

∗∗ Correspondingauthorat:UNAM-NationalNanotechnologyResearchCenter,

BilkentUniversity,06800Ankara,Turkey.

E-mailaddresses:fuat.topuz@rwth-aachen.de(F.Topuz),

tamer@unam.bilkent.edu.tr(T.Uyar).

1. Introduction

Cyclodextrins (CDs) are cyclic oligosaccharides produced by enzymatic conversion of starch. CDs have a distinct molecular structurelikeatruncatedconewithapartiallyhydrophobic cav-ity,whichallowsnon-covalenthost-guestinclusioncomplexation withalargevarietyofhydrophobicmoleculesinwater,andthis complexationistriggeredbyenthalpicand entropicfactors[1].

http://dx.doi.org/10.1016/j.jhazmat.2017.04.022

(2)

NativeCDs(˛-CD,ˇ-CDand-CD)havecertainlimitationsinthe senseoftheirlow water-solubility;thewatersolubilityof˛-CD and-CDisabout145g/Land 232g/L,respectively,whileˇ-CD hasthelowestwatersolubility(18.5g/L)amongstnativeCDsdue tohighnumberofintramolecularhydrogenbondsamongst sec-ondary hydroxylgroups [2]. Onthe otherhand,thechemically modifiedCDs,suchashydroxypropyl-CDandmethylated-CDhave muchhigherwatersolubility(above600g/L)[3].Thus,numerous attemptshavealreadybeenmadetowardsthesynthesisof water-solubleCDderivativesforfunctionalmaterialplatforms[4–7].In thatcontext,amine-modifiedCDshavetakenaconsiderable inter-est as theypresent accessible and highly reactive nucleophilic amines,whichletfurtherchemicalligationswithvariouschemical groups under mild conditions. Particularly, using such amine-modifiedCDsforthesynthesisofporousmaterialswouldbean interestingapproach fora widerangeof applications,including waterremediation.

Cryogelsareporousmaterialsgeneratedundercryogenic con-ditions, which take place in a non-frozen liquid of precursors existing in a macroscopically frozen sample [8]. These highly porousnetworkshavebeenproducedbyeithercovalentorphysical cross-linkingofadditivestowardsmacroscopicplatforms,which providesinter-linkedporesalongwithsurroundedthickpolymer walls[9,10].Theseplatformsstructurallymimicspongeswiththeir inter-linkedmacroporousnetworks,andunliketheirhydrogel ana-logues, suchscaffolds offer many intrinsic benefits in terms of mechanicaltoughness(i.e.,theabilityofdissipateenergy),ahighly porousnetworkstructure,fasterresponse,rapidwatertransport (water uptake and release) and many otherstructural benefits

[11,12].However,tothebestoftheauthors’knowledge,todate therehasbeennostudyonaCD-basedcryogelplatform,which waspreparedwithoutusinganypolymersupport.

PAHsarealargechemicalfamilyoffusedbenzeneringswith their potent carcinogenic, teratogenic and mutagenicactivities

[13,14].Theyarelipophiliccompoundsandubiquitouslypresent inwatersources.Thus,theycanaccumulateontissues,andexert itslong-termeffectsinvivo.PAHshavepotentialtoformPAH-DNA adductsaftermetabolicactivationbycytochromep450enzymes, whichleadtothegeneticmisleading,andtherefore,theytransform anormalcellintoacancercell[15,16].Oneimportantsourceof PAHuptakeispolluteddrinkingwater,particularlyfordeveloping countries,wheretheyareoftenhamperedbythelackoflimited enforcementofwater qualitystandardsand available technolo-giesforeffectivewater-remediation.Thelong-termPAHexposure inducessignificanttoxicity,andthus,severalpolymericplatforms havealreadybeenreportedfortheremovalofPAHs(Table1).Dueto itsuniquecone-typestructurethatcanformsupramolecular com-plexeswithguestmolecules,CDshavebeenusedasmoleculartraps toremoveorganicpollutantsthataresmallenoughtofitintothe innercavityofCD,suchasPAHs[17,18].Duetothewater-solubility ofCDs,theirdirectimplementationaswaterfilteringmaterialsfor theremovalofpollutantsfromwaterisnotpractical.Therefore, CD-basedplatformshavebeenproducedwithappropriate cross-linkingroutes[19,20],orfunctionalizationorstabilizationofCDs onsolidmaterials[21–25].

In this paper, we synthesize poly-cyclodextrin (poly-CD) cryogels from amine-functional CDs and by its cryogenic gela-tionthroughpoly(ethyleneglycol)(PEG)-baseddiepoxidelinkers

towards functional materials with a highly porous network

architecture.Thisprocessgraduallyhappensbecauseoflow tem-peraturealongwithlowerkinetics,whichcausesslowcross-linking ofCDmolecules.Further,suchcryogelspresentahydrophilic mate-rialwithhydrophobicCDcavities,whereeachCDcavityactsasa moleculartrapfortheentrapmentofpollutantsfromaqueous sys-tems.Thecross-linker(i.e.,poly(ethyleneglycol)diglycidylether, PEG-DGE)isahydrophiliccompound,anditwillthusnot

inter-ferewithhydrophobicpollutantsoverhydrophobicassociationsso thatthetotalremovalofpollutantscouldonlybeattributedtothe inclusion-complexformationwithorganicpollutants.Beyondthe noveltyofthesynthesizedpoly-CDcryogel,thisstudyalsoreveals thesorptionperformanceofpoly-CDcryogels,particularlyforthe removal of genotoxic polycyclicaromatic hydrocarbons(PAHs), withthe advantageof having a highly poroushydrophilic net-workforthewatertreatment.Variouscharacterizationtoolswere employedtoelucidatethestructure-propertyrelationshipofthe cryogels.Thepoly-CDcryogelswerelateremployedforthe elim-inationof severalPAH molecules fromwater, and thesorption capacitieswerecalculated.Thematerialscouldberecycledwith anethanolexposure,andthereafterretreatedwithPAHsolutions withoutshowing anysignificantreduction inthe PAH-sorption capacities.

2. Experimentalsection

2.1. Materials

PAHmolecules(i.e.,pyrene,anthracene,phenanthrene,fluorene andfluoranthene),methanol(MeOH,>99%)andpoly(ethylene gly-col) diglycidylether(PEG-DGE, Mn=500g/mol)werepurchased

fromSigma-Aldrich.3-Aminoproyltrimethoxysilane(APTMS)was kindly provided fromEvonik(Germany), andhydroxypropyl ˇ-cyclodextrin(Cavasol®HP-W7)wasreceivedasagiftbyWacker Co.(USA).

2.2. Synthesisofamine-functionalbeta-cyclodextrins (NH2-ˇ-CDs)

Amine-functionalCDs(NH2-ˇ-CDs)weresynthesizedthrough

silane-hydroxyl reaction using an aminosilane coupler

(3-aminoproyl trimethoxysilane, APTMS) in methanol over 5days. APTMS(2mL)wasmixedwithHP-ˇ-CD(2g)inmethanol(100mL) undercontinuousstirringfor5days.Thereafter,thesolutionwas subjectedto90◦Cfor2handpurifiedbyprecipitationincold ace-tone.The product wasdried at vacuumovenat 60◦C, and the NH2-ˇ-CDwasobtainedaswhitepowder.1HNMRspectraofthe

NH2-ˇ-CDandHP-ˇ-CDwereshowninFig.1.

Thereactionofpolysaccharideswithsilanemoleculesis pre-viouslyreported,wherethereactionproceedsbetweenhydroxyls andsilanolgroups,formingsilylether(Si O C)linksuponheat exposure[26,27].Thissol-gelprocessbetweensilanesandvarious typesofpolysaccharideswithouttheadditionofanorganicsolvent andacatalystledthejellificationandtheformationofmonolithic hydrogels[27].ThesolubilityofnativeCDsinalcoholsis consid-erablylimited,andtherefore,thesynthesiswasperformedusing solubleCDderivative,HP-ˇ-CD.Theamine-modificationof HP-ˇ-CDwasperformedbythesilane-treatmentinmethanolover5days. AstheCDshavesomewatercontent,sothatsilanegroupswere sus-ceptibletoslowhydrolysistoyieldsilanols(Si-OH).Afterward,the solutionsubjectedto90◦Cfor2h.Theheat-treatmentfor2hcan drivethechemicalconjugationbetweenthesilaneandCD. 2.3. Synthesisofmacroporouspoly-cyclodextrin(poly-CD) cryogels

Amine-modifiedˇ-CDcompoundsweredissolvedinwaterand thereaftermixedwithPEG-DGE.Thereactiontookplacebetween theepoxygroupofPEGDGEandtheaminegroupoftheNH2

-ˇ-CD (seechemical structures ofthereactants inFig.S1). During thesynthesesofthecryogels,theconcentrationsofbothCDand cross-linker(PEG-DGE)weresystematicallyvaried;theCDcontent boostedfrom10to20%(w/v)attheidenticalcross-linker

(3)

concen-Table1

Materialsystemsusedfortheclean-upofPAHsfromwater.

MaterialComposition Materialform MaterialPolarity Sorptionmechanism Sorptioncapacity

(␮g/g)

Specialfeatures Refs.

ModifiedSilica Gels Apolar Hydrophobicinteractions 200–300 Cytocompatible Halletal.[28]

Hemoglobinimmobilized

onmesoporoussilica

Particles Apolar Hydrophobicinteractions N.D. Cytocompatible Laveilleetal.[29]

Polyphenol Particles Apolar Hydrophobic

interactions,␲-␲

interactions

750 RequiredtoxicH202 Chenetal.[30]

Poly(ethylene glycol)-b-poly(lactic

acid)(PEG-b-PLA)

copolymers

Nanoparticles Polar-Apolar Hydrophobicinteractions 310 Cytocompatible,problem

withscalability

Brandletal.[31]

CD-functionalcellulose

acetate

Fibers Apolar-Polar Hydrophobicinteractions 540 Cytocompatible Celebiogluetal.[25]

Polypropylene Fibers Apolar Hydrophobicinteractions 615 Cytocompatible Ceylanetal.[32]

Poly-CDcryogelsa Macroporousgels Polar Host-guest 105–1250 Cytocompatible&

Biodegradable

Presentstudy

Cyclophanes Crystals Apolar Donor-acceptor

interactions

N.D. Possibletoxicity,

problemwithscalability

Barnesetal.[33]

Butylrubber Macroporouscryogels Apolar Hydrophobicinteractions 721 Cytotoxic Ceylanetal.[32]

N.D.;notdetermined.

aThepresentstudy.

Fig.1. 1HNMRspectrumoftheNH

2-ˇ-CDinD2O.Insetshowsthe1HNMRoftheHP-ˇ-CD.

tration(0.35mM),orthePEG-DGEcontentincreasedfrom0.17to 0.35mMattheconstantCDcontentat20%(w/v).Thereafter,the solutionsweretransferredintoplasticdisposablesyringes(inner diameter(d)=4.7mm)andkeptat−20◦Cforthecross-linking reac-tionsover5days.Followingthisprocedure,theformationofhighly opaquegelswasobserved.Thegelsampleswerecutwitha cold-razorbladeandputinwaterforfewhourstogetridofunbound precursorsfromthegelmatrices. Followingthisprocedure, the poly-CDcryogels wereproducedatvariouscompositionsofthe precursors.Theporesizedistributionofthepoly-CDcrogelswas estimatedusingImageJsoftware.

Fig. 2 illustrates the synthesis scheme of poly-CD cryogels, wherebothprecursors(NH2-ˇ-CDandPEG-DGE)weremixedand

exposedtoliquidnitrogenandimmediatelykeptat−20◦Ctofreeze

watermoleculestowardsicecrystals.Thispromptfreezingstep wasusedtopreventundesiredcross-linkingreactionsthatcanlead ahydrogelnetwork.Asthewatermoleculestransformedintoice crystals,theconcentratedCDzonesremainedliquiddistrictsareas inbetween.TheCDaggregatesgraduallyreactedtowardsaporous cross-linkedmatrix.Thisprocess wasendedup witha

sponge-likesystemwiththickpolymerwalls,whileinnermatrixhadan irregularinter-linkedporousnetwork.

2.4. Characterizationofmaterials

FT-IRspectraofthedriedpoly-CDcryogelsandNH2-ˇ-CD

pow-derwererecordedusingaBruker-VERTEX70spectrometer.The spectraweretakenataresolutionof4cm−1withanaccumulation of128scans.

TheXPS spectraof thedried poly-CDcryogel sampleswere recordedbyusinganX-rayphotoelectronspectrometer(Thermo Fisher Scientific, U.K.). As an X-ray source, Al K-alfa X-ray monochromator(0.1eVstepsize,12kV,2.5mA,spotsize400␮m) wasusedatanelectrontake-offangleof90◦.Foreachsample, sur-veyspectrumwastaken5timeswith50msdwelltime(passenergy 200eV).AllN1s,O1s,C1sandSi2pspectraweretaken10times with50msdwelltime(passenergy30eV).Thebindingscalewas referencedtothealiphaticcomponentofC1sspectraat284.85eV.

1HNMRspectrawererecordedonaBrukerDPX-400

(4)

Fig.2. ThesynthesispathwayoftheNH2-ˇ-CD(a),andacartoonillustrationofthecryogelationofNH2-ˇ-CDaggregateswithPEG-DGE(b).Opticalphotoshowsthe

poly-CDcryogelsjustafterthesynthesis,revealinghighlyopaquenetworks(c).Thecompositionofeachcryogelinthephotoisasfollows;(i)cNH2-ˇ-CD=20%(w/v)and

cPEG-DGE=0.17mM,(ii)cNH2-ˇ-CD=20%(w/v)andcPEG-DGE=0.26mM,(iii)cNH2-ˇ-CD=20%(w/v)andcPEG-DGE=0.35mM,(iv)cNH2-ˇ-CD=10%(w/v)andcPEG-DGE=0.35mM,(v)

cNH2-ˇ-CD=15%(w/v)andcPEG-DGE=0.35mM,and(vi)cNH2-ˇ-CD=20%(w/v)andcPEG-DGE=0.35mM.

thespectrumwasrecordedat400MHzand512scanswere per-formed.

For themolecular weightanalysis of theNH2-ˇ-CD,Agilent

Technologies6530Accurate-MassQ-TOFLC–MSandZorbax SB-C8columnwereused.Solventswerewater(0.1%formicacid)and acetonitrile(ACN)(0.1%formicacid).LC–MSwasrunfor25minfor eachsample,anditstartedwith2%ACNand98%H2Ofor5min.

Afterward,ACNconcentrationreachedto100%for20min. There-after,theconcentrationwasdroppedto2%,anditkeptrunningfor 5min.Thesolventflowsetto0.65mL/min,and5␮Lsamplewas injected.m/z:1506,1621.68,and1742.

Theinner-morphologyofthefreeze-driedpoly-CDcryogelswas exploredbySEM(Quanta200FEG,FEI)aftergold-sputtering.The averageporediameter(<D>)andtheirdistributionwerecalculated byanalyzingca.100poresfromSEMimagesusingImageJsoftware (NIH,Bethesda,USA).Energy-dispersiveX-ray(EDX)spectroscopy wasusedformonitoringtheelementalcompositionofthematerial at30kVand4.5mAoncuppertapesaftergold-sputtering(Gatan 682PrecisionandCoatingSystem(PECS)).

FluorescencespectraofthePAHsbeforeandaftertreatments with the poly-CDcryogels were recorded on a Cary 100 fluo-rescencespectrophotometerusingfour-transparentfacedquartz cuvettes.The excitation wavelengthswerecalculated usingthe

maximumabsorbanceobserved fromUV-spectrum(Figs. S2–3).

Emissionwavelengthrangewasfrom260to600nm.Theexcitation wavelengthsforPAHsareasfollows:260nm(forphenanthrene), 264nm(forfluoranthene),250nm(foranthracene),260nm(for pyrene)and260nm(forfluorene).

TheadsorptionspectraofthePAHsweregatheredonaCary 100spectrophotometer.PAHs weredissolvedinwater, andthe

respectivespectrawerecollectedbetween200and800nmusing two-transparentfacedquartzcuvettes.Theinitialconcentrationof PAHsarerespectivelyasfollows: 0.20␮g/mL (forphenanthrene andpyrene),0.40␮g/mL(forfluoranthene),0.086␮g/mL(for fluo-rene)and0.027␮g/mL(foranthracene).

2.5. PAHsorptionexperiments

PAH molecules (i.e.,pyrene,anthracene, phenanthrene, fluo-reneand fluoranthene)weretreatedwiththepoly-CDcryogels (cNH2-ˇ-CD=20%(w/v)andcPEG-DGE=0.35mM)asafunctionoftime

(3,6and9h).Thecryogelswerecutintocylindricaldiskswitha razorbladeandtransferredintoanaqueousPAHsolution(20mL). The initial concentrations of PAHs are as follows: 0.20␮g/mL (for phenanthrene and pyrene), 0.40␮g/mL (for fluoranthene), 0.086␮g/mL(forfluorene)and0.027␮g/mL(foranthracene).After shakingfor3,6and12hat25◦Cusingaheat-controlledincubator (Fig.S4),3mLofthissolutionwastransferredintovialsandthe flu-orescencemeasurementswereperformed.3mLwaterwasadded tokeepthetotalvolumeconstant.Notethatthecryogelsremained aswhitecylindricalmassesinvialssuchthattheaqueouspartcould easilybetakenout.Thus,noparticularstepwasusedtoseparate thecryogelsfromPAHs.Theamountofcryogels(i.e.afterthe syn-thesis)usedineachexperimentvariedbetweenca.50and60mg. TheemissionspectraoftherespectivePAHmoleculesafterhaving treatedwiththepoly-CDcryogelswererecorded,and the sorp-tioncapacityforeachPAHmoleculewascalculatedusingstandard curvesoftherespectivePAHmolecule(Figs.S5–9),andthedata havegivenpergramdrycryogel.Theexperimentswereperformed intriplicate,andthemeandatawerepresented.

(5)

Recyclabilityexperimentswereperformedafteranexposureto ethanolof20mLbythreetimesover5minforeach. Thereafter, thesamplewastreatedwithwater(20mL)for10min.Theamount ofcryogelsissimilartothematerialusedforPAHsorptiontests (∼50mg).Thereafter,thefreshlypreparedsamplesweretreated againwithPAHsolutionswithindifferenttimeintervals,andthe supernatantpartwasmeasuredwithafluorescence spectropho-tometertomonitorvariationsinPAHcontents.

3. Resultsanddiscussion

The LC–MS spectrum of the product revealed the

success-ful formation of amine-functional CDs(NH2-ˇ-CDs), where the

peaks related to the NH2-ˇ-CDs appeared in the range of

1400–1900gmol−1 (Fig. S10). Note that pristine HP-ˇ-CD has anaveragemolecularweightof∼1400gmol−1.Thus,thepeaks appearedbetween1400and1900gmol−1 canbeassignedtothe silaneconjugation.Interestingly,nodimerortrimerformationwas obervedafterthereaction.However,notethatHP-ˇ-CDisalsoa polydispersemolecule,andthus,itsreactionwithsilanesleadsto variationsinthemolecularweightoftheproduct.Thesynthesisof theNH2-ˇ-CDwasfurtherconfirmedby1HNMRanalysis,where

thecharacteristicpeaksofCDprotonswereobservedbetween3 and6ppm(Fig.1).Thepresenceofmethylprotonsboundsilicon at0.56ppmreferstothesilaneconjugation.1HNMRshowsthe

methylprotonsadjacenttotheamineat2.90ppm,whilethemethyl protonsofthepropylgroupofCDsappearedat1.15ppm.The pro-tonsofCH2-CH2-NH2wereobservedasmultipletat1.60ppm.The

XRDpatternoftheNH2-ˇ-CDrevealedtheamorphousstructureas

similartoHP-ˇ-CD(Fig.S11).

Fig.2(inset)showstheopticalphotosofthepoly-CDcryogels producedatvariouscompositionsofprecursors.Forallconditions, theformationofacryogelmatrixsuggeststhatthecryogelation wassuccessfulatvariousconcentrationsofCDandPEG-DGE(Fig.2, insetphoto).Ontheotherhand,nogelformationwasobservedin

theabsenceofCDmoieties.Allcryogelswereopaquewhile main-tainingtheircylindricalforms, suggestinghighlyheterogeneous networkstructures.Thisopaquenessisanintrinsiccharacteristic ofcryogelsystemsbecauseofthenetworkheterogeneityinduced byirregularinterlinkedmacropores.Thewatercontentsatfreshly synthesizedgelsamplesafterfreeze-dryingwerecalculatedinthe rangeof67–76%dependingontheusedprecursorcontent, demon-stratingthatnearlyallCDswerechemicallyboundtothescaffolds withcorrespondinggelfractions(Wg)over0.98(98%).

Theinnermatricesofthecryogelswereexploredbyscanning electronmicroscopy (SEM), revealedaligned macroporesrather than irregular pores.Whereas, thegel surface displayed thick-polymer walls withcollapsedpores (Fig. 3).This is due tothe directionalfreezingofwater,whichledtothegrowthofice crys-talsandtheorientationfromthesurfacetotheinterior.Generally, suchakindofporestructurerequiresparticularfreezing-setups, i.e.,one-sideofthechamberexposedtocoolingwithaso-called method“unidirectionalfreezing”[34–36].Theporesize distribu-tionwasshowninFig.3(f),wherethemeanporesizewascalculated as2.53␮m.Thealignmentoftheporescouldbeascribedtothe directionalfreezingofwatermoleculesonthewayofthe tempera-turegradient.Thiscanalsobeseenontheorientationofthepores fromthesurfacetothecore(Fig.3a).Theporesizewasdirectly affectedbytheconcentrationoftheprecursors.Forinstance, well-aligned poreswere observed athigh concentrations of CD and cross-linker while lowering PEG-DGE concentration led to col-lapsedpores(Figs.4andS12).Thismightbeattributedthatoncethe concentrationishighenough,thestructuralintegrityofthematrix ispreserved.

Theatomiccompositionofthepoly-CDcryogels,whichwere synthesizedatvariouscompositionsofprecursors,wasstudiedby X-rayphotoelectronspectroscopy(XPS).AlthoughXPSismainly usedfor the compositionalanalysis of surfacesrather thanthe matrix,herethesamplesarehomogenouslyformedbythemixed solutionoftheNH2-ˇ-CDandPEG-DGE.Thoughthesamplesshow

Fig.3. Morphologicalanalysesofthepoly-CDcryogel.SEMimagesofthecryogel(cNH2−ˇ-CD=20%(w/v)andcPEG-DGE=0.35mM)displayhierarchicalalignedpores(a,b,c)

(6)

Fig.4.SEMimagesofthepoly-CDcryogelssynthesizedatvariouscompositionsofprecursorsshowalignedporousstructures.(a–c)SEMimagesofthecryogelsproduced

attheconstantCDcontent(20%(w/v))andvariouscross-linkerconcentrationsindicated(i.e.,0.35mM(a),0.26mM(b),and(c)0.17mM).Theporesizedistributionofthe

respectivecryogelsystems.

differentporearchitecturebetweenthesurfaceandinnermatrix, itisnotexpectedtohaveanysignificantvariationsinthe chemi-calcompositionbetweenthesurfaceandmatrix.Fig.5showsthe XPSsurveyspectraofthecryogelswherethecryogelsweremade upsubstantiallybycarbon(C)andoxygen(O)andsubordinately nitrogen(N)andsilicon(Si).Thepresenceofthenitrogen(N)and silicone(Si)atomscouldbeattributedtotheamine-modifiedCDs. Withanincrease ofCDratiointheformulationofthecryogels, bothNandSicontentssubstantiallyrise.DeconvolutedC1sspectra showthatwithanincreaseofCD,theC Ccarbon(284.8eV)peak rises,whiletheadditionofmorecross-linkerinducesasignificant increaseinC Opeak(286eV)(Fig.S13).NotethattheHP-ˇ-CD hasahighamountofC Obond,butaftermodificationwithsilane moieties,itsproportiondecreasesintheoverallcomposition.On theotherhand,thecross-linkerPEG-DGEhasconsiderableC O bonds,andthus,theincreaseofCcontentcouldbeattributedto highercross-linkercontent.WithanincreaseoftheCDcontentby

two-foldfrom10to20%(w/v),nitrogen(N)contentinthesample rises.

Table2summarizestheatomiccompositionsofthecryogels andaswellasNH2-ˇ-CDmolecules.TheHP-ˇ-CDhasnotanyN

andSi,whiletheNH2-ˇ-CDhasconsiderableamountsofNand

Si.Therefore,thecryogelsdisplayconsiderableproportionsofthe respectiveelementsinoverallcomposition.TheNcontentinthe NH2-ˇ-CDisabout5.84%,whiletheSicontent(asSi2sandSi2p)is

foundas9.37%,suggestingthatNH2functionalCDmoleculeshave

substantialSicontent.Thus,thematerialformedbytheNH2

-ˇ-CDshouldalsopossessquantifiableamountsofbothatoms(Nand Si).WithanincreaseofCDcontentfrom10to20%(w/v),N con-tentincreasesfrom1.06to1.84,whileSicontentrisesfrom3.94 to6.68.Ontheotherhand,withanincreaseofPEGDGEcontentby two-foldfrom0.17to0.35mM,Ncontentdecreasesfrom2.22to 1.84%.PEGDGEdoesnothaveanySiandNatomswhileithasmore C(64.68%)thantheO(35.32%)(seeTable2).Thechemical

(7)

composi-Fig.5.XPSsurveyspectraoftheNH2-ˇ-CD(a),PEGDGE(b)andpoly-CDcryogels(c-f),whichweresynthesizedatvariousconcentrationsofprecursors.Thecompositionof

precursorsineachgelasfollows:[c]20%(w/v)CD,0.17mMPEGDGE;[d]20%(w/v)CD,0.35mMPEGDGE;[e]15%(w/v)CD,0.35mMPEGDGEand[f]10%(w/v)CD,0.35mM

PEGDGE.

Table2

XPSatomiccompositionsofthepoly-CDcryogels,NH2-ˇ-CDandPEG-DGE.

[a]NH2-ˇ-CD [b]PEG-DGE [c](20%(w/v)CD –0.17mM) [d](20%(w/v)CD –0.35mM) [e](15%(w/v)CD –0.35mM) [f](10%(w/v)CD –0.35mM) C1s(285eV) 56.52 64.68 63.06 65.31 65.60 66.21 O1s(581eV) 28.77 35.32 28.21 26.17 29.63 29.79 N1s(399eV) 5.84 0 2.22 1.84 0.90 1.06 Si2p(101eV) 5.07 0 3.71 3.16 2.86 1.60 Si2s(152eV) 4.30 0 2.81 3.52 1.01 1.34

[a]–[f]denotetothesamplenumbersinFig.5.

tionsofthecryogelswerealsoanalyzedbyFT-IR,wherethetypical stretchingpeakofC Hbondappearedat2932cm−1(Fig.S14).A broadpeakat3408cm−1couldbeascribedtotheO Hvibration, andbut,itoverlapswithN Hvibrationofprimaryandsecondary amines.TheC Hstretchingofepoxyringshouldnormallyappear at∼840and910cm−1,andbothsamplesdonotshowanypeak intherespectiveregion,suggestingthatepoxyringsreactedwith amines.Thereactionbetweenepoxyandaminegroupsthrougha ring-openingmechanismledtoacross-linkedgelnetwork.

Fig.S15 (see Supporting Information) shows the PAH sorp-tion performances of the cryogels after 6h treatment, where significantreduction inthefluorescenceintensitywasobserved for all PAH molecules. For some PAH molecules (pyrene, fluo-rantheneand phenanthrene),almostcomplete removalofPAHs was observed, for other PAHs (fluorene and anthracene), very small peaks associated residual PAHs were detected, suggest-ingtheefficientremovalofPAHsbypoly-CDcryogels.Likewise, time-dependentPAHremovalexperimentsrevealedthat theno significantvariationwasobservedbetween3and9htreatments (Fig.6).ThefluorescencespectraofthePAHsafter3hPAH treat-mentrevealedasubstantialdecreaseinthefluorescenceintensity. Furtherincreasingexposuretimedidnotreducetheamountof tracePAHs.

ThePAH-sorptioncapacitiesofthecryogelsafter6htreatment wereshown inFig.7,wherethesamplesshowPAHscavenging capacities intherange of 0.6–6.22␮M PAH moleculepergram poly-CD cryogel. The highest sorption capacity was found for fluoranthene(6.22␮M/gdry cryogel)while thelowestonewas

observed for anthracene (0.59␮M/g). The photo of thecryogel sampleshows thatthestructural integrity ofthematerialafter 6h treatment with fluoranthene. The sorption values are high enoughandcomparabletoothergoodPAH scavengingmaterial systems(Table1),andfurther,thisperformancecanbeattributed tothecomplete network morethan interfacial adsorption.The totalremovalofPAHsinpercentwasfoundover94%,suggesting thehighefficiencyofthesematerialsinPAHremoval(seeFig.7, inset).Thewater-solubilityrangeofthePAHs(i.e.phenanthrene, anthracene, fluorene, fluoranthene and pyrene)varies between 0.044and1.9mgperliter.Eventhoughhavinglessringnumber, thewatersolubilityofanthracene(0.044mg/L)ismuchlowerthan thefluoranthene(0.265mg/L).SincePAHsarepoorlysoluble com-pounds,verylowamountofpoly-CDcryogelscoulddecreasetheir initialcontentupto97%.

Oneofthemainadvantagesoftheproposedsystemisits recycla-bilitywithanexposuretoethanol.ThesolubilityofPAHinethanolis muchhigherthanitssolubilityinwater.Thus,supramolecular com-plexesbetweenPAHsandCDswillbebrokenduetotheentropic reasons.Theuseofethanol forthePAHseparation from differ-entsources,includingsoilswaspreviously reported,wherethe ethanoltreatmentsignificantlyreducedPAHconcentration[37]. Afterethanolexposureandthesubsequentuseofpoly-CD cryo-gels,thematerialsrevealedalmostidenticalsorptionperformance forallPAHmolecules(Fig.S16),suggestingtherecyclabilityofthe presentedsystem.Asthepoly-CDgelsarechemicallycross-linked networks,ethanolexposuredoesnotcauseanysubstantialchange onthematerialmorphology.

(8)

Fig.6. Time-dependentfluorescencespectraofthePAHsbeforeandaftertreatmentswithpoly-CDcryogelsfor3,6,and9h(blacklines).

Fig.7.ThePAHsorptioncapacitiesofthepoly-CDcryogels(cNH2-ˇ-CD)=20%(w/v)

&cPEGDGE=0.35mM)after1stand2nduse.Insetshowsthe“Percent(%)–Removal”

oftherespectivePAHcompounds.Theinsetphotoshowsthepoly-CDcryogelafter

the6htreatmentoffluoranthene.

4. Conclusion

ThesynthesisofCD-basedcryogelsthroughthecryogenic gela-tionoftheNH2-ˇ-CDwithPEGDGEwithoutusinganypolymer

supportwassuccessfullyshown. Thefabricatedgelspossessan aligned porous network due to the directional freezing of the samplesduringthe cross-linkingof precursorsunder cryogenic conditions at which thepore architecture couldbe tailoredby variationsintheformulationparameters.Thecryogelsdisplay rel-ativehighsorptioncapacitiesfortheremovalofPAHmolecules (e.g., pyrene, anthracene, phenanthrene, fluorene and fluoran-thene)withinarangeof0.6–6␮MPAHmoleculepergpoly-CD.

Thishighsorptionperformanceisduetobothinterfacialadsorption andthevolume-basedscavengingmechanism.Further,the cross-linkednetworkstructureallowsrecyclingthematerialswithan exposuretoethanol,andthematerialscouldbeusedrepeatedly withoutanysignificantlossinthesorptionperformance.Beside theiruseasasorbent,suchfunctionalporousplatformsalsohave highpotentialfordrugdelivery,wheretheCDcavitiescanactas drugcarriers.

Acknowledgements

F.T.thankstoTUBITAKCo-Funded BrainCirculationScheme

(project number: 116C031). T. U. acknowledges The Turkish

AcademyofSciences–OutstandingYoungScientistsAward Pro-gram (TUBA-GEBIP)-Turkey for partial funding of the research. Authorsthank toDr.Kugalur S. Ranjith forthe XPSanalysisof PEG-DGEmolecule.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.jhazmat.2017.04. 022.

References

[1]M.V.Rekharsky,Y.Inoue,Complexationthermodynamicsofcyclodextrins, Chem.Rev.98(1998)1875–1918.

[2]J.Szejtli,Introductionandgeneraloverviewofcyclodextrinchemistry,Chem. Rev.98(1998)1743–1754.

[3]A.Zuorro,M.Fidaleo,R.Lavecchia,Solubilityenhancementandantibacterial activityofchloramphenicolincludedinmodified␤-cyclodextrins,Bull. KoreanChem.Soc.31(2010)3460–3462.

[4]A.M.O’Mahony,B.M.D.C.Godinho,J.Ogier,M.Devocelle,R.Darcy,J.F.Cryan, C.M.O’Driscoll,Click-modifiedcyclodextrinsasnonviralvectorsforneuronal siRNAdelivery,ACSChem.Neurosci.3(2012)744–752.

[5]H.Bricout,F.Hapiot,A.Ponchel,S.Tilloy,E.Monflier,Chemicallymodified cyclodextrins:anattractiveclassofsupramolecularhostsforthedevelopment ofaqueousbiphasiccatalyticprocesses,Sustainability1(2009)924.

(9)

[6]A.Ueno,T.Kuwabara,A.Nakamura,F.Toda,Amodifiedcyclodextrinasa guestresponsivecolour-changeindicator,Nature356(1992)136–137.

[7]R.Challa,A.Ahuja,J.Ali,R.K.Khar,Cyclodextrinsindrugdelivery:anupdated review,AAPSPharmSciTech6(2005)E329–E357.

[8]V.I.Lozinsky,F.M.Plieva,I.Y.Galaev,B.Mattiasson,Thepotentialofpolymeric cryogelsinbioseparation,Bioseparation10(2001)163–188.

[9]T.M.A.Henderson,K.Ladewig,D.N.Haylock,K.M.McLean,A.J.O’Connor, Cryogelsforbiomedicalapplications,J.Mater.Chem.B1(2013)2682–2695.

[10]G.Ertürk,B.Mattiasson,Cryogels-versatiletoolsinbioseparation,J. Chromatogr.A1357(2014)24–35.

[11]V.I.Lozinsky,I.Y.Galaev,F.M.Plieva,I.N.Savina,H.Jungvid,B.Mattiasson, Polymericcryogelsaspromisingmaterialsofbiotechnologicalinterest, TrendsBiotechnol.21(2003)445–451.

[12]F.Topuz,O.Okay,Macroporoushydrogelbeadsofhightoughnessand superfastresponsivity,React.Funct.Polym.69(2009)273–280.

[13]V.J.Melendez-Colon,A.Luch,A.Seidel,W.M.Baird,Cancerinitiationby polycyclicaromatichydrocarbonsresultsfromformationofstableDNA adductsratherthanapurinicsites,Carcinogenesis20(1999)1885–1891.

[14]J.vanGrevenynghe,M.Bernard,S.Langouet,C.LeBerre,T.Fest,O.Fardel, HumanCD34-positivehematopoieticstemcellsconstitutetargetsfor carcinogenicpolycyclicaromatichydrocarbons,J.Pharmacol.Exp.Ther.314 (2005)693–702.

[15]K.Srogi,Monitoringofenvironmentalexposuretopolycyclicaromatic hydrocarbons:areview,Environ.Chem.Lett.5(2007)169–195.

[16]G.Liu,Z.Niu,D.Niekerk,J.Xue,L.Zheng,Polycyclicaromatichydrocarbons (PAHs)fromcoalcombustion:emissions,analysis,andtoxicology,in:D.M. Whitacre(Ed.),ReviewsofEnvironmentalContaminationandToxicology, SpringerNewYork,NewYork,NY,2008,pp.1–28.

[17]J.Wu,Z.Gong,L.Zheng,Y.Yi,J.Jin,X.Li,P.Li,Removalofhighconcentrations ofpolycyclicaromatichydrocarbonsfromcontaminatedsoilbybiodiesel, Front.Environ.Sci.Eng.China4(2010)387–394.

[18]C.Viglianti,K.Hanna,C.deBrauer,P.Germain,Removalofpolycyclic aromatichydrocarbonsfromaged-contaminatedsoilusingcyclodextrins: experimentalstudy,Environ.Pollut.140(2006)427–435.

[19]B.B.Mamba,R.W.Krause,T.J.Malefetse,E.N.Nxumalo,Monofunctionalized cyclodextrinpolymersfortheremovaloforganicpollutantsfromwater, Environ.Chem.Lett.5(2007)79–84.

[20]N.Morin-Crini,G.Crini,Environmentalapplicationsofwater-insoluble ␤-cyclodextrin–epichlorohydrinpolymers,Prog.Polym.Sci.38(2013) 344–368.

[21]G.Crini,M.Morcellet,Synthesisandapplicationsofadsorbentscontaining cyclodextrins,J.Sep.Sci.25(2002)789–813.

[22]T.Uyar,R.Havelund,Y.Nur,J.Hacaloglu,F.Besenbacher,P.Kingshott, Molecularfiltersbasedoncyclodextrinfunctionalizedelectrospunfibers,J. Membr.Sci.332(2009)129–137.

[23]T.Uyar,R.Havelund,J.Hacaloglu,F.Besenbacher,P.Kingshott,Functional electrospunpolystyrenenanofibersincorporating␣-,␤-,and␥-cyclodextrins: comparisonofmolecularfilterperformance,ACSNano4(2010)5121–5130.

[24]F.Kayaci,Z.Aytac,T.Uyar,Surfacemodificationofelectrospunpolyester nanofiberswithcyclodextrinpolymerfortheremovalofphenanthrenefrom aqueoussolution,J.Hazard.Mater.261(2013)286–294.

[25]A.Celebioglu,S.Demirci,T.Uyar,Cyclodextrin-graftedelectrospuncellulose acetatenanofibersviaClickreactionforremovalofphenanthrene,Appl.Surf. Sci.305(2014)581–588.

[26]M.Abdelmouleh,S.Boufi,A.benSalah,M.N.Belgacem,A.Gandini,Interaction ofsilanecouplingagentswithcellulose,Langmuir18(2002)3203–3208.

[27]Y.A.Shchipunov,T.y.Y.Karpenko,Hybridpolysaccharide-silica nanocompositespreparedbythesol-geltechnique,Langmuir20(2004) 3882–3887.

[28]S.Hall,R.Tang,J.Baeyens,R.Dewil,Removingpolycyclicaromatic hydrocarbonsfromwaterbyadsorptiononsilicagel,Polycycl.Aromat. Compd.29(2009)160–183.

[29]P.Laveille,A.Falcimaigne,F.Chamouleau,G.Renard,J.Drone,F.Fajula,S. Pulvin,D.Thomas,C.Bailly,A.Galarneau,Hemoglobinimmobilizedon mesoporoussilicaaseffectivematerialfortheremovalofpolycyclicaromatic hydrocarbonspollutantsfromwater,NewJ.Chem.34(2010)2153–2165.

[30]B.Chen,M.Yuan,H.Liu,Removalofpolycyclicaromatichydrocarbonsfrom aqueoussolutionusingplantresiduematerialsasabiosorbent,J.Hazard. Mater.188(2011)436–442.

[31]F.Brandl,N.Bertrand,E.M.Lima,R.Langer,Nanoparticleswithphotoinduced precipitationfortheextractionofpollutantsfromwaterandsoil,Nat. Commun.6(2015)7765.

[32]D.Ceylan,S.Dogu,B.Karacik,S.D.Yakan,O.S.Okay,O.Okay,Evaluationof butylrubberassorbentmaterialfortheremovalofoilandpolycyclicaromatic hydrocarbonsfromseawater,Environ.Sci.Technol.43(2009)3846–3852.

[33]J.C.Barnes,M.Juríˇcek,N.L.Strutt,M.Frasconi,S.Sampath,M.A.Giesener,P.L. McGrier,C.J.Bruns,C.L.Stern,A.A.Sarjeant,J.F.Stoddart,A.ExBox,Polycyclic aromatichydrocarbonscavenger,J.Am.Chem.Soc.135(2013)183–192.

[34]J.Wu,Q.Zhao,J.Sun,Q.Zhou,Preparationofpoly(ethyleneglycol)aligned porouscryogelsusingaunidirectionalfreezingtechnique,SoftMatter8 (2012)3620–3626.

[35]V.A.Schulte,D.F.Alves,P.P.Dalton,M.Moeller,M.C.Lensen,P.Mela, MicroengineeredPEGhydrogels:3Dscaffoldsforguidedcellgrowth, Macromol.Biosci.13(2013)562–572.

[36]I.Aranaz,M.Gutiérrez,M.Ferrer,F.delMonte,Preparationofchitosan nanocompositeswithamacroporousstructurebyunidirectionalfreezingand subsequentfreeze-drying,Mar.Drugs12(2014)5619.

[37]B.-D.Lee,M.Hosomi,EthanolwashingofPAH-contaminatedsoilandFenton oxidationofwashingsolution,J.Mater.CyclesWasteManage.2(2000)24–30.

Şekil

Fig. 1. 1 H NMR spectrum of the NH 2 -ˇ-CD in D 2 O. Inset shows the 1 H NMR of the HP-ˇ-CD.
Fig. 2. The synthesis pathway of the NH 2 -ˇ-CD (a), and a cartoon illustration of the cryogelation of NH 2 -ˇ-CD aggregates with PEG-DGE (b)
Fig. 2 (inset) shows the optical photos of the poly-CD cryogels produced at various compositions of precursors
Fig. 4. SEM images of the poly-CD cryogels synthesized at various compositions of precursors show aligned porous structures
+3

Referanslar

Benzer Belgeler

Bu çalışmada, Alevilik ve Bektaşilik ile ilgili kavramların günümüze aktarılmasında, Hacı Bektaş Velî’nin eserleri temel alınarak oluşturulan Alevilik ve

Metastatik ADK’larda ise TTF-1’in tiroid kanser metastazları haricinde en yararlı belirteç olduğu tespit edilmiş olmakla birlikte tiroid kanseri ön tanısı olan ya

yaşgünü mutluluğunu Başbakan Ozal, ken­ disini salon girişinde karşılayan gazetemiz sahibi Erol Si- mavi’yi öpüp, ‘Kutlarım.... Buruk gece,

Since the failure occurs at high NG values, about 28000 NG (not on ground, engines running at flight detent, collective lever is fully down), the failure seems related with P2

DGD ödemelerini tarıma tahsis eden üreticilerin bu desteği tarımda ne amaçla kullandıkları incelendiğinde (Çizelge 7); verilen destek nakit olarak ödendiği

Düzce Üniversitesi Tıp Fakültesi, Kalp ve Damar Cerrahisi Anabilim Dalı, Düzce-Türkiye.. Yaz›şma Adresi/Address for

Araştırmada, stratejik kalite yönetimi boyutları ile ilgili yönetici algıları genel olarak değerlendirildiğinde, yöneticilerin bu konuda olumlu yaklaşım

An­ cak çeşitli nedenlerle proje gerçekleşem em iş, Türk pop tarihinin birçok önemli örneği tüketi­ ciye ulaşamamıştı.. İşte Kocatepe bu proje arasından