• Sonuç bulunamadı

On I− Lacunary Statistical Convergence of Order α of Sequences of Sets

N/A
N/A
Protected

Academic year: 2021

Share "On I− Lacunary Statistical Convergence of Order α of Sequences of Sets"

Copied!
10
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Available at: http://www.pmf.ni.ac.rs/filomat

On I− Lacunary Statistical Convergence of Order

α of Sequences of Sets

Hacer S¸eng ¨ula, Mikail Etb

aDepartment of Mathematics; Siirt University 56100; Siirt ; TURKEY bDepartment of Mathematics; Fırat University 23119; Elazıg ; TURKEY

Abstract.The idea of I−convergence of real sequences was introduced by Kostyrko et al. [ Kostyrko, P. ; ˇSal´at, T. and Wilczy ´nski, W. I−convergence, Real Anal. Exchange 26(2) (2000/2001), 669-686 ] and also independently by Nuray and Ruckle [ Nuray, F. and Ruckle, W. H. Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245(2) (2000), 513–527 ]. In this paper we introduce the concepts of Wijsman I−lacunary statistical convergence of orderα and Wijsman strongly I−lacunary statistical convergence of order α, and investigated between their relationship.

1. Introduction

The concept of statistical convergence was introduced by Steinhaus [36] and Fast [15]. Schoenberg [34] established some basic properties of statistical convergence and studied the concept as a summability method. Later on it was further investigated from the sequence space point of view and linked with summability theory by Altın et al. [1], Bas¸arır and Konca [2], Caserta et al. [3], Connor [4], C¸ akallı [5], C¸ olak ([8],[9]), Et et al. ([11],[12],[20],[21]), Fridy [17], Gadjiev and Orhan [19], Kolk [22], Mursaleen et al. ([25],[26]), Salat [29], Savas¸ et al. ([10],[32],[33]) and many others. Nuray and Rhoades [28] extended the notion to statistical convergence of sequences of sets and gave some basic theorems. Ulusu and Nuray [38] defined the Wijsman lacunary statistical convergence of sequence of sets, and considered its relation with Wijsman statistical convergence.

Let X be a non-empty set. Then a family of sets I ⊆ 2X(power sets of X) is said to be an ideal if I is

additive i.e. A, B ∈ I implies A ∪ B ∈ I and hereditary, i.e. A ∈ I, B ⊂ A implies B ∈ I. A non-empty family of sets F ⊆ 2Xis said to be a filter of X if and only if

(i)φ < F, (ii) A, B ∈ F implies A ∩ B ∈ F and (iii) A ∈ F, A ⊂ B implies B ∈ F. An ideal I ⊆ 2Xis called non-trivial if I , 2X.

A non-trivial ideal I is said to be admissible if I ⊃ {{x} : x ∈ X}. If I is a non-trivial ideal in XX , φthen the family of sets

F(I)= {M ⊂ X : (∃A ∈ I) (M = X \ A)} is a filter of X, called the filter associated with I.

Let (X, d) be a metric space. For any non-empty closed subset Akof X, we say that the sequence {Ak} is

bounded if supkd(x, Ak)< ∞ for each x ∈ X. In this case we write {Ak} ∈L∞.

Throughout the paper I will stand for a non-trivial admissible ideal of N.

2010 Mathematics Subject Classification. 40A05, 40C05, 46A45 Keywords. I−convergence, Wijsman convergence, lacunary sequence Received: 04 December 2015; Accepted: 25 April 2016

Communicated by Ljubiˇsa D.R. Koˇcinac

(2)

The idea of I−convergence of real sequences was introduced by Kostyrko et al. [23] and also indepen-dently by Nuray and Ruckle [27] (who called it generalized statistical convergence) as a generalization of statistical convergence. Later on I−convergence was studied in ([6],[7],[14],[24],[30], [31],[32],[33],[37],[39]).

2. Main Results

In this section, we will extend the results of Et and S¸eng ¨ul ([13], [35]) to statistical convergence of set sequences, namely; the relationship between the concepts of Wijsman I−lacunary statistical convergence of orderα and Wijsman strongly I−lacunary statistical convergence of order α are given

Definition 2.1. Let (X, d) be a metric space, θ be a lacunary sequence, α ∈ (0, 1] and I ⊆ 2Nbe an admissible ideal

of subsets of N. For any non-empty closed subsets A, Ak⊂X, we say that the sequence {Ak}is Wijsman I−lacunary

statistical convergent to A of orderα ( or Sαθ(Iw) −convergent to A ) if for eachε > 0, δ > 0 and x ∈ X,

(

r ∈ N : 1 hαr

|{k ∈ Ir: |d (x, Ak) − d (x, A)| ≥ ε}| ≥ δ )

belongs to I. In this case, we write Ak−→A



θ(Iw) . For θ = (2r), we shall write Sα(Iw) instead of Sαθ(Iw) and in

the special caseα = 1 and θ = (2r) we shall write S (I

w) instead of Sαθ(Iw).

As an example, consider the following sequence: Ak= ( {3x}, kr−1 < k < kr−1+ √ hr {0}, otherwise.

Let(R, d) be a metric space such that for x, y ∈ X, d x, y= x−y , A = {1} , x > 1 and α = 1. Since 1 hαr |{k ∈ Ir: |d (x, Ak) − d (x, 1)| ≥ ε}| ≥ δ

belongs to I, the sequences {Ak} is Wijsman I−lacunary statistical convergent to {1} of order α ; that is Ak −→

{1}Sαθ(Iw) .

Definition 2.2. Let (X, d) be a metric space, θ be a lacunary sequence, α ∈ (0, 1] and I ⊆ 2Nbe an admissible ideal

of subsets of N. For any non-empty closed subsets A, Ak⊂X, we say that the sequence {Ak}is said to be Wijsman

strongly I−lacunary statistical convergent to A of orderα ( or Nθα[Iw] −convergent to A ) if for eachε > 0 and x ∈ X,

       r ∈ N : 1 hαr X k∈Ir |d(x, Ak) − d (x, A)| ≥ ε        belongs to I. In this case, we write Ak−→A



θ[Iw] . For θ = (2r), we shall write Nα[Iw] instead of Nαθ[Iw] and in

the special caseα = 1 and θ = (2r) we shall write N [Iw] instead of Nαθ[Iw].

As an example, consider the following sequence:

Ak= ( nxk 2o , kr−1< k < kr−1+ √ hr {0}, otherwise.

Let(R, d) be a metric space such that for x, y ∈ X, d x, y= x−y , A = {1} , x > 1 and α = 1. Since 1 hαr X k∈Ir |d(x, Ak) − d (x, 1)| ≥ ε,

the sequences {Ak}is Wijsman I−lacunary statistical convergent to {1} of orderα ; that is Ak−→ {1}



(3)

Theorem 2.3. Sαθ(Iw) ∩ L∞is a closed subset of L∞for 0< α ≤ 1.

Proof. Omitted.

Theorem 2.4. Let (X, d) be a metric space, θ = (kr) be a lacunary sequence and A, Ak(for all k ∈ N) be non-empty

closed subsets of X, then (i) Ak→A  Nθα[Iw]  ⇒AkASα θ(Iw) 

and Nθα[Iw] is a proper subset of Sαθ(Iw),

(ii) {Ak} ∈L∞and Ak→A  Sαθ(Iw)  ⇒AkANα θ[Iw] , (iii) Sαθ(Iw) ∩ L∞= Nαθ[Iw] ∩ L∞.

Proof. (i) The inclusion part of proof is easy. In order to show that the inclusion Nαθ[Iw] ⊆ Sαθ(Iw) is proper,

letθ be given and we define a sequence {Ak} as follows

Ak= ( n x2o , k = 1, 2, 3, ..., hh r i {0}, otherwise .

Let (R, d) be a metric space such that for x, y ∈ X, d x, y = x−y

. We have for every ε > 0, x > 0 and

1 2 < α ≤ 1, 1 hαr |{k ∈ Ir: |d (x, Ak) − d (x, {0})| ≥ ε}| ≤ h√ hr i hαr ,

and for anyδ > 0 we get ( r ∈ N : 1 hαr |{k ∈ Ir: |d (x, Ak) − d (x, {0})| ≥ ε}| ≥ δ ) ⊆        r ∈ N : h√ hr i hαr ≥δ        .

Since the set on the right-hand side is a finite set and so belongs to I, it follows that for 1

2 < α ≤ 1,

Ak→ {0}



θ(Iw) .

On the other hand, for1

2 < α ≤ 1 and x > 0, 1 hαr X k∈Ir |d(x, Ak) − d (x, {0})| =  x2− 2x h√h r i hαr → 0 and for 0< α < 12  x2− 2x h √ hr i hαr → ∞. Hence we have        r ∈ N : 1 hαr X k∈Ir |d(x, Ak) − d (x, {0})| ≥ 0        =        r ∈ N :  x2− 2x h√h r i hαr ≥ 0        = {a, a + 1, a + 2, ...}

for some a ∈ N which belongs to F (I) , since I is admissible. So Ak9 {0} 

θ[Iw] .

ii) Suppose that {Ak} ∈L∞and Ak→A



θ(Iw) . Then we can assume that

(4)

for each x ∈ X and all k ∈ N. Given ε > 0, we get 1 hαr X k∈Ir |d(x, Ak) − d (x, A)| = 1 hαr X k∈Ir |d(x,Ak)−d(x,A)|≥ε |d(x, Ak) − d (x, A)| +1 hαr X k∈Ir |d(x,Ak)−d(x,A)|<ε |d(x, Ak) − d (x, A)| ≤ M hαr |{k ∈ Ir: |d (x, Ak) − d (x, A)| ≥ ε}| + ε. Hence we have        r ∈ N : 1 hαr X k∈Ir |d(x, Ak) − d (x, A)| ≥ Mδ + ε        ⊂ ( r ∈ N : 1 hαr |{k ∈ Ir: |d (x, Ak) − d (x, A)| ≥ ε}| ≥ δ ) ∈I. Therefore Ak→A  Nαθ[Iw] .

iii) Follows from (i) and (ii).

Theorem 2.5. Letθ = (kr) be a lacunary sequence andα be a fixed real number such that 0 < α ≤ 1. If lim infrqr> 1,

then Sα(Iw) ⊂ Sαθ(Iw).

Proof. Suppose first that lim infrqr> 1; then there exists a λ > 0 such that qr≥ 1+ λ for sufficiently large r,

which implies that hr kr ≥ λ 1+ λ=⇒ hr kr !α ≥  λ 1+ λ α =⇒ 1 kαr ≥ λ α (1+ λ)α 1 hαr .

If Ak→A(Sα(Iw)), then for every ε > 0, for each x ∈ X, and for sufficiently large r, we have

1 kαr |{k ≤ kr: |d (x, Ak) − d (x, A)| ≥ ε}| ≥ 1 kαr |{k ∈ Ir: |d (x, Ak) − d (x, A)| ≥ ε}| ≥ λ α (1+ λ)α 1 hαr |{k ∈ Ir: |d (x, Ak) − d (x, A)| ≥ ε}| . Forδ > 0, we have ( r ∈ N : 1 hαr |{k ∈ Ir: |d (x, Ak) − d (x, A)| ≥ ε}| ≥ δ ) ⊆ ( r ∈ N : 1 kαr |{k ≤ kr: |d (x, Ak) − d (x, A)| ≥ ε}| ≥ δλ α (1+ λ)α ) ∈I. This completes the proof.

Theorem 2.6. Letθ = (kr) be a lacunary sequence and the parametersα and β be fixed real numbers such that

0< α ≤ β ≤ 1, then Nαθ[Iw] ⊆ Nβθ[Iw] and the inclusion is strict.

Proof. The inclusion part of proof is easy. To show that the inclusion is strict define {Ak} such that for (R, d),

x> 1 and A = {0} , Ak= ( {3x+ 5} , kr−1< k < kr−1+ √ hr {0}, otherwise .

(5)

Theorem 2.7. Letθ = (kr) be a lacunary sequence and the parametersα and β be fixed real numbers such that

0< α ≤ β ≤ 1, then Sαθ(Iw) ⊆ Sβθ(Iw) and the inclusion is strict.

Proof. The inclusion part of proof is easy. To show that the inclusion is strict define {Ak} such that for X= R2

Ak=

(

x, y ∈ R2, x2+ y − 12= k2, if k is square

{(0, 0)} , otherwise .

Then {Ak} ∈Sβθ(Iw) for 12 < β ≤ 1 but {Ak} < Sαθ(Iw) for 0< α ≤ 12.

Theorem 2.8. Let the parametersα and β be fixed real numbers such that 0 < α ≤ β ≤ 1, then Sβ(Iw) ⊆ Nα[Iw].

Proof. For any sequence {Ak} andε > 0, we have

1 nα n X k=1 |d(x, Ak) − d (x, A)| ≥ 1 nα|{k ≤ n : |d (x, Ak) − d (x, A)| ≥ ε}| ε ≥ 1 nβ|{k ≤ n : |d (x, Ak) − d (x, A)| ≥ ε}| ε and so        n ∈ N : 1 nα n X k=1 |d(x, Ak) − d (x, A)| ≥ δ        ⊆  n ∈ N : 1 nβ |{k ≤ n : |d (x, Ak) − d (x, A)| ≥ ε}| ≥ δ ε  ∈I.

This gives that Sβ(Iw) ⊆ Nα[Iw].

Theorem 2.9. Letθ = (kr) be a lacunary sequence andα be a fixed real number such that 0 < α ≤ 1. If limr→∞infh α r kr >

0 then S (Iw) ⊆ Sαθ(Iw).

Proof. Let (X, d) be a metric space, θ = (kr) be a lacunary sequence and A, Ak(for all k ∈ N) be non-empty

closed subsets of X. If limr→∞infh α r

kr > 0, then we can write

{k ≤ kr: |d (x, Ak) − d (x, A)| ≥ ε} ⊃ {k ∈ Ir: |d (x, Ak) − d (x, A)| ≥ ε} 1 kr |{k ≤ kr: |d (x, Ak) − d (x, A)| ≥ ε}| ≥ 1 kr |{k ∈ Ir: |d (x, Ak) − d (x, A)| ≥ ε}| = hαr kr 1 hαr |{k ∈ Ir: |d (x, Ak) − d (x, A)| ≥ ε}| . So ( r ∈ N : 1 hαr |{k ∈ Ir: |d (x, Ak) − d (x, A)| ≥ ε}| ≥ δ ) ⊆ ( r ∈ N : 1 kr |{k ≤ kr: |d (x, Ak) − d (x, A)| ≥ ε}| ≥ δh α r kr )

which implies that S (Iw) ⊆ Sαθ(Iw).

Theorem 2.10. Let (X, d) be a metric space and A, Ak(for all k ∈ N) be non-empty closed subsets of X. If θ = (kr) is

a lacunary sequence with lim sup(kj−kj−1)

α kαr−1 < ∞ (j = 1, 2, ..., r), then Ak→A  Sαθ(Iw)  implies Ak→A(Sα(Iw)).

(6)

Proof. If lim sup(kj−kj−1)

α

r−1 < ∞, then without any loss of generality, we can assume that there exists a

0 < Bj < ∞ such that ( kj−kj−1)α

kr−1α < Bj, (j = 1, 2, ..., r) for all r ≥ 1. Suppose that Ak → A

 Sαθ(Iw)



and for ε, δ, δ1> 0 define the sets

C= ( r ∈ N : 1 hαr |{k ∈ Ir: |d (x, Ak) − d (x, A)| ≥ ε}| < δ ) and T=  r ∈ N : 1 nα|{k ≤ n : |d (x, Ak) − d (x, A)| ≥ ε}| < δ1  .

It is obvious from our assumption that C ∈ F(I), the filter associated with the ideal I. Further observe that

Ai=

1

i |{k ∈ Ii: |d (x, Ak) − d (x, A)| ≥ ε}| < δ

for all i ∈ C. Let n ∈ N be such that kr−1 < n < krfor some r ∈ C. Now

1 nα|{k ≤ n : |d (x, Ak) − d (x, A)| ≥ ε}| ≤ 1 kαr−1 |{k ≤ kr: |d (x, Ak) − d (x, A)| ≥ ε}| = 1 kαr−1 |{k ∈ I1: |d (x, Ak) − d (x, A)| ≥ ε}| + ... + 1 kαr−1 |{k ∈ Ir: |d (x, Ak) − d (x, A)| ≥ ε}| = kα1 kαr−1 1 hα1 |{k ∈ I1: |d (x, Ak) − d (x, A)| ≥ ε}| +(k2−k1)α kαr−1 1 hα2 |{k ∈ I2: |d (x, Ak) − d (x, A)| ≥ ε}| +... +(kr−kr−1)α kαr−1 1 hαr |{k ∈ Ir: |d (x, Ak) − d (x, A)| ≥ ε}| ≤ sup i∈C Ai. kα1 + (k2−k1)α+ ... + (kr−kr−1)α kαr−1sup i∈C Ai(B1+ B2+ ... + Br)< δ r X j=1 Bj. Choosingδ1= rδ P j=1Bj

and in view of the fact that ∪n : kr−1< n < kr,r ∈ C ⊂ T where C ∈ F(I). This completes

the proof of the theorem.

In [16], it is defined that the lacunary sequenceθ0 = (sr) is called a lacunary refinement of the lacunary

sequenceθ = (kr) if (kr) ⊆ (sr). In [18], the inclusion relationship between Sθand Sθ0 is studied.

Theorem 2.11. Supposeθ0= (sr) is a lacunary refinement of the lacunary sequenceθ = (kr). Let Ir= (kr−1, kr] and

Jr= (sr−1, sr], r = 1, 2, 3, .... If there exists  > 0 such that for 0 < α ≤ β ≤ 1,

Jj β |Ii|α ≥ for every Jj⊆Ii. Then Ak→A  Sαθ(Iw)  implies Ak→A  Sβθ0(Iw) , i.e., Sα θ(Iw) ⊆ Sβθ0(Iw).

(7)

Proof. For anyε > 0, and every Jj, we can find Iisuch that Jj⊆Ii; then we have 1 Jj β n k ∈ Jj: |d (x, Ak) − d (x, A)| ≥ ε o =         |Ii|α Jj β         1 |Ii|α ! n k ∈ Jj: |d (x, Ak) − d (x, A)| ≥ ε o ≤         |Ii|α Jj β         1 |Ii|α ! |{k ∈ Ii: |d (x, Ak) − d (x, A)| ≥ ε}| ≤ 1   1 |Ii|α ! |{k ∈ Ii: |d (x, Ak) − d (x, A)| ≥ ε}| , and so          r ∈ N : 1 Jj β n k ∈ Jj: |d (x, Ak) − d (x, A)| ≥ ε o ≥δ          ⊆ ( r ∈ N : |1 Ii|α ! |{k ∈ Ii: |d (x, Ak) − d (x, A)| ≥ ε}| ≥ δ ) ∈I.

The proof completes immediately.

Theorem 2.12. Suppose θ = (kr) and θ0 = (sr) are two lacunary sequences. Let Ir = (kr−1, kr], Jr = (sr−1, sr],

r= 1, 2, 3, ..., and Ii j= Ii∩Jj, i, j = 1, 2, 3, .... If there exists  > 0 such that for 0 < α ≤ β ≤ 1,

Ii j β

|Ii|α ≥ for every i, j = 1, 2, 3, ..., provided Ii j, ∅. Then Ak→A  Sαθ(Iw)  implies Ak→A  Sβθ0(Iw) , i.e., Sα θ(Iw) ⊆ Sβθ0(Iw).

Proof. Letθ00 = θ0θ. Then θ00

is a lacunary refinement of the lacunary sequenceθ0, also θ. Then interval

sequence ofθ00 isnIi j= Ii∩Jj: Ii j, ∅o . From Theorem 2.11, the condition in Theorem 2.12:

|Ii j|β |Ii|α

≥ , for every i, j = 1, 2, 3, ...,provided Ii j, ∅ yields that Ak→A

 Sαθ(Iw)  implies Ak→A  Sβθ00 (Iw) . Since θ 00 is also a lacunary refinement of the lacunary sequenceθ0, we have that Ak→A

 Sαθ00(Iw)  implies Ak→A  Sβθ0(Iw) .

The proof follows immediately.

Letθ = (kr) andθ0 = (sr) be two lacunary sequences such that Ir ⊂ Jrfor all r ∈ N and let α and β be

positive real numbers such that 0< α ≤ β ≤ 1. Now we shall give some general inclusion relations between the sets of Sαθ(Iw) −convergent sequences and Nαθ[Iw] −summable sequences for different α’s andθ’s which

also include Theorem 2.4, Theorem 2.6, Theorem 2.7 and Theorem 2.8 as a special case.

Theorem 2.13. Letθ = (kr) andθ0= (sr) be two lacunary sequences such that Ir⊂Jrfor all r ∈ N and let α and β

be such that 0< α ≤ β ≤ 1, (i) If lim r→∞inf hαr `rβ > 0 (1) then Sβθ0(Iw) ⊆ Sα θ(Iw), (ii) If

(8)

lim r→∞ `r hβr = 1 (2) then Sαθ(Iw) ⊆ Sβθ0(Iw).

Proof. (i) Let (X, d) be a metric space, θ = (kr) be a lacunary sequence and A, Ak(for all k ∈ N) be non-empty

closed subsets of X. Suppose that Ir⊂Jrfor all r ∈ N and let (1) be satisfied. For given ε > 0 we have

{k ∈ Jr: |d (x, Ak) − d (x, A)| ≥ ε} ⊇ {k ∈ Ir: |d (x, Ak) − d (x, A)| ≥ ε} , and so 1 `rβ |{k ∈ Jr: |d (x, Ak) − d (x, A)| ≥ ε}| ≥ h α r `βr 1 hαr |{k ∈ Ir: |d (x, Ak) − d (x, A)| ≥ ε}| . Hence ( r ∈ N : 1 hαr |{k ∈ Ir: |d (x, Ak) − d (x, A)| ≥ ε}| ≥ δ ) ⊆        r ∈ N : 1 `βr |{k ∈ Jr: |d (x, Ak) − d (x, A)| ≥ ε}| ≥ δh α r `βr        ∈I

for all r ∈ N, where Ir= (kr−1, kr], Jr = (sr−1, sr], hr= kr−kr−1, `r = sr−sr−1. Now taking the limit as r → ∞

in the last inequality and using (1) we get Sβθ0(Iw) ⊆ Sα θ(Iw).

(ii) Omitted.

Theorem 2.14. Letθ = (kr) andθ0= (sr) be two lacunary sequences such that Ir⊆Jrfor all r ∈ N, α and β be fixed

real numbers such that 0< α ≤ β ≤ 1. Then we have (i) If (1) holds then Nθβ0[Iw] ⊂ Nα

θ[Iw],

(ii) If (2) holds and {Ak} ∈L∞then Nαθ[Iw] ⊂ Nβθ0[Iw].

Proof. Omitted.

Theorem 2.15. Letθ = (kr) andθ0= (sr) be two lacunary sequences such that Ir⊆Jrfor all r ∈ N, α and β be fixed

real numbers such that 0< α ≤ β ≤ 1. Then

(i) Let (1) holds, if a sequence is strongly Nβθ0[Iw] −summable to A, then it is Sα

θ(Iw) −statistically convergent to

A,

(ii) Let (2) holds and {Ak}be a bounded sequence, if a sequence is Sαθ(Iw) −statistically convergent to A then it is

strongly Nβθ0[Iw] −summable to A.

(9)

(ii) Suppose that Sαθ(Iw) − lim Ak = A and {Ak} ∈ L∞. Then there exists some M > 0 such that

|d(x, Ak) − d (x, A)| ≤ M for all k, then for every ε > 0 we may write 1 `rβ X k∈Jr |d(x, Ak) − d (x, A)| = 1 `βr X k∈Jr−Ir |d(x, Ak) − d (x, A)| + 1 `βr X k∈Ir |d(x, Ak) − d (x, A)| ≤       `r−hr `βr      M+ 1 `βr X k∈Ir |d(x, Ak) − d (x, A)| ≤       `r−hβr `rβ      M+ 1 `βr X k∈Ir |d(x, Ak) − d (x, A)| ≤       `r hβr − 1      M+ 1 hβr X k∈Ir |d(x,Ak)−d(x,A)|≥ε |d(x, Ak) − d (x, A)| +1 hβr X k∈Ir |d(x,Ak)−d(x,A)|<ε |d(x, Ak) − d (x, A)| ≤       `r hβr − 1      M+ M hαr |{k ∈ Ir: |d (x, Ak) − d (x, A)| ≥ ε}| + `r hβr ε and so        r ∈ N : 1 `βr X k∈Jr |d(x, Ak) − d (x, A)| ≥ δ        ⊆ ( r ∈ N : 1 hαr |{k ∈ Ir: |d (x, Ak) − d (x, A)| ≥ ε}| ≥ δ M ) ∈I, for all r ∈ N. Using (2) we obtain that Nβθ0[Iw] − lim Ak= A, whenever Sα

θ(Iw) − lim Ak= A.

References

[1] Y. Altın, M. Et, M. Bas¸arır, On some generalized difference sequences of fuzzy numbers, Kuwait J. Sci. Engrg. 34(1A) (2007) 1–14. [2] M. Bas¸arır, S¸. Konca, On some spaces of lacunary convergent sequences derived by N ¨orlund-type mean and weighted lacunary

statistical convergence, Arab J. Math. Sci. 20(2) (2014) 250–263.

[3] A. Caserta, G. Di Maio, and L. D. R. Koˇcinac, Statistical convergence in function spaces, Abstr. Appl. Anal., Art. ID 420419 (2011) 11 pp.

[4] J. S. Connor, The Statistical and strong p−Ces`aro convergence of sequences, Analysis 8 (1988) 47-63.

[5] H. C¸ akallı, Lacunary statistical convergence in topological groups, Indian J. Pure Appl. Math. 26(2) (1995) 113–119. [6] H. C¸ akallı, B. Hazarika, Ideal quasi-Cauchy sequences, J. Inequal. Appl. 2012:234 (2012) 11 pp.

[7] H. C¸ akallı, A variation on ward continuity, Filomat 27(8) (2013) 1545–1549.

[8] R. C¸ olak, Statistical convergence of orderα Modern Methods in Analysis and Its Applications, New Delhi, India: Anamaya Pub, (2010) 121–129.

[9] R. C¸ olak, Onλ-Statisitical Convergence, Conference on Summability and Applications 2011 Istanbul Commerce Univ. May 12-13 (2011) ˙Istanbul.

[10] P. Das, E. Savas¸, S. Kr. Ghosal, On generalizations of certain summability methods using ideals, Appl. Math. Lett. 24 (9) (2011) 1509–1514.

[11] M. Et, Generalized Ces`aro difference sequence spaces of non-absolute type involving lacunary sequences, Appl. Math. Comput. 219(17) (2013) 9372–9376.

[12] M. Et, Strongly almost summable difference sequences of order m defined by a modulus, Studia Sci. Math. Hungar. 40(4) (2003) 463–476.

[13] M. Et, H. S¸eng ¨ul, Some Cesaro-type summability spaces of orderα and lacunary statistical convergence of order α, Filomat 28(8) (2014) 1593–1602.

[14] M. Et, A. Alotaibi, S. A. Mohiuddine, On (∆m, I) −statistical convergence of order α,The Scientific World Journal Volume, Article

(10)

[15] H. Fast, Sur la convergence statistique. Colloq. Math. 2 (1951) 241-244.

[16] A. R. Freedman, J. J. Sember, M. Raphael, Some Ces`aro-type summability spaces, Proc. London Math. Soc. 37(3) (1978) 508–520. [17] J. A. Fridy, On statistical convergence. Analysis 5 (1985) 301-313.

[18] J. A. Fridy, C. Orhan, Lacunary statistical convergence. Pacific J. Math. 160(1) (1993) 43–51.

[19] A. D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32(1) (2002) 129–138. [20] A. G ¨okhan, M. Et, M. Mursaleen, Almost lacunary statistical and strongly almost lacunary convergence of sequences of fuzzy

numbers, Math. Comput. Modelling 49(3-4) (2009) 548–555.

[21] M. G ¨ung ¨or, M. Et,∆r-strongly almost summable sequences defined by Orlicz functions, Indian J. Pure Appl. Math. 34(8) (2003)

1141–1151.

[22] E. Kolk, The statistical convergence in Banach spaces, Acta Comment. Univ. Tartu 928 (1991) 41-52. [23] P. Kostyrko, T. ˇSal´at, W. Wilczy ´nski, I−convergence, Real Anal. Exchange 26 (2000/2001) 669–686.

[24] P. Kostyrko, M. Maˇcaj, M. Sleziak, T. ˇSal´at, I−convergence and extremal I−limit points, Math. Slovaca 55(4) (2005) 443–464. [25] M. Mursaleen, V. Karakaya, M. Ert ¨urk, F. G ¨ursoy, Weighted statistical convergence and its application to Korovkin type

approx-imation theorem, Appl. Math. Comput. 218(18) (2012) 9132–9137.

[26] M.Mursaleen, and S. A. Mohiuddine, Korovkin type approximation theorem for almost and statistical convergence, Nonlinear analysis, 487–494, Springer Optim. Appl., 68 (2012) Springer, New York.

[27] F. Nuray, W. H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245(2) (2000) 513–527.

[28] F. Nuray, B. E. Rhoades, Statistical convergence of sequences of sets, Fasc. Math. 49 (2012) 87–99. [29] T. ˇSal´at, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980) 139–150. [30] T. ˇSal´at, B. C. Tripathy, M. Ziman, On I−convergence field, Ital. J. Pure Appl. Math. No. 17 (2005) 45–54.

[31] T. ˇSal´at, B. C. Tripathy, M. Ziman, On some properties of I−convergence, Tatra Mt. Math. Publ. 28 part II (2004) 279–286. [32] E. Savas¸, P. A. Das, Generalized statistical convergence via ideals, Appl. Math. Lett. 24(6) (2011) 826–830.

[33] E. Savas¸, On I-lacunary statistical convergence of orderα for sequences of sets, Filomat 29(6) (2015) 1223–1229.

[34] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959) 361–375. [35] H. S¸eng ¨ul, M. Et, On lacunary statistical convergence of orderα, Acta Math. Sci. Ser. B Engl. Ed. 34 (2) (2014) 473–482.

[36] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951) 73–74. [37] B. C. Tripathy, B. Hazarika, Paranorm I−convergent sequence spaces, Math. Slovaca 59(4) (2009) 485–494. [38] U. Ulusu, F. Nuray, Lacunary statistical convergence of sequence of sets, Prog. Appl. Math. 4(2) (2012) 99-109. [39] U. Ulusu, E. D ¨undar, I−lacunary statistical convergence of sequences of sets, Filomat 28(8) (2014) 1567–1574.

Referanslar

Benzer Belgeler

In that part of the spectrum, Silicon has an extensively vanishing absorption behavior which is enhanced by light concentration in Silicon surface near the metal nanoislands due

Destekleyici ve ılımlı bir atmosferin oluşturulmasının ve üst yönetim ile çalışanlar arasında desteğin sağlanmasının güçlendirme, yaratıcılık, iş tatmini gibi

Bunun için, öncelikle BirGün, Cumhuriyet, Hürriyet, Yeniçağ ve Yeni Şafak gazetelerinin manşet sayfalarında konu ile ilgili çıkan haberler taranmıştır.. Bu

Öne sürülen birinci varsayıma göre, iş ilanlarında halkla ilişkiler mesleği kurumlar tarafından tek yönlü olarak sunulmakta ve çok yönlü olan meslek, bir ya da

Set-valued function, double sequence of sets, Kuratowski con- vergence, Hausdorff convergence, Wijsman convergence, Fisher convergence.. Kapalı k¨ umelerin ¸cift dizilerinin

By modifying own studies on fuzzy topological vector spaces, Katsaras [13] first introduced the notion of fuzzy seminorm and norm on a vector space and later on Felbin [7] gave

Recently Park 11 has introduced the concept of intuitionistic fuzzy metric space and in 12, Saadati and Park introduced intuitionistic fuzzy normed spaces and concept of

Öğretmen adaylarının bilişim teknolojilerini kullanım davranışları ailelerinin gelir düzeylerine göre hiçbir faktör için anlamlı bir farklılık