• Sonuç bulunamadı

Exploring the halophyte Cistanche phelypaea (L.) Cout as a source of health promoting products: In vitro antioxidant and enzyme inhibitory properties, metabolomic profile and computational studies

N/A
N/A
Protected

Academic year: 2021

Share "Exploring the halophyte Cistanche phelypaea (L.) Cout as a source of health promoting products: In vitro antioxidant and enzyme inhibitory properties, metabolomic profile and computational studies"

Copied!
10
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Journal

of

Pharmaceutical

and

Biomedical

Analysis

jou rn al h om e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / j p b a

Exploring

the

halophyte

Cistanche

phelypaea

(L.)

Cout

as

a

source

of

health

promoting

products:

In

vitro

antioxidant

and

enzyme

inhibitory

properties,

metabolomic

profile

and

computational

studies

Francesca

Trampetti

a

,

Catarina

Pereira

a

,

Maria

João

Rodrigues

a

,

Odeta

Celaj

b

,

Brigida

D’Abrosca

b

,

Gokhan

Zengin

c

,

Adriano

Mollica

d

,

Azzurra

Stefanucci

d

,

Luísa

Custódio

a,∗

aCentreofMarineSciences,UniversityofAlgarve,FacultyofSciencesandTechnology,Ed.7,CampusofGambelas,8005-139Faro,Portugal

bDepartmentofEnvironmental,BiologicalandPharmaceuticalSciencesandTechnologies,UniversityofCampaniaLuigiVanvitelli,ViaVivaldi,43,81100

Caserta,Italy

cSelcukUniversity,ScienceFaculty,DepartmentofBiology,Campus,42250Konya,Turkey dDepartmentofPharmacy,University“G.d’Annunzio”ofChieti-Pescara,66100Chieti,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received8October2018

Receivedinrevisedform7November2018 Accepted23November2018

Availableonline24November2018 Keywords:

Carbohydratehydrolysingenzymes Cholinesterases Computationalapproach Oxidativestress NMR Tyrosinase

a

b

s

t

r

a

c

t

In thisstudy, ethylacetate,acetone, ethanoland waterextracts fromflowers,stems and rootsof Cistanchephelypaea(L.)Coutwereappraisedforradicalscavengingactivity(RSA)towards 1,1-diphenyl-2-picrylhydrazyl,2,2-azino-bis(3-ethylbenzo-thiazoline-6-sulfonicacid)andsuperoxidefreeradicals,and formetalchelatingactivitiesonironandcopperions.Thewaterextractshadthehighestantioxidant activity,especiallythosefromrootsandflowers,andwerefurtherappraisedforinvitroinhibitionof enzymesimplicatedontheonsetofhumanailments,namelyacetyl-(AChE)andbutyrylcholinesterase (BuChE)forAlzheimer’sdisease,␣-glucosidaseand␣-amylasefordiabetes,andtyrosinaseforskin hyper-pigmentationdisorders.TheextractshadahigheractivitytowardsBuChE,andtherootsextracthadthe highestcapacitytoinhibittyrosinase.Samplesshowedalowcapacitytoinhibitcarbohydratehydrolysing enzymes,exceptfortherootextractwithagoodinhibitiononglucosidase.Sampleswerethen character-izedbyNMR(1Dand2D):themainmetabolitesidentifiedintheflowersextractwereiridoidglycosides, inparticularglurosideandbartsioside.Instems,phenylehanoidglycosides(PhGs)andiridoidswere detected,especiallyacteoside.InrootsweredetectedessentiallyPhGs,mainlyechinacosideand tubu-losideA.Dockingstudieswereperformedontheidentifiedcompounds.Afavorablebindingenergy oftubulosideAtotyrosinasewascalculated,andindicatedthiscompoundasapossiblecompetitive inhibitorof␣-glucosidaseandtyrosinase.OurresultssuggestthatC.phelypeaeisapromisingsource ofbiologically-activecompoundswithhealthpromotingpropertiesforpharmaceuticalandbiomedical applications.

©2018ElsevierB.V.Allrightsreserved.

1. Introduction

Halophytesspecieshavebeentraditionallyusedsinceancient

timesasfoodandassourcesofmedicinalproducts,andcurrently,

thereisahighinterestintheiruseforhumanandanimalhealth

improvement. Thereare severalrecent reports focusing onthe

potentialofwildhalophytesaspromisingsourcesofingredients

infunctionalfoodproducts,nutraceuticalsand/orbioactive

com-∗ Correspondingauthor.

E-mailaddress:lcustodio@ualg.pt(L.Custódio).

pounds[1,2].Halophytesarewelladaptedtoseveralenvironmental

constraints,suchaswaterandsoilsalinityanddrought,andcanbe

cultivatedbydifferentsystemsinarangeofsalineirrigationwater

resourcesand/orindegradedsalinesoils.

ThegenusCistanche(family:Orobanchaceae)embodiesmore

than20speciesinhabitingmainlyaridandsemi-aridareasofthe

EuropeanIberianPeninsula,AfricaandAsia.Cistanchespeciesare

holoparasitesontheroots of differentplantspecies, mainlyon

Chenopodiaceae.Herba Cistanches (RouCong-Rong in Chinese)

wasfirstrecordedinShenNong’sChineseMateriaMedicainca.100

B.C,whereitwasmentionedasthedriedstemsofCistanche

tubu-losa(Schrenk)Hook.f.andC.deserticolaMa[3].HerbaCistanchesis

https://doi.org/10.1016/j.jpba.2018.11.053

(2)

consideredasatopgradeoftherapeuticagents,oftencalledasthe

“Ginsengofthedeserts”,andisusedforthetreatmentofdifferent

healthproblems,asforexamplechronicrenaldisease,impotence,

femaleinfertility,morbidleukorrheaandprofusemetrorrhagia[3].

Itisalsodescribedtohavesedative,vasorelaxantandaphrodisiac

effectsandtoimprovelearningskills[3].Besidesitscommonuses

inChina,HerbaCistanchesissimilarlyusedasafoodsupplement

inJapanandSoutheastAsia.

Manybiologicalactivitieswerereportedfordifferentspeciesof

theOrobanchaceaefamily,includingantioxidant,antifatigue,and

anti-inflammatory,[3,4].ExtractsfromCistancheplantsthushave

anextensiverangeofactivities,comprisingthetreatmentofkidney

deficiencyandsenileconstipation,forlearningimprovement,relief

ofsymptomsrelatedwithAlzheimer’sdisease(AD),management

ofmenopausalsymptoms,enhancementofimmunity,anti-aging

andantifatigue[5].Theseactivitiesareascribedtothepresenceof

differenttypesofbioactivemolecules,suchasphenylethanoid

gly-cosides(PhGs),iridoids,apigeninderivativesandpolysaccharides

[5].

Cistanchephelypaea (L.) Coutis an edible halophyte present

in sand dune environments of Portugal, Spain, Crete, Cyprus,

Turkey,andintheeasternpartoftheMediterraneanregion.This

plantisgatheredfromthewildandusedlocallyasafood,quite

similar to asparagus. Its flowers are rich in unsaturated fatty

acids,sterolsandvitaminE,andtherefore,canbeofinterestfor

thefood industry [6]. However, and despite the

biotechnolog-icalimportance of theCistanche genusand thepossible health

promotingproperties of C. phelypaea,little is known regarding

thechemical profileorbiological activitiesofthisspecies.

Aim-ingtoevaluateifC.phelypaeacouldbeconsideredasasourceof

bioactiveproductswithhealthimprovementproperties,thiswork

determinedtheinvitroantioxidantandenzymaticinhibitory

prop-ertiesofextractsmadefromroots,flowersandstemsfromwild

plantscollectedintheSouthernPortugal.Antioxidantcapacitywas

appraisedbyfivecomplementarymethods,namelyradical

scav-enging activity (RSA) on 1,1-diphenyl-2-picrylhydrazyl (DPPH),

2,2-azino-bis(3-ethylbenzo-thiazoline-6-sulfonicacid)(ABTS)and

superoxide(O2•−)free radicals,and metalchelatingactivityon

copperandiron.Enzymaticinhibitorypropertieswereevaluated

towardenzymesrelatedwiththeonsetofAD(acetylcholinesterase:

AChEand butyrylcholinesterase:BuChE),type 2diabetes

melli-tus(␣-glucosidase and␣-amylase) and skinhyperpigmentation

(tyrosinase).Finally,thechemicalcompositionofthewaterextracts

wasestablishedbyNMR(1Dand2D)analysesandmolecular

dock-ingandmoleculardynamics(MD)studieswereperformedonthe

identifiedcompounds.

2. Materialandmethods

2.1. Reagents

All the chemicals used in this work were of analytical

grade. Sigma-Aldrich (Germany) supplied DPPH, ABTS, sodium

nitrite, sulphanilamide, N-(1-Naphthyl) ethylenediamine

dihy-drochloride(NED),butylatedhydroxytoluene(BHT),AChE (from

electriceel,Type-VI-S,EC3.1.1.7),BuChE(fromhorseserum,EC

3.1.1.8),acetylthiocholineiodide(ATCI),butyrylthiocholine

chlo-ride(BTCl),galantaminehydrobromide (fromLycorissp.,≥94%),

␣-amylase (from porcine pancreas, EC 3.2.1.1), ␣-glucosidase

(from Saccharomyces cerevisiae, EC 3.2.1.20),

4-nitrophenyl-␣-d-glucopyranoside (PNPG), tyrosinase (from mushroom, EC

1.14.18.1), l-2,3-dihydroxyphenylalanine (L-DOPA), kojic acid

( 99%), acarbose ( 95%) and phosphate buffer

methanol-d4, trimethylsilylpropionic-2,2,3,3-d4 acid sodium salt (TMSP).

Folin-Ciocalteau(F-C)phenolreagentandphosphoric acidwere

purchasedfromMerck(Germany),whileCambridgeIsotope

Labo-ratoriesInc.(USA)suppliedD2O.Additionalreagentsandsolvents

wereobtainedfromVWRInternational(Belgium).

2.2. Plantmaterial

WholefloweringplantsofC.phelypaeawerecollectedinLudo,

RiaFormosa,acoastallagooninsouthernPortugal,inJune2013

(37◦0114.2N7◦5305.5W).Thetaxonomicalclassificationwas

confirmedbythebotanistDr.ManuelJ.Pinto(NationalMuseumof

NaturalHistory,UniversityofLisbon,BotanicalGarden,Portugal)

andavoucherspecimeniskeptintheherbariumofthe

Xtreme-Biolaboratory(voucherno

MBH028).Plantsweredividedinroots,

flowersandstems,ovendriedfor3daysat40◦C,powdered,sifted

througha50␮meshsizestandardsieve,andstoredat−20◦Cuntil

needed.

2.3. Extraction

Four independent extractions were made by mixing dried

biomasswithsolventsofincreasingpolarities(ethylacetate,

ace-tone, ethanol and water, 1:40 w/v), overnight (16h) at room

temperature(RT),understirring(750rpm).Extractswerefiltered

(Whatmanno 4) and evaporated under vacuumat 40◦C. Dried

extractsweredissolvedindimethylsulfoxide(DMSO)atthe

con-centrationof25mg/mLandstoredat4◦Cuntilneeded.

2.4. Determinationofantioxidantactivitybyradical-basedassays

TheextractswereevaluatedforRSAonDPPH,ABTSandO2•−

radicalsbypreviouslydescribedmethods[1,2]usingBHTand

cat-echinaspositivecontrols.Theextractsweretestedfirstat1,5and

10mg/mL,andresultswerecalculatedaspercentageofinhibition

relativetoacontrolcontainingDMSO.Thevaluesforhalfmaximal

inhibitoryconcentration(IC50values)werecalculatedforsamples

withactivitieshigherthan50%at1,5or10mg/mL,bytestinga

minimumoffiveconcentrations.

2.5. Determinationofantioxidantactivitybymetal-related

methods

Themetalchelatingactivityoncopper(CCA)andiron(ICA)was

assessedas describedin [1,2],using ethylenediaminetetraacetic

acid(EDTA)aspositivecontrol.Samplesweretestedfirstat1,5

and10mg/mL,andresultswerecalculatedaspercentageof

inhi-bitionrelativetoacontrolcontainingDMSO.TheIC50valueswere

calculatedasdescribedinSection2.4.

2.6. Enzymeinhibitionassays

Theextractsatconcentrationsrangingfrom1to5mg/mL,were

evaluatedfortheircapacitytoinhibitAChE,BuChE,␣-amylase,

␣-glucosidaseandtyrosinase,accordingto[7].Galataminewasused

asastandardinhibitorforcholinesterasesatconcentrationsupto

0.5mg/mLandresultswereexpressedasgalatamineequivalents

(mgGALAE/g extract).Acarbose wasused apositive controlfor

␣-amylaseand␣-glucosidaseatconcentrations upto10mg/mL

andresultswereexpressedasacarboseequivalents(mmolACAE/g

extract).Kojicacidwasusedasastandardinhibitoroftyrosinase

atconcentrationsupto0.5mg/mL,andactivitywasexpressedas

(3)

2.7. MetabolomicanalysisbyNMR

2.7.1. Samplepreparationformetabolomicanalysis

Freeze-driedwaterextractsofstems,rootsandflowers(50mg)

weretransferredto2mLmicrotubes.NMRsampleswereprepared

inamixtureofphosphatebuffer(90mM;pH6.0)inD2Ocontaining

0.01%(w/w)oftrimethylsilylpropionic-2,2,3,3-d4acidsodiumsalt

andmethanol-d4.Atotalof1.5mLofphosphatebufferinD2Oand

methanol-d4(1:1)wasaddedtothesamples.Themixturewasthen

vortexedatRTfor1min,ultrasonicated(Elma®TransonicDigitals)

for40min,andcentrifuged(BeckmanAllegraTM64R)at13,000rpm

for10min.Aliquotsof0.6mLweretransferredtoNMRtubesand

analysedbyNMR.

2.7.2. NMRexperiments

NMRspectrawererecordedat25◦Cand300.03MHzfor1Hon

aVarianMercuryPlus300FouriertransformNMR. CD3ODwas

used asthe internal lock. Each1H-NMR spectrum consisted of

256scanswiththefollowingparameters:0.16Hz/point,

acquisi-tiontime(AQ)=1.0s,relaxationdelay(RD)=1.5s,and90◦ pulse

width(PW)=13.8␮s.Apresaturationsequencewasusedto

sup-presstheresidualH2Osignal.Freeinductiondecays(FIDs)were

FouriertransformedwithLB=0.3Hzandtheresultingspectrawere

manuallyphasedandbaselinecorrectedandcalibratedtoTMSPat

0.0ppm,using1H-NMRprocessor(MestReNova,version8.0.2).

1H-1H correlated spectroscopy (COSY), heteronuclear single

quantum coherence (HSQC) and heteronuclear multiple bond

correlation (HMBC) spectra were recorded. COSYspectra were

acquiredwitha1.0srelaxationdelayand2514Hzspectralwidth

inbothdimensions.ThewindowfunctionforCOSYspectrawas

sine-bell(SSB=0).HSQCand HMBCspectrawereobtainedwith

a 1.0s relaxation delay and 3140Hz spectral width in f2 and

18,116Hzinf1.Qsine(SSB=2.0)wasusedforthewindow

func-tionoftheHMBC.Theoptimizedcouplingconstantswere140Hz

forHSQCand8HzforHMBC.Constanttimeinverse-detection

gra-dientaccordionrescaledheteronuclearmultiplebondcorrelation

spectroscopy(CIGAR–HMBC)spectra(8>nJ

(H,C)>5)wereacquired

withthesamespectralwidthusedforHMBC.Heteronuclearsingle

quantumcoherencetotalcorrelationspectroscopy(HSQC-TOCSY)

experimentswereoptimizedfornJ

(H,C)=8Hz,withamixingtime

of90ms.

2.7.3. Quantitativeanalysis

Themainmetabolitesidentifiedinthewaterextractswere

ana-lysed byquantitative analysis.1H-NMR spectrawere bucketed,

reducingit tointegral segmentswitha widthof0.02ppm with

ACDLABS12.01H-NMRprocessor(ACDLABS12.0,Toronto,Canada).

For each metabolite,buckets correspondingtonon-overlapping

signalsweremanuallyintegrated,scaledtotheinternalstandard

signalandusedtocalculatetherelativeamount.Theamountof

eachmetabolitewascalculated.Resultswereexpressedasmg/gof

freeze-driedsample.

2.8. Molecularmodelling

2.8.1. Proteinspreparation

Theenzymesusedinthebiologicaltestsreportedinthiswork

werealsousedfortheinsilicoexperiments.Theenzymestogether

withtheirinhibitorsweredownloadedfromtheProteinDatabank

RCSB PDB [8]. The crystal structures were prepared as

previ-ouslyreportedbyPrepWizard toolembeddedin Maestrosuite.

AChE(pdb:4×3C)in complexwithtacrine-nicotinamidehybrid

inhibitor,BuChE(pdb:4BDS)[9]incomplexwithtacrine,␣-amylase

(pdb:1VAH) in complex with r-nitrophenyl-␣-d-maltoside,

␣-glucosidase(pdb:3AXI) in complexwithmaltose and tropolone

complexedwithtyrosinase(pdb:2Y9X)weresubjectedto

proto-nationatpHfixedat7.4byPropKa.Allthemissingfragmentsand

othererrorspresentinthecrystalstructuresweresolvedbyPrime

module,thecrystallographicligandswereusedtodeterminethe

enzymaticcavity.

2.8.2. Ligandspreparation

Thechemical structuresofthemoleculesused forthe

dock-ingexperiments arereported inFig.2 and weredocked tothe

selectedenzymepool.Severaldockingstudiesperformedon

glyco-sidepolyphenolswerepreviouslyreportedbyourresearchgroup

[7,9] andexhibit a goodinhibitory activitytowardthe selected

enzymes.In thiswork,thedocking experimentsweremadeby

GlideembeddedinMaestro2015suite,andthefreebindingenergy

estimationwascalculatedinordertodiscussthestabilityofthe

complexenzyme-inhibitor.Thetwodimensionalstructureofthe

substancesweredrawnbyChemBiodraw14.0and convertedin

3DstructuresbyMaestro;theresultingsubstanceswereusedfor

molecularmodelingexperimentsafterpreparationand

minimiza-tion.TheligandswerepreparedbytheLigPreptoolembeddedin

Maestro2015,neutralized atpH7.4byEpik andminimizedby

OPLS3forcefield.

2.9. Statisticalanalysis

Resultswereexpressedasmean±standarderrorofthemean

(SEM)andexperimentswereconductedatleastintriplicate.

Sig-nificantdifferenceswereassessedbyanalysisofvariance(ANOVA)

followedby theTukeyHSDtest,and bytheKruskal-Wallistest

whenparametricitydidnotprevail.Differenceswereconsidered

significantwhenPvalueswerelowerthan0.05. SPSSstatistical

packageforWindows(release15.0,SPSSInc.)wasused.TheIC50

valueswerecalculatedbysigmoidalfittingofthedatainthe

Graph-PadPrismv.5.0program.

3. Resultsanddiscussion

3.1. Antioxidantactivity

Ingeneral,thewaterextractsof rootsandflowersexhibited

the highest antioxidant capacity (Table1). Regarding theABTS

radical,thebestresultwasobtainedwiththewaterextractsof

rootsandstems,withIC50valuesof0.50and0.58mg/mL,

respec-tively.TheutmostDPPHandO2•−scavengingactivitieswerealso

obtainedwiththewater root’sextract,withIC50 values of0.37

and0.54mg/mL.Extractsfromflowershadnilchelation

proper-ties,whilefortheremainingsamplesthehighestchelationcapacity

wasobtainedwiththerootextracts,withIC50valuesof0.11and

4.4mg/mL forICAandCCA,respectively.Aboul-Eneinetal.[10]

evaluatedtheDPPHscavengingpropertiesofwaterandethanol

extractsfromC.phelypaeawholeplants,andsimilartotheresults

presentedhere,obtainedbetterresultswiththewater extracts.

Methanol extracts from thesame species also had a high RSA

towardsDPPH[11].Moreover,differentextractsmadefromother

Cystanchespeciespresentedrelevantantioxidantproperties,asfor

examplethosefromC.violaceadisplayingRSAonDPPHandalso

ironchelatingproperties[12].

Oxidativestressresultsfromtheimbalancebetweenan

exces-siveoxidantsaccumulationandreducedlevelsofantioxidants,and

originatestheoxidationofbiomoleculesandlossofitsbiological

roles,and/orhomeostaticimbalances.Thisprocessisconsideredas

thekeyriskfactorfortheonsetofseveralpathologies,asfor

exam-pleneurodegeneration,diabetesandskindisorders[13].Therefore,

oneapproachtopreventsuchdiseasesistheuseofantioxidants,for

exampleintheformofdietarysupplements,aimingtoprotectthe

organismfromexcessiveROSproduction[13].Ourresultssuggest

(4)

Table1

RadicalscavengingactivityonDPPHandABTSradicals,andmetalchelatingactivityoncopper(CCA)andiron(ICA)ofwater,acetone,ethylacetateandethanolextractsof roots,flowersandstemsofC.phelypaea.ResultsareexpressedasIC50values(mg/mL).

Organ/standards Extract ABTS DPPH O2•

ICA CCA Roots Ethylacetate 2.0±0.1c 3.3±0.2g 0.99±0.04b 6.2±1.7d nr Ethanol nr 0.69±0.04c 6.5±0.0e nr 6.2±0.1bc Acetone 1.7±0.1c 1.2±0.1d nr nr 4.5±0.1b Water 0.50±0.05b 0.37±0.04b 0.54±0.05a 0.11±0.02a 4.4±0.1b Stems Ethylacetate 5.7±0.2e 6.5±0.2i nr 2.5±0.1c 9.8±0.8d Ethanol nr 1.9±0.1e nr nr nr Acetone 5.2±0.1d 4.5±0.1h nr nr 6.0±0.1bc Water 0.58±0.03b 1.2±0.1d 4.6±0.13d 1.4±0.1b 7.8±0.5c Flowers Ethylacetate nr nr nr nr nr Ethanol 2.9±0.0e nr nr nr nr Acetone nr nr nr nr nr Water nr 2.6±0.2f 2.8±0.4c 0.06±0.01a 4.5±0.2b Standards BHT 0.14±0.01a 0.11±0.01a Catechin – – 0.62±0.00a EDTA – – – 0.06±0.00a 0.17±0.01a

nr:IC50notreached.Valuesrepresentthemean±standarderrorofthemean(SEM)ofatleastthreeexperimentsperformedintriplicate(n=9).Inthesamecolumnvalues

followedbydifferentletters(insuperscript)aresignificantlydifferentaccordingtotheTukeyHSDtest(p<0.05).

andflowers,couldbeusefulforthepreventionofoxidative stress-related disorders,similar towhat already happens withHerbal Cistanche,whichisrecognizedasapotentnaturalantioxidant[3].

3.2. Enzymaticinhibitoryproperties

3.2.1. AChEandBuChEinhibition

Aspreviously referred, oxidative stressis consideredas the

underlyingcauseforseveraldiseases[13].Therefore,andsincethe

waterextractshadthehighestantioxidantcapacity,theywere

fur-therevaluatedforenzymaticinhibition.AscanbeseeninTable2,

waterextractshadahigheractivitytowardsBuChE,withvaluesof

1.72and1.47mgGALAEforflowersandroots,respectively.AChE

andBuChEparticipateat differentextents inthemodulationof

theneurotransmitteracetylcholine(ACh)andarethusconsidered

importanttherapeutictargetsintherapiestargetingthe

improve-mentofcholinergicdeficitinpatientswithneurologicaldisorders,

suchasAD.AChEispontedasthemainenzymeresponsiblefor

theregulationofACh,whileBuChEisconsideredtobelessactively

involved[14].InAD,thereishoweveranapparentlinkbetween

BuChEactivityandthedepositionoffibrillar␤-amyloid(A␤)brain

plaquesinthecerebralcortexwherethisenzymeisnotusually

foundinhighlevels,whichsuggeststheimportantroleofspecific

BuChEinhibitorsinthesymptomatictreatmentofAD[15].

Thereareseveralreports of theuseofHerbaCistanches for

theimprovementofbrainfunction.Forexample,C.tubulosawater

extractspreventedbrainneuronapoptosisinvitro[16]andcould

alleviatethecognitivedysfunction causedby A␤ 1–42through

blockingamyloiddeposition,reversingcholinergicand

hippocam-paldopaminergicneuronalfunctioninanAD-likeratmodel[17].

Inaddition,clinicalassaysindicatedthatC.tubulosaglycoside

cap-sulesandC.herbacanbeusedasalternativetreatmentsformildto

moderateAD[18].However,wecouldnotfindreportsonthe

liter-atureregardingthecholinesteraseinhibitionofCystanchespecies.

OurresultssuggestthatthewaterextractsfromC.phelypeae

flow-ersandstemscontainBuChEinhibitors,relevantfortargetinginitial

stagesofAD,wherethelevelsofAChEhasnotyetsignificantly

decayedbutwheretheriskthatBChEcouldhydrolyseAChexists.

3.2.2. Tyrosinaseinhibition

AscanbededucedfromTable2,thewaterrootsextracthadthe

highestcapacitytoinhibittyrosinase,withavalueof8.03mgKAE/g.

Tyrosinase(monophenoloro-diphenol,oxygenoxidoreductase,EC

1.14.18.1,syn.polyphenoloxidase)isamultifunctionalmembrane

boundtype-3copper-containingglycoproteinwithakey rolein

melaninsynthesis.Tyrosinaseinhibitorshavethuscosmetic

appli-cationsasskin-whiteningproducts,andalsopharmaceuticaluses

for thetreatmentofhealth problems resultingfromthe

exces-siveaccumulationofmelanin,asforexamplepostinflammatory

hyperpigmentationandmelasma[19].Tyrosinaseisalsoinvolved

inneuromelaninproduction,wheredopamineoxidationproduces

dopaquinones.Excessiveproduction of dopaquinones resultsin

neuronaldamageandcelldeath,thussuggestingthattyrosinase

mightalsohavearoleinneuromelaninformationinthehuman

brainandmayberesponsiblefortheneurodegenerationassociated

withParkinson’sandHuntington’sdiseases[20].Therearereports

oftheanti-melanogenicpropertiesofotherCistanchespecies,such

asC.desertícola[21].However,tothebestofourknowledge,this

isthefirstreportregardingthecapacityofC.phelypaeatoinhibit

tyrosinase.OurresultsthussuggeststhatC.phelypaeawaterextract

couldbe of interest for both the cosmetic and pharmaceutical

industries,assourceofanti-melanogenicingredients.

3.2.3. Alphaamylaseand˛-glucosidaseinhibition

Theextractsshowedalowcapacitytoinhibitamylase(Table2).

However,therootextractcouldsignificantlyinhibitglucosidase,

with a value of 7.05mmol ACAE/g. Different Cistanche species

areusedintraditionalmedicineasantidiabeticdrugs,andshow

anti-diabeticfeaturesonanimalmodels.Forexample,the

admin-istration of an aqueous extract of C. tubulosa to db/db mice

significantlysuppressedthehighfastingbloodglucoseand

post-prandial blood glucose levels, improved insulin resistance and

dyslipidemia, and suppressedbody weight loss[22].

Neverthe-lesswecouldnotfindreportsontheinhibitionofcarbohydrates

hydrolysingenzymesbyextractsofCistanchespecies.Ourresults

suggeststhatC.phelypeaecouldbeasourceofcompoundsableto

inhibit␣-glucosidase,andthus,withinterestfordiabetescontrol.

3.3. Chemicalcharacterizationofwaterextracts

Root,stemandflowerwaterextractsofC.phelypeaeshowed

adifferentcompositionintermsofsecondarymetabolitesas

evi-dencedby1H-NMRspectra(Figs.1andS1.).Rootsweredominated

byPhGs,flowersextractwererichiniridoidsandstemextracts

containediridoidsandPhGs(Fig.1Table3).

The1H-NMRspectrumofrootsshowedinthearomaticregion

thesignalsofan(E)-caffeoylportionwiththreearomaticprotons

asanABXspinsystemandtwotrans-positionedolefinicprotons

(TableS1)twodoubletsat␦H7.63(␦C148.0)and␦H6.36(␦C113.9),

(5)

pro-Table2

EnzymaticinhibitoryactivityonAChE,BuChE,␣-glucosidase,tyrosinase,amylaseandglucosidaseofwaterextractspreparedfromflowers,rootsandstemsofC.phelypaea.a

Organ AChEinhibition (mgGALAE/g) BuChEinhibition (mgGALAE/g) Tyrosinaseinhibition (mgKAE/g) Amylaseinhibition (mmolACAE/g) Glucosidaseinhibition (mmolACAE/g) Flowers 0.58±0.07a 1.72±0.07a 2.14±0.11b 0.07±0.01b na Roots 0.58±0.04a na 8.03±0.40a 0.06±0.01b 7.05±0.07 Stems 0.30±0.02b 1.47±0.54a 1.45±0.08b 0.12±0.01a na

aValuesareexpressedasmeans±SEMofthreeparallelmeasurements.Datamarkedwithdifferentletterswithinthesamecolumn(insuperscript)indicatestatistically

significantdifferences(p<0.05).GALAE,galantamineequivalents;KAE,kojicacidequivalents;ACAE,acarboseequivalents;na,notactive.

Fig.1.Representative1H-NMRspectraofroots,flowersandstemswaterextractsofC.phelypaea.

tons,onetripletat␦H2.80(␦C35.5)andtwooverlappedprotons

at␦H4.05/3.80(␦C71.9).TheHSQCexperiment(Fig.3)allowed

allaromaticmethinecarbonsofaglyconeandacylmoietytobe

assigned. The same experiment also suggestedthe presence of

three anomeric carbonswithfollowing resonances␦H 5.12(␦C

102.2),␦H4.46(␦C103.4)and␦H4.32(␦C103.1)ingood

agree-mentwiththepresenceofthreesugarsidentifiedasarhamnoseand

twoglucoseunits,basedonheterocorrelationsevidencedinHSQC,

H2BCandHSQC-TOCSYspectra.AlltheseNMRdataareingood

agreementwiththepresenceofaphenylethanoidglycoside.The

CIGAR-HMBCexperimentpermittedtheconfirmationsofall

sig-nificativeinterfragmentalconnectivitiesofthiscompound.HMBC

correlationsbetweenanomericprotonofinnerglucoseat␦H4.46

(H-1)withmethyleneat␦C71.9(C-8)andH-4withestercarboxyl

at␦C168.7allowedtheaglyconeandacylmoietiestobelocated,

respectively,atC-1andC-4ofglucosemoiety.Furthermore,this

innerglucoseshowedtwoadditionalbranchedpointsatC-3and

C-6.InfactthecorrelationsbetweenH-1at␦H4.32withmethylene

carbonat␦C68.5(C-6)andbetweenthebroadsingletofrhamnose

(6)

Fig.2.Phenyletanoidgycosides(PhG)andiridoids(IR)detectedinroot,flowerandstemwaterextractsofC.phelypaea.PhG1:Echinacoside,PhG2:TubulosideA,PhG3: acteoside,IR-A:Gluroside,IR-B:Bartioside,IR-C:leonuride(ajugol).

Table3

MainsecondarymetabolitesdetectedinC.phelypaeaextracts.1H-NMRdatarecordedinphosphatebufferinD

2OandCD3OD-(1:1).TMSP(0.1%,␦0.00)aremeasuredinppm

andcouplingconstants(J)inHertz.Relativeamountisexpressedinmgpergoffreeze-driedmaterialasthemeanvalue(n=3)±SD.

Metabolites NMR Amount(mg/g)

Roots IR-A H-3(6.19,dd,6.6and1.8) 30.6±0.0

IR-B H-3(6.26,dd,6.3and1.5),H-7(5.77,brs) 30.9±0.9 IR-C H-3(6.33,dd,6.0and1.5) nq PhG1 H-6(1.05,d.5.7) 148.8±7.7 PhG2 CH3CO(1.96,s) 20.6±1.2 PhG-TOT H-7(7.63d15.9),H-6(7.04dd,8.4and1.8) 264.3±9.6 Flowers

IR-A Seeroots 31.8±2.0

IR-B Seeroots 37.8±2.2

IR-C Seeroots nq

PhG1 Seeroots 61.2±1.4

PhG2 CH3CO(1.97,s) 33.1±1.0

PhG-TOT Seeroots 168.9±10.3

Stems

IR-A Seeroots 33.9±1.3

IR-B Seeroots 33.7±1.2

IR-C Seeroots nq

PhG1 Seeroots 75.8±2.1

PhG2 Seeroots 38.1±0.7

PhG-TOT Seeroots 194.1±4.9

PhG-TOT:sumofallPhGsdetectedinthecrudeextract.ForIR-Cthequantitativeanalysiswasnotpossibleduetostronglyoverlappingsignals;hencethepresenceisindicated by“nq”(notquantified).

identificationofechinacosideastheprincipalmetaboliteofroot extract(PhG1,Figs.1and2).Inaddition,tubulosideA(PhG2)was

alsoidentifiedasconstituentofthesameextract.

Inthe1H-NMRspectrumof flowers,onedoublet at

H 5.23

(J=5.7Hz),twodoubledoubletat␦H 6.27(J=6.3e1.5Hz,Table

S2)and6.18(J=6.6e1.8Hz),aswellasabroadsingletat␦H5.76

(H-7)wereevident(TableS2).Severaloverlappedsignalswerealso

detectedintheregionofprotongerminaltooxygenaswellasin

theupfieldregionof1H-NMRspectrum.

Thedoubledoubletat␦H6.27(␦C140.1)showedlongrange

het-erocorrelationwithamethinecarbonC-9at␦C34.7(␦H2.91),asp2

carbonat␦C108.3(␦H4.92),andacetalcarbonC-1at␦C94.9bonded

toadoubletprotonresonatingat␦H5.23,inturncorrelatedwith

threemethinecarbons:thefirst,anolephinicat␦C140.1,the

sec-ond,aliphaticat␦C34.7,andfinallythethirdanomericat␦C99.3.

Thislattersuggestedthepresenceofaglycosidicmoietyinthis

compound,identifiedasglucosebasedonspectroscopicevidences.

The13C-NMRvaluesat99.3,77.4,77.1,74.4,71.0,62.1andthe

couplingconstantvalueof8.1Hzforanomericprotonareingood

agreementofa␤-d-glucopyranosilunitlinkedtoalyconemoiety.

Furthermore,the HMBCexperiment displayedthe following

heterocorrelations:theprotonat␦H4.92withmethineat␦C48.2,

thislatterwitholefinicprotonat␦H5.73(␦C128.0)inturn

hete-rocorrelatedwiththemethineat␦C34.7,withthemethyleneat

␦C39.2,andwithhydroxymethylcarbonat␦C60.8(␦H4.19/4.26).

(7)

Fig.3. HSQCspectrumofrootswaterextractofC.phelypaea.

dueaseconddoublebondbearingahydroxymethygrouplinked

tothecarbonat␦C143.8.Thesedataindicatedthepresenceofa

nor-iridoid(IR-BFigs.1and2)bringingtwohydroxylgroupsto

theC-1andC-8carbonsidentifiedasbartiosidealreadyisolatedas

componentofHerbaCistanche[23].

Inthesamespectrum,thesignalsrelatedwithnon-iridoid

glyco-sideswereevident.Bothcompoundslackeddoublebondbetween

theC-7andC-8carbons.Thefirst(IR-C)bearingofthehydroxyl

functionatC-6carbonasbyheterocorrelationsamongacarbinol

carbonat␦C82.5(␦H4.05)andtheH-4protonat␦H4.97(␦C105.6)

aswellastheprotonH-1at␦H5.04(␦C94.6),inturncorrelated

withtheC-3(␦C140.5),C-5(␦C31.8),C-9(␦C43.4)andC-1(␦C

98.2)carbons.Onthebasisoftheabove-mentionedobservations

aswellasoftheCOSYhomocorrelations(Fig.4),thestructureofthis

compoundwasdeterminedtobeleonuride(ajugol),aglycoside

iso-latedfromHerbaCistanche[23]andreportedtobeaconstituentof

C.phelypeae[24].Thethirdnon-iridoid(IR-A)detectedinthe1

H-NMRspectrumofflowersandidentifiedasgluroside(Figs.1and2)

respecttoajugollackofhydroxylatC-6.AlloftheNMRdataarein

goodagreementwiththosereportedintheliteratureforgluroside

[24].

Twoiridoidsbartioside(IR-B)andgluroside(IR-A)(Figs.1and2)

wereidentifiedasconstituentsofthestemextract,whichshowed

alsosignalsattributabletophenylehanoid.In particular,the2D

NMRdatawereingoodagreementwiththepresenceoftubuloside

Aasprincipalphenylehanoidglycosides,besidesacteoside(PhG3,

Figs.1and2),acompoundcloselyrelatedtoechinacoside.Infact

theHSQCexperiment(TableS3)evidencedthepresenceofonly

twoanomericcarbonsfortwomonosaccharideunitsidentified,on

thebasisofaHSQC-TOCSYexperiment,asrhamnoseandglucose.

Theprotonat␦H5.14(H-1’)correlatedwithfivemethinecarbons

at␦C102.1(C1)(directcorrelation),73.1(C-4’),71.6(C2’/C-3’),

69.6(C-5’),andwiththemethylat␦17.5(C-6’).Besides,methylene

protonsat␦H3.68and3.87(C-6”)correlatedwiththemethinesat

␦C103.9(C-1”),83.2(C-3”),77.2(C-5”),74.2(C-2”),69.9(C-4”).

MoreovertheNMRdatarevealedthelinkageoftherhamnoseto

C-3ofglucosemoiety,allowingtheidentificationofthesecond

phenylehanoidglycosideofstemsextractasisoacteoside[24].

TheextensiveNMRinvestigationofC.phelypaeawaterextracts

allowedtheidentificationofiridoidsandphenylehanoidglycosides

(Figs.1and2).PhGsarenaturallyoccurringmoleculesofplant

ori-ginandarestructurallycharacterizedwithahydroxyphenylethyl

moietylinkedtoaglucopyranosethroughaglycosidicbond[25].

Thesecompoundsarewater-solubleandubiquitousintheplant

kingdom, and largely found in the Scrophulariaceae, Oleaceae,

Plantaginaceae,Lamiaceae,andOrobanchaceaeplantfamilies[25].

PhGsarethemainactivemoleculesinCistancheplantsandarethus

usedasmarkersforqualityassessmentofcrudedrugsortheir

cor-respondingformulations[26].Severalinvitroandinvivostudies

haveshownthatPhGsexhibitavastarrayofbiologicalactivities

suchas antioxidant, neuroprotective,antitumoral, antibacterial,

antiviral,anti-inflammatory,hepatoprotective, anti-melanogenic

andimmunomodulatory[25].

Iridoidsrepresentalargegroupofcyclopenta[c]pyran

monoter-penoidsfoundinahighnumberofmedicinalplantsusedasbitter

tonics,sedatives,hypotensives,antipyretics,coughmedicines,and

forthetreatmentofwoundsandskindisorders[27].Iridoidsare

mostoftenfoundindicotyledonousplantfamilies,including

Apoc-ynaceae,Diervillaceae,Scrophulariaceae,Loganiaceae,Lamiaceae

and Rubiaceae, and are alsocommon constituents of Cistanche

species[27].Iridoidsarealsoendowedwithapanoplyof

bioac-tivities,includinganti-inflammatory,antioxidant,neuroprotective,

immunomodulator,hepatoprotective,cardioprotectiveand

(8)

Fig.4.41H-1HCOSYspectrumofflowerswaterextractofC.phelypaea.

Thewater extracts showeddifferent amounts of the

identi-fiedcompounds(Fig.S1,Table3).Inroots,echinacosidewasthe

majorPhG1(148.8mg/g)while tubulosideA (PhG2)was

essen-tiallydetectedinstems(38.1mg)andflowers(33.1mg)(Table3).

Inflowers,significantquantitiesof iridoids,inparticular

gluro-side(IR-A)andbartsioside(IR-B)werealsodetected.Echinacoside

andacteosidearerepresentativePhGsandwerepreviously

iden-tifiedindifferentCystanchespecies, includingC.phelypaea[26].

Acteoside,alsoknownasverbascoside,kusaginin,andorobanchin,

hasseveralimportantbiologicalproperties,suchasantioxidant,

anticarcinogenicandneuroprotective[28].Echinacosidehasalso

several described biological activities, as for example,

antioxi-dant,neuroprotectiveandanti-inflammatory[28].Thebioactivities

describedintheliteratureforechinacosideandacteosidemayhelp

toexplaintheantioxidantpropertiesandcholinesteraseinhibition

obtainedaftertreatmentwithwaterextractsofC.phelypeae.

Tubu-losidewasalsopreviouslyidentifiedinseveralCistanchespecies,

includingC.phelypaea[28]anddisplayedRSAtowardstheDPPH

freeradical[29].Regardingtheidentifiediridoids,gluroside (4)

wasalreadyidentifiedonCistanchespecies,includingC.deserticola

andC.phelypaea,andinHerbaCistanches[6,26].Bartsiosidewas

previouslyidentifiedinC.desertícolaandHerbaCistanches[6,26].

3.4. Computationalapproaches

Themost abundantcompounds identifiedin root, stem and

flowerswaterextractweretestedfordockingtowardtheselected

enzymesusedforthebiologicaltests.Thedockingscoresobtained

for the best pose for each compound are reportedin Table 4,

togetherwiththefreebindingenergycalculatedbyusingPrime

software embeddedin Maestro 2015.From a close analysis of

the literature we have found that echinacoside and aectoside

haveaweakactivityontyrosinasewithanIC50valueof907and

1169␮g/mL,respectively[21].Echinacoside,acteosideand

tubu-losideAhavealsoinhibitoryactivitytowards␣-glucosidaseand

␣-amylaseinahighmicromolarrange[30].

Considering the relative bioactivityof the extractsreported

inTable2,wehavefocusedourattentionon␣-glucosidaseand

tyrosinase.Inparticular,therootextractwastheonlywithagood

inhibitoryactivitytowardthesetwoenzymesandmoreover,

tubu-losideAispresentonlyinthisextract.Therefore,wefocusedonthe

analysisofthedockingposeoftubulosideAasoneofthe

poten-tiallymajorresponsiblefortheinhibitoryactivitydetectedinthis

extract.

InFig.5isreportedtheinteractiondiagramsofthebestpose

found for tubuloside A docked to ␣-glucosidase (A–C) and to

tyrosinase(B–D).ThebestposefoundfortubulosideAdockedto

tyrosinaseisstabilizedbyseveralhydrogenbondssuchasGlu322

(twohydrogenbonds),Tyr78,Ala323(twohydrogenbonds),Tyr65

(twohydrogenbonds),Ser282,Asn260,Asn81,His244,andone␲-␲

stacktoPhe264aromaticring.TubulosideAestablishesto

glucosi-daseseveralpolarinteractionssuchashydrogenbondstoTyr158,

Gln279, Arg315, Gly309,Lys156 (␲-cation interaction), Thr310,

Ser240,Asp(242),Asp307(twohydrogenbonds).

Itisworthmentioningthatdespitethattheiridoidsbartioside

andglurosidehaveboththecorrectmolecularsizetoenterinthe

deepoftheenzymaticcavityofbothenzymes,onceinthepocket

theyarenot abletoproficiently interactwiththeamino acidic

residuessurroundingtheenzymaticcavity.Onthecontrary,

tubu-losideA,echinacosideandacteoside,haveabulkystructurethat

doesnotallowtheircompleteinsertioninthedeepofthe

enzy-maticcavity;however,thesecompoundshavethecorrectstereo

electronicpropertiestobindintheexternaledgeoftheenzymatic

(9)

Table4

DockingscoreandfreebindingenergycalculatedonthebestrankedposeoftheselectedsubstancesreportedinFig.2totheenzymaticpooltestedinthiswork.

AChE BuChE ␣-amylase ␣-glucosidase Tyrosinase

Compounds Dockingscore Gbinding Dockingscore Gbinding Dockingscore Gbinding Dockingscore Gbinding Dockingscore Gbinding

Echinacoside −13.5 −52.7 −18.5 −79.8 −14.1 −61.2 −13.1 −55.8 −12.7 −43.9

TubulosideA −14.3 −62.3 −15.8 −75.3 −12.6 −54.8 −10.6 −63.4 −13.1 −63.1

Acteoside −12.6 −61.4 −14.3 −51.5 −9.3 −55.9 −11.1 −20.2 −9.1 −54.6

CP-3 −8.7 −37.6 −9.9 −19.0 −7.0 −18.4 −9.9 −9.9 −7.1 −52.4

CP-4 −8.8 −12.2 −10.6 −25.1 −8.5 −40.8 −30.9 −30.9 −7.0 −32.3

Fig.5.TubulosideAdockedtoglucosidase(AandC)andtotyrosinase(BandD).

stablyoccupytheentranceoftheenzymaticcavity,andtobehave asacompetitiveinhibitors.Therefore,theiridoidspresentinthe extractshavethelowestdockingscoresandthefreebindingenergy valuesamongthemoleculestested.

4. Conclusion

WaterextractsfromC.phelypaea,especiallythosefromroots and flowers, displayed the highest capacity to scavenge free radicals, chelate iron and copper ions, and to inhibit enzymes

implicatedintheonsetofAD(AChEandBuChE),type-2diabetes( ␣-glucosidase)andhyperpigmentationdisorders(tyrosinase).NMR investigationof C.phelypaea waterextracts allowedthe identi-ficationoftwoclasses ofcompounds,namelyiridoidsand PhGs ThewaterrootextractwasdominatedbyPhGswhilethe flow-ersextractwasrichiniridoids;finallythestemextractsevidenced resonancesofbothiridoidsandPhGs.Themajormolecules iden-tifiedintherootextractswereechinacoside,tubulosideA(PhGs) andbartioside(iridoid),intheflowerextracts,bartiosideand gluro-side(PhGs),andinthestemextractswereacteoside,echinacoside

(10)

(PhGs),bartioside and gluroside (iridoids).Computational stud-iesindicated thattubulosideA,echinacosideandacteosidemay behaveasacompetitiveinhibitorsof␣-glucosidaseandtyrosinase. OurresultssuggeststhatrootsandflowersofC.phelypeaecouldbe consideredasasourceofinnovativeherbalproductswith phar-maceuticalandbiomedicalapplications,withantioxidantactivity, neuroprotective,antidiabeticandanti-melanogenicassets.Assays areinprogressaimingtoconfirmtheresultsobtainedinthiswork, includingforexampledeterminationoftoxicity,bioavailabilityand invivoefficacy.

Conflictofinterest

Theauthorsdeclarethattheyhavenoconflictofinterest.

Acknowledgements

This work was supported by the Foundation for Sci-ence and Technology (FCT, Portugal) and by the Portuguese NationalBudgetfundingthroughtheCCMAR/Multi/04326/2013 project. Luísa Custódio was supported by FCT Investigator Programme (IF/00049/2012). Catarina Guerreiro Pereira and Maria João Rodrigues acknowledges FCT for the PhD grants SFRH/BD/94407/2013andSFRH/BD/116604/2016,respectively.

AppendixA. Supplementarydata

Supplementarymaterialrelated tothis article canbefound, intheonlineversion,atdoi:https://doi.org/10.1016/j.jpba.2018.11. 053.

References

[1]C.G.Pereira,L.Barreira,S.Bijttebier,L.Pieters,C.Marques,T.F.Santos,M.J. Rodrigues,J.Varela,L.Custódio,Healthpromotingpotentialofherbalteasand tincturesfromArtemisiacampestrissubsp.maritima:fromtraditional remediestoprospectiveproducts,Sci.Rep.(2018),4689.

[2]M.J.Rodrigues,S.Slusarczyk,L.Pecio,A.Matkowski,R.E.Salmas,S.Durdagi,C. Pereira,J.Varela,L.Barreira,L.Custódio,Invitroandinsilicoapproachesto appraisePolygonummaritimumL.asasourceofinnovativeproductswith anti-ageingpotential,Ind.CropsProd.111(2017)391–399.

[3]Z.Li,H.Lin,L.Gu,J.Gao,C.-M.Tzeng,HerbaCistanche,(RouCong-Rong):one ofthebestpharmaceuticalgiftsoftraditionalChineseMedicine,Front. Pharmacol.7(2016)41.

[4]R.L.Cai,M.H.Yang,Y.Shi,J.Chen,Y.C.Li,Y.Qi,Antifatigueactivityof phenylethanoid-richextractfromCistanchedeserticola,Phytother.Res.24 (2010)313–315.

[5]L.-I.Wang,H.Ding,H.-s.Yu,L.-fHan,Q.-hLai,L.-jZhang,X.-bSong, CistanchesHerba:chemicalconstituentsandpharmacologicaleffects,Chin. Herb.Med.7(2015)135–142.

[6]M.F.Ramadan,H.T.M.Hefnawy,A.M.Goma,Bioactivelipidsandfattyacids profileofCistanchephelypaea,J.Verbr.Lebensm.6(2011)333–338.

[7]G.Zengin,AstudyoninvitroenzymeinhibitorypropertiesofAsphodeline anatolica:newsourcesofnaturalinhibitorsforpublichealthproblems,Ind. CropsProd.83(2016)39–43.

[8]H.M.Berman,J.Westbrook,Z.Feng,G.Gilliland,T.N.Bhat,H.Weissig,I.N. Shindyalov,P.E.Bourne,Theproteindatabank,NucleicAcidsRes.28(2000) 235–242.

[9]G.Zengin,A.Uysal,A.Aktumsek,A.Mocan,A.Mollica,M.Locatelli,M.F. Mahomoodally,EuphorbiadenticulataLam.:apromisingsourceof

phyto-pharmaceuticalsforthedevelopmentofnovelfunctionalformulations, Biomed.Pharmacother.87(2017)27–36.

[10]A.M.Aboul-Enein,F.A.El-Ela,E.A.Shalaby,H.A.El-Shemy,Traditional medicinalplantsresearchinEgypt:studiesofantioxidantandanticancer activities,J.Med.PlantsRes.6(2012)689–703.

[11]H.H.Elkamali,S.E.M.Hamed,AntioxidantpotentialofsomeSudanese medicinalplantsusedintraditionalmedicine,Int.J.Sci.World3(2015) 192–198.

[12]M.Debouba,R.Balti,S.Hwiwi,S.Zouari,Antioxidantcapacityandtotal phenolsrichnessofCistancheviolaceahostingZygophyllumalbum,Int.J. Phytomed.4(2012)399–402.

[13]V.Conti,V.Izzo,G.Corbi,G.Russomanno,V.Manzo,F.DeLise,A.DiDonato,A. Filippelli,Antioxidantsupplementationinthetreatmentofaging-associated diseases,Front.Pharmacol.7(2016)24.

[14]M.Penumala,R.B.Zinka,J.B.Shaik,S.K.R.Mallepalli,R.Vadde,D.G.Amooru, Phytochemicalprofilingandinvitroscreeningforanticholinesterase, antioxidant,antiglucosidaseandneuroprotectiveeffectofthreetraditional medicinalplantsforAlzheimer’sdiseaseanddiabetesmellitusdualtherapy, BMCComplement.Altern.Med.18(2018)77.

[15]S.Darvesh,Butyrylcholinesteraseasadiagnosticandtherapeutictargetfor Alzheimer’sdisease,Curr.AlzheimerRes.13(2016)1173–1177.

[16]S.Lin,S.Ye,J.Huang,Y.Tian,Y.Xu,M.Wu,J.Wang,S.Wu,J.Cai,Howdo Chinesemedicinesthattonifythekidneyinhibitdopaminergicneuron apoptosis?NeuralRegen.Res.8(2013)2820–2826.

[17]C.R.Wu,H.C.Lin,M.H.Su,ReversalbyaqueousextractsofCistanchetubulosa frombehavioraldeficitsinAlzheimer’sdisease-likeratmodel:relevancefor amyloiddepositionandcentralneurotransmitterfunction,BMCComplement. Altern.Med.14(2014)202.

[18]N.Li,J.Wang,J.Ma,Z.Gu,C.Jiang,L.Yu,X.Fu,Neuroprotectiveeffectsof CistanchesHerbatherapyonpatientswithmoderateAlzheimer’sdisease, Evid.BasedComplement.Altern.Med.(2015)103985.

[19]T.Pillaiyar,M.Manickam,V.Namasivayam,Skinwhiteningagents:medicinal chemistryperspectiveoftyrosinaseinhibitors,J.EnzymeInhib.Med.Chem. 32(2017)403–425.

[20]I.Tessari,M.Bisaglia,F.Valle,B.Samorì,E.Bergantino,S.Mammi,L.Bubacco, Thereactionofalpha-synucleinwithtyrosinase:possibleimplicationsfor Parkinsondisease,J.Biol.Chem.283(2008)16808–16817.

[21]J.H.Yang,S.S.Wu,H.H.Xu,Y.Yan,B.Ju,D.Zhu,J.Hu,Inhibitoryeffectsof phenylethanoidglycosidesonmelaninsynthesisinculturedhuman epidermalmelanocytes,Int.J.Clin.Exp.Med.9(2016)18019–18025.

[22]W.-T.Xiong,L.Gu,C.Wang,SunH.-X,XinX,Anti-hyperglycemicand hypolipidemiceffectsofCistanchetubulosaintype2diabeticdb/dbmice,J. Ethnopharmacol.150(2013)935–945.

[23]H.Kobayashi,H.Karasawa,T.Miyase,S.Fukushima,Studiesonthe constituentsofCistancheherbaII,isolationandstructuresofnewiridoids, cistaninandcistachlorin,Chem.Pharm.Bull.33(1985)3645–3650.

[24]T.Deyama,K.Yahikozawa,H.S.Al-Easa,A.M.Rizk,Constituentsofplants growinginQatar:partXXVIII.ConstituentsofCistanchephelypaea,QatarUniv. SciJ.(1995)51–55.

[25]G.Fu,H.Pang,Y.H.Wong,Naturallyoccurringphenylethanoidglycosides: potentialleadsfornewtherapeutics,Curr.Med.Chem.15(2008)2592–2613.

[26]Y.Jiang,P.-F.Tu,AnalysisofchemicalconstituentsinCistanchespecies,J. Chromatogr.A1216(2009)1970–1979.

[27]R.Tundis,M.R.Loizzo,F.Menichini,G.A.Statti,F.Menichini,Biologicaland pharmacologicalactivitiesofiridoids:recentdevelopments,MiniRev.Med. Chem.8(2008)399–420.

[28]N.Wang,S.Ji,H.Zhang,S.Mei,L.Qiao,X.Jin,HerbaCistanches:anti-aging, AgingDis.8(2017)740–759.

[29]J.H.Yang,J.P.Hu,K.Rena,N.S.Du,Structure-activityrelationshipsof phenylethanoidglycosidesinplantsofCistanchesalsaonantioxidative activity,ZhongYaoCai32(2009)1067–1069.

[30]T.Morikawa,K.Ninomiya,M.Imamura,J.Akaki,S.Fujikura,Y.Pan,O. Muraoka,Acylatedphenylethanoidglycosides,echinacosideandacteoside fromCistanchetubulosa,improveglucosetoleranceinmice,J.Nat.Med.68 (2014)561–566.

Şekil

Fig. 1. Representative 1 H-NMR spectra of roots, flowers and stems water extracts of C
Fig. 2. Phenyletanoid gycosides (PhG) and iridoids (IR) detected in root, flower and stem water extracts of C
Fig. 3. HSQC spectrum of roots water extract of C. phelypaea.
Fig. 4. 4 1 H- 1 H COSY spectrum of flowers water extract of C. phelypaea.
+2

Referanslar

Benzer Belgeler

Inhibition of α-glucosidase in the bowel slows oligosaccharide degradation, thereby reducing the glucose level in the circulatory system. α-amylase degrades long-chain

The purpose of this investigation was to study antioxidant activities using TBA and DPPH [thin layer chromatography (TLC) screening], determine phenolic contents using

As a substrate for the growth of GaN/AlGaN epitaxial layers, silicon has many advantages compared to SiC and sapphire due to its high crystal quality, low cost, good elec- trical

Bahariye ġeyhi Gâlib Dede tarafından ġeyh Gâlib‟in semahane adâbına dair kaleme alınan yazı; Recaizâde Ekrem, Cenab ġihâbeddin, Süleyman Nazif, Süleyman

All salt concentrations blocked the germination of eight species completely (Hesperis aspera, H. transcaucasica) and decreased the germination percentage and speed of six species

高膽固醇血症之飲食原則 返回 醫療衛教 發表醫師 劉如濟主任 發佈日期 2010/01/15 高膽固醇血症之飲食原則 1.維持理想體重。

Bu araştırmada birinci veri toplama aracı olarak araştırmacılar tarafından hazırlanan “Hayat Bilgisi Dersi Öğretim Programı Becerilerinin Öğrencilere Kazandırılma

In the face of local civil societal actors and opposition MPs seeking to generate controversy around Ankara’s handling of the incident, I suggest, invoking ‘sacred’ cultural codes