• Sonuç bulunamadı

Simultaneous photoinduced electron transfer and photoinduced CuAAC processes for antibacterial thermosets

N/A
N/A
Protected

Academic year: 2021

Share "Simultaneous photoinduced electron transfer and photoinduced CuAAC processes for antibacterial thermosets"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Progress

in

Organic

Coatings

jou rn a l h om ep a ge :w w w . e l s e v i e r . c o m / l o c a t e / p o r g c o a t

Simultaneous

photoinduced

electron

transfer

and

photoinduced

CuAAC

processes

for

antibacterial

thermosets

Elif

Oz

a

,

Tamer

Uyar

b

,

Huseyin

Esen

a,∗

,

Mehmet

Atilla

Tasdelen

a,∗

aDepartmentofPolymerEngineering,FacultyofEngineering,YalovaUniversity,77100,Yalova,Turkey

bUNAM-InstituteofMaterialsScienceandNanotechnology,BilkentUniversity,TR-06800Ankara,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received22September2016

Receivedinrevisedform7December2016

Accepted14January2017

Availableonline5February2017

Keywords:

Antibacterialproperties

Copper-catalyzedazide-alkyne

cycloadditionclickchemistry

Nanocomposites Photopolymerization

Silvernanoparticles

Thermosets

a

b

s

t

r

a

c

t

AcombinationofsimultaneousphotoinducedelectrontransferandphotoinducedCuAACprocesses enablesthein-situpreparationofantibacterialthermosetscontainingsilvernanoparticles(AgNPs)in one-pot.Uponphotolysisofphotoinitator,thegeneratedradicalsnotonlyreduceCu(II)intoCu(I) acti-vatortocatalysttheCuAACclickreaction,butalsosimultaneouslygenerateAgNPsfromAgNO3through electrontransferreaction.Duetotheirreductionpotentialsdifference,thepolymermatrixisformed beforetheformationofAgNPs,assistingtoeliminatetheagglomerationofthem.Thethermoset struc-turesareconfirmedbyFT-IRandsolubilitytests,whereasthepresenceofAgNPsisprovenbytransmission electronmicroscopywithenergydispersiveX-raysystemanalyzer.Thesamplescontaining5and10% AgNPsexhibitedstronginhibitionzones,whereallkindsofbacteria(gram-positive(Staphylococcus Aureus)andgram-negative(EscherichiaColi))werekilledinthesurroundingofthefilmsamples.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

Antibacterialmaterialshavebeenwidelyusedindailylifedue toitsimportantroleinhumanhealthandsafety[1].Basedontheir nature,theycanbedivided intotwo categories as organicand inorganicantibacterialmaterials[2].Whiletheorganic antibac-terial materials are considered less stable, particularly at high temperaturesand/orpressures,the inorganicmetals and metal oxideshavebeenwidelyusedduetotheirfinechemical durabil-ityandhighantibacterialactivity[3].Amongthem,thesilver(Ag) anditssaltshaveefficientlybeenemployedasantibacterialagent againstbacteria,fungi,andviruses[4].Sinceaparticlesizeisone ofthemostsignificantfactorsaffectingantibacterialefficacy,the Agnanoparticles(AgNPs)havedisplayedasuperiorantibacterial activitycomparedtothemicroparticles[3].Thesmaller nanopar-ticleshaveagreatersurfaceareatovolumeratiowheretheycan potentiallyreleasemoresilverionsandareabletodirectlyinteract withthemicroorganisms[5].Thereareseveralchemicalmethods toproduceAgNPssuchaschemicalreduction[6,7],photochemical

∗ Correspondingauthors.

E-mailaddresses:huseyin.esen@yalova.edu.tr(H.Esen),tasdelen@yalova.edu.tr

(M.A.Tasdelen).

reduction[8–17],sol-gelsynthesis[18,19],hydrothermal[20,21], electrodeposition [22,23]and polyol[24,25]methods. Recently, anewstrategybasedonasimultaneousphotoreductionofAg(I) andphotopolymerizationenablestofabricatepolymer nanocom-positescontainingAgNPsinone-pot[9–13].Thephotogenerated radicals can be utilized for the reduction of Ag(I)+ cation into

Ag(0) nanoparticles as wellas the initiation of multifunctional monomers[26–29].Thephotoreductionmechanismis basedon theelectron-transferfromreducingintermediates(freeradicals, solvatedelectrons,andanions,whichgeneratedbyaphotoactive compoundunderUVorvisiblelight)totheAg+producingavery

rapidandefficientformationofAgNPs[30].

The photoinduced copper(I)-catalyzed azide-alkyne cycload-dition (CuAAC) click reaction has been developed to combine advantages of photochemistry including spatial and temporal controls with the CuAAC reaction [31–34]. Furthermore, some drawbacksoftheCuAACprocesssuchassensitivityoftoxiccopper (I)againsttheair,whichleadstothedeactivationofthecatalyst andreducetheyield,andlackofpossibilitytoeffectthereaction withexternalstimulihavebeeneliminated[30,35].Thein-situ gen-erationof Cu(I)catalysthasbeenalsoachieved byusingeither suitablereductionagent,orotherchemicalorelectrochemicalways [36–38].Thephotoinduced-CuAACprocesshasbeenutilizedfor synthesisofvariouscomplexmacromolecularstructuresinvolving

http://dx.doi.org/10.1016/j.porgcoat.2017.01.011

(2)

telechelicandstarpolymers,blockandgraftcopolymers,gelsand bioconjugation[33,35,39–50].Inthisstudy,anantibacterial ther-mosetcontainingAgNPsissuccessfullypreparedbycombination ofsimultaneousphotoinducedelectrontransferandphotoinduced CuAACprocessesinone-pot.Thephotochemicallygenerated rad-icalsnotonlyusedtogenerateAg0nanoparticlesfromAg+cation,

butalsoreducetheCu(II)intoCu(I)catalyst,whichenableto cat-alyzetheCuAACofmultifunctionalazideandalkynecompounds. Thus,thedesiredantibacterialthermosetmaterialcanbesimply fabricatedatroomtemperature.

2. Materialandmethods

2.1. Materials

2,2-dimethoxy-2-phenylacetophenone(DMPA,99%,Aldrich), copper(II)bromide(CuBr2,≥98.0%,Aldrich),silvernitrate(AgNO3,

ACS grade, Merck), 1,1,1-tris[4-(2-propynyloxy)phenyl]-ethane (≥98%, TCI Chemicals), propargyl bromide (80wt.% in toluene, Aldrich),trimethylolpropanetriglycidylether(TTE,technicalgrade, Aldrich), sodium azide (NaN3, 99%, Merck), sodium hydroxide

(NaOH, ACS grade, Merck) and potassium carbonate (K2CO3,

≥99%, Sigma-Aldrich,) were used as received. N,N,N,N,N -Pentamethyl diethylenetriamine (PMDETA, ≥98%, Merck) was distilled over sodium hydroxide before use. Commercial grade solvents (methanol, chloroform, dimethylsulfoxide and N,N-dimethylformamide) were purchased from Merck and used as received.

1,1,1-Tris[4-(2-propynyloxy) phenyl]-ethane (Tris-alkyne) [51,52] and 3,3 -((2-((3-azido-2-hydroxypropoxy)methyl)-2-ethylpropane-1,3-diyl)bis(oxy))bis(1-azidopropan-2-ol) (TTE-N3)

[1,53]werepreparedaccordingtotheliteratureprocedures. 2.2. Methods

ThePerkin-ElmerFT-IRSpectrumOneBspectrometerwasused forFT-IRanalysis.TheAgilentNMRSystemVNMRS500 spectrom-eterwasusedatroomtemperatureinCDCl3withSi(CH3)4asan

internal standard for 1H NMR analyses.The thermogravimetric

analysiswasconductedbyPerkin-ElmerDiamondTA/TGAwitha heatingrateof10◦C/minundernitrogenflow(200mL/min). Trans-missionelectronmicroscopy(TEM)observationwasperformedon aFEI TecnaiTMG2 F30electronmicroscopeoperatingat 200kV.

TheultrathinTEMspecimensaround100nmwerecutbya cryo-ultramicrotome(EMUC6+EMFC6,Leica)equippedwithadiamond

knife.BeforeTEManalyses,theobtainedspecimenswerelocated onholeycarbon-coatedgrid.Thesolubilitypropertieswere deter-minedusing ASTMD3132-84 (1996): standard test methodfor

solubilityrangeofresinsandpolymers.Thecoloranddissolution of thesampleswereobservedafterimmersing themin solvent (5%w/vinsolvent,acetone,chloroform,N,N-dimethylacetamide, dimethylsulfoxide,methanol,andtetrahydrofuran)atroom tem-peraturefor4days.

2.3. In-situpreparationofantibacterialthermosets

All formulations contain same amounts of TTE-N3 (506mg,

1.17mmol):Tris-alkyne (494mg, 1.17mmol): Cu(II)Br2 (5.2mg,

0.023mmol): PMDETA (30␮L, 0.14mmol): DMPA (36mg, 0.14mmol)=50:50:1:6:6, except AgNO3 with different

load-ings(1, 3, 5and 10%of the monomersby weight). They were dissolvedwithDMF(0.2mL) inaPyrex tubeandde-aeratedby bubbling nitrogen gas for 10min and the tube was irradiated for 30min by a merry-go-round type photoreactor equipped with12 Philips8W/06lampsemittinglight at>350nmanda coolingsystem[54].Attheendofgiventime,theproductswashed withexcessmethanol andfiltered.Theproduct wasthendried in avacuumoven atroomtemperatureovernight.Solubilityof thermosetswastestedbyadding20mgofeachsampleto10mL solventfor24hatroomtemperature.

2.4. Antibacterialtest

The effect of Ag NPs on Gram negative(pathogenic and non-pathogenic) and Gram-positive, pathogenic bacteria was investigatedaccordingtotheagardiffusionmethod[8].Initially, strainswereculturedonthemediumat37Cfor18h.Afterthat,the culturedorganismswereaddedto10mLofsalinesolution(0.9% NaCl) toreachapproximatelythe105 colonyformingunitsper

milliliter(CFUmL−1).Eachthermosetsample(30mg)wasplaced inthemiddleofsterilizedPetridishes.Then,1mLofsalinesolution containingbacteriaandagarsolutionwereaddedontothesurface ofeachmaterial.Afterincubationfor24hat37◦C,aclearand dis-tinct zoneofinhibitionwasvisualizedsurroundingthesamples implyingtheantimicrobialactivityagainstthemicroorganisms.

3. Resultsanddiscussion

By usingmultifunctionalazide andalkynecompounds, ther-moset networks were simply formed via CuAAC click reaction under mild condition [55]. For instance, photoinduced CuAAC chemistrywasutilizedforthebuildingthermosetnetworkwitha highcross-linkeddensity[31,32,56–58].Becauseoftheirstructural characteristicsthathavestiffertriazolelinkages,thesepolymers exhibited higher glass transition temperaturesand mechanical propertiesthanthiol-enenetworksofsimilarcrosslinkingdensity

(3)

Fig.1.Monitoringtheformationofthermosetcontainingsilvernanoparticlesby

FT-IRspectroscopy.

[59].Inourcase,Tris-alkyne andTTE-N3 compoundswere

syn-thesizedandcharacterizedaccordingtotheliteratureprocedures. Theirstructures,confirmedbyFT-IRand1HNMRtechniques,were

inaccordancewithrespecttotheliteraturedata.Thecharacteristic bandsbelongingtopropargylgroupofTris-alkyneweredetected at2120and3260cm−1inFT-IRspectrum,whereasthealkyneand methyleneprotonswerevisualizedwithproperintegrationsat2.5 and4.7ppmin1HNMRspectrum.Similarly,thedisappearanceof

characteristicepoxybandat905cm−1andappearanceof charac-teristicazideandhydroxylbandsat2090and3500cm−1wereclear evidenceoftheTTE-N3.Inaddition,aprotonnexttotheazidegroup

wasseenat3.8ppmin1HNMRspectrum.Aftersuccessful

synthe-sisofmultifunctionalclickableTris-alkyneandTTE-N3,thermoset

networkswereobtainedfromfixedformulations(Tris-alkyne: TTE-N3: Cu(II)Br2: PMDETA: DMPA=50:50:1:6:6) containingvarious

amount of silver nitrate under UV irradiation (Scheme1).The crosslinkingreactionwereformedbyCuAACclickreactionbetween azideandalkynegroups,whichwascatalyzedbyphotochemically generatedCu(I)ions.ThereductionofCu(II)Br2saltintoCu(I)

acti-vatorwasefficientlyaccomplishedbyradicalsofgeneratedfrom photolysisofDMPA.Ontheotherhand,thesephotogenerated

rad-Fig.2.TEMmicrographsofthermosetcontainingAgNPs(3wt%AgNO3)in(a)low(scalebar:200nm)and(b)high(scalebar:5nm)magnifications.

(4)

Fig.4.TGAthermogramsofthermosetcontainingsilvernanoparticleswithvarious

loadings1,3,5and10%ofmonomersbyweight.

icalscouldbealsoutilizedforthereductionofAg(I)+cationinto

Ag(0)nanoparticlesviaphotoinducedelectrontransferreaction. Indeed,twodifferentreductionprocesseswereincompetencewith theradicals formedfromthephotolysisoftheDMPA.Sincethe reductionpotentialofCu(II)intoCu(I)(+0.153E◦(V))wassmaller thanAg(I)intoAg(0)(+0.799E◦ (V)),therefore,theCuAACclick reactionwascatalyzedbeforetheformationofAgNPs[60].Infact, thispreferenceenabledtopreparethecrosslinkedtemplate before-handandnotonlyeliminatetheagglomerationofAgNPs,butalso retaintheirnanoparticlesize.

Withthis template advantage, antibacterial thermosets con-taining AgNPswithdifferentloadings wereprepared underUV irradiation.ThecrosslinkingprocesswasmonitoredbyFT-IR spec-troscopyand thecharacteristic peaksof azide (2090cm−1)and alkyne(C C HandC C,3260and2120cm−1)werecompletely disappearedafterthephotoinducedCuAACclickreaction.In addi-tion,anewweakbandcorrespondingtoN Hbondoftriazolering wasseenaround3310cm−1 inFig.1.Accrodingtotheseresults, almostquantitativeyieldswereobservedfromtheclickreactions thatproceedatambientconditions.Theformationofthermoset polymers was also confirmed by solubility test using several solvents acetone, chloroform, N,N-dimethylacetamide, dimethyl sulfoxide,methanol,andtetrahydrofuran.Allsampleswere insol-ubleandcolorofthesolutionswerealmosttransparent,implying theirhighlycrosslinkedstructures.

InordertoconfirmthesizeanddistributionoftheAgNPs, trans-missionelectronmicroscopy(TEM)withenergydispersiveX-ray system(EDX)analyzerwasperformedforthermosetsample con-tainingAgNPs(3wt%AgNO3).Thedarkspheresrepresentedthe

AgNPs,whereas thegrayareas werecorrespondedtothe ther-mosetmatrix.Itwasclearlyobservablethatthethermosetsample wasbuiltfromdenselypackedAgNPswithnon-uniformsize dis-tributionsbetween3 and80nm.Furthermore,noagglomerated AgNPswereobservedinbothlowandhighmagnifications(Fig.2). TheinteractionbetweenAgNPsandthepolymermatrixenabled thediffusion-limitedgrowthof AgNPstopreventtheirpossible agglomerationduringtheprocess.

TheenergydispersiveX-ray(EDX)spectrometeranalysis con-firmed the presence of elemental silver signal of the silver nanoparticles,where peaksaround 3.5 22.3and 25.1keV were assignedtothebindingenergiesofAgL,AgKa1andAgKa2,

respec-tively(Fig.3b).Furthermore,theselectedareaEDXpatternofthe

Fig.5. Anti-bacterialactivityofthethermosetscontaining1,5and10%AgNPs,andcontrolexperimentagainstpathogenicStaphylococcusAureusandEscherichiaColi

(5)

sampledisplayedconcentricrings,indicatingthattheseAgNPshad highlycrystallinestructures(Fig.3a).Inaddition,otherpeaks cor-respondingtoCuKaandCuKbintheEDXweredetectedatbinding

energiesof1.6,8.1and8.9keV.TheCupeakscouldberelatedto thecopperoftheCuAACcatalystorTEMholdinggrid,inwhichthe samplewascoated.Also,sharppeaksnear1.0keVcorresponding ofcarbonandoxygenatomsofthermosetswereclearlyobserved. Overall,theseresultsundoubtedlyconfirmedthepresenceofboth components(AgNPs and polymericmatrix) of the antibacterial thermosets.

Thermalbehavior of the samples was investigated by ther-mogravimetricanalysis witha heating rate of 10◦C/min under nitrogen atmosphere. All samples exhibited two-step degrada-tionprocessintherangeof150–320◦Cand320–500◦C.Thefirst decomposition was attributed to the bond cleavage of C O C anddehydrationoffreehydroxylgroupsinthenetwork.The sec-onddegradationcorrespondedtothedepolymerizationreaction involvingthe scissionof C C bonds, resultingto the complete degradation of the carbonaceous materials and char forming (Fig.4).Itwasalsonotedthatthecharyieldincreasedwiththe additionoftheAgNO3.Forexample,thecharcontentofsample

containing10%AgNO3 increasedapproximatelythreefold(30%)

comparedwithneatthermoset(13%).Theincreaseincharyield wasdirectlyrelatedtodeterminetheAgNPsformation.Thus,the yieldofAgNPsformationinthermosetwasincreasedinorderof AgNO3loadings.

The antibacterial activities of thermoset samples containing AgNPsformedby photoinducedelectrontransfer duringcuring processwereinvestigatedagainstgram-positive(Staphylococcus Aureus)andgram-negative(EscherichiaColi)bacteriaasshownin Fig.5.Theantibacterialactivitywasattributedtoitsneutralform, inwhichthepassagethroughthecellwallfollowedbystrong inter-actionswithcellularcomponents[8].Nutrientagarplateswere inoculatedwith105CFUmL−1fromdifferentbacterialstrains.The

samplescontaining5and10%AgNPsexhibitedstronginhibition zones,whereallkindsofbacteriawerekilledinthesurrounding ofthefilmsamples.Theinhibitionzonefromgrampositive bacte-riawasslightlylargerthanthezonefromgramnegativebacteria, butallzoneswerecleararoundthecloseproximityoffilmsamples containingAgNPs.Whereas,thecontrolsamplewithoutAgNPsand samplecontaining1%AgNPsdidnotdisplayedanyzoneafter incu-bationfor24hat37◦C,indicatingthattherewasnoantibacterial activityagainsttothebacterialgrowth.

4. Conclusions

In conclusion, in-situ preparation of thermosets containing AgNPswasachievedbysimultaneousphotoinducedelectron trans-ferandCuAACprocessesusingmultifunctionalazideandalkyne moleculesinthepresence ofDMPAand AgNO3.The

photogen-erated radicals not only reduce Cu(II) into Cu(I) activator to catalysttheCuAACclickreaction,butalsoproduceAgNPsfrom AgNO3 through photoinducedelectron transfer. Totake

advan-tageofreductionpotentialsdifference,theCuAACclickreaction wascatalyzedbeforetheformationofAgNPs,enablingto elimi-natetheagglomerationofAgNPsinthepolymermatrix.Thehighly crosslinkedstructuresofthesampleswereprincipallyconfirmed byFT-IRandsolubilitytests,whichwerenotsoluble invarious organicsolvents.TheTEMwithEDXresultsundoubtedlyconfirmed thepresenceofAgNPswithnon-uniformsizedistributionsinthe polymer matrix. It was also shown that all products exhibited antibacterialactivitiesagainst togrampositive (Staphylococcus Aureus)andgramnegative(EscherichiaColi)bacterialcolonies.By applyingthisstrategy,limitationssuchashighcostand compli-catedexperimentalproceduresforthepreparationofantibacterial

materialareeliminatedanditsproductionhasbecomeeasierthan previousone.

Acknowledgement

Theauthors wouldlike tothank YalovaUniversity Research Fund(Projectno:2015/YL/054)forfinancialsupports.

References

[1]D.Davies,Nat.Rev.DrugDiscov.2(2003)114–122.

[2]T.Tashiro,Macromol.Mater.Eng.286(2001)63–87.

[3]F.Paladini,M.Pollini,A.Sannino,L.Ambrosio,Biomacromolecules16(2015) 1873–1885.

[4]J.A.Lichter,K.J.VanVliet,M.F.Rubner,Macromolecules42(2009)8573–8586.

[5]I.Sondi,B.Salopek-Sondi,J.ColloidInterfaceSci.275(2004)177–182.

[6]V.K.Sharma,R.A.Yngard,Y.Lin,Adv.ColloidInterfaceSci.145(2009)83–96.

[7]C.N.Lok,C.M.Ho,R.Chen,Q.Y.He,W.Y.Yu,H.Sun,P.K.H.Tam,J.F.Chiu,C.M. Che,J.Biol.Inorg.Chem.12(2007)527–534.

[8]M.Uygun,M.U.Kahveci,D.Odaci,S.Timur,Y.Yagci,Macromol.Chem.Phys. 210(2009)1867–1875.

[9]M.Sangermano,Y.Yagci,G.Rizza,Macromolecules40(2007)8827–8829.

[10]Y.Yagci,M.Sangermano,G.Rizza,Polymer49(2008)5195–5198.

[11]O.Eksik,M.A.Tasdelen,A.T.Erciyes,Y.Yagci,Compos.Interfaces17(2010) 357–369.

[12]Y.Yagci,O.Sahin,T.Ozturk,S.Marchi,S.Grassini,M.Sangermano,React. Funct.Polym.71(2011)857–862.

[13]M.Sangermano,F.Vivier,G.Rizza,Y.Yagci,J.Macromol.Sci.PartAPureAppl. Chem.51(2014)511–513.

[14]C.Lorenzini,A.Haider,I.-K.Kang,M.Sangermano,S.Abbad-Andalloussi,P.-E. Mazeran,J.Lalevée,E.Renard,V.Langlois,D.-L.Versace,Biomacromolecules 16(2015)683–694.

[15]M.Mehrabanian,D.Fragouli,D.Morselli,A.Scarpellini,G.C.Anyfantis,A. Athanassiou,Mater.Res.Express2(2015)105014.

[16]K.Ito,A.Saito,T.Fujie,H.Miyazaki,M.Kinoshita,D.Saitoh,S.Ohtsubo,S. Takeoka,J.Biomed.Mater.Res.BAppl.Biomater.104(2016)585–593.

[17]S.Borse,M.Temgire,A.Khan,S.Joshi,RSCAdv.6(2016)56674–56683.

[18]M.Marini,S.DeNiederhausern,R.Iseppi,M.Bondi,C.Sabia,M.Toselli,F. Pilati,Biomacromolecules8(2007)1246–1254.

[19]S.Tarimala,N.Kothari,N.Abidi,E.Hequet,J.Fralick,L.L.Dai,J.Appl.Polym. Sci.101(2006)2938–2943.

[20]G.Yang,J.J.Xie,Y.X.Deng,Y.G.Bian,F.Hong,Carbohydr.Polym.87(2012) 2482–2487.

[21]J.J.Wu,N.Zhao,X.L.Zhang,J.Xu,Cellulose19(2012)1239–1249.

[22]K.Ghanbari,Synth.Met.195(2014)234–240.

[23]A.Alqudami,S.Annapoorni,P.Sen,R.S.Rawat,Synth.Met.157(2007)53–59.

[24]I.Donati,A.Travan,C.Pelillo,T.Scarpa,A.Coslovi,A.Bonifacio,V.Sergo,S. Paoletti,Biomacromolecules10(2009)210–213.

[25]A.Gautam,G.P.Singh,S.Ram,Synth.Met.157(2007)5–10.

[26]M.A.Tasdelen,Y.Yagci,Aust.J.Chem.64(2011)982–991.

[27]K.D.Demir,M.Kukut,M.A.Tasdelen,Y.Yagci,Therm.Nanocompos.(2013) 165–188.

[28]M.A.Tasdelen,V.Kumbaraci,S.Jockusch,N.J.Turro,N.Talinli,Y.Yagci, Macromolecules41(2008)295–297.

[29]M.U.Kahveci,M.A.Tasdelen,Y.Yagci,Polymer48(2007)2199–2202.

[30]M.A.Tasdelen,Y.Yagci,Angew.Chem.Int.Ed.52(2013)5930–5938.

[31]B.J.Adzima,Y.Tao,C.J.Kloxin,C.A.DeForest,K.S.Anseth,C.N.Bowman,Nat. Chem.3(2011)256–259.

[32]T.Gong,B.J.Adzima,N.H.Baker,C.N.Bowman,Adv.Mater.25(2013) 2024–2028.

[33]Y.Yagci,M.A.Tasdelen,S.Jockusch,Polymer55(2014)3468–3474.

[34]M.A.Tasdelen,Y.Yagci,TetrahedronLett.51(2010)6945–6947.

[35]M.A.Tasdelen,B.Kiskan,Y.Yagci,Prog.Polym.Sci.52(2016)19–78.

[36]S.K.Mamidyala,M.G.Finn,Chem.Soc.Rev.39(2010)1252–1261.

[37]R.Manetsch,A.Krasi ´nski,Z.Radi ´c,J.Raushel,P.Taylor,K.B.Sharpless,H.C. Kolb,J.Am.Chem.Soc.126(2004)12809–12818.

[38]W.G.Lewis,L.G.Green,F.Grynszpan,Z.Radi ´c,P.R.Carlier,P.Taylor,M.G.Finn, K.B.Sharpless,Angew.Chem.Int.Ed.41(2002)1053–1057.

[39]M.A.Tasdelen,G.Yilmaz,B.Iskin,Y.Yagci,Macromolecules45(2012)56–61.

[40]G.Yilmaz,B.Iskin,Y.Yagci,Macromol.Chem.Phys.215(2014)662–668.

[41]O.Yetiskin,S.Dadashi-Silab,S.B.Khan,A.M.Asiri,Y.Yagci,AsianJ.Org.Chem. 4(2015)442–444.

[42]E.Murtezi,Y.Yagci,Macromol.RapidCommun.35(2014)1782–1787.

[43]S.Doran,G.Yilmaz,Y.Yagci,Macromolecules48(2015)7446–7452.

[44]S.Doran,Y.Yagci,Polym.Chem.6(2015)946–952.

[45]S.Dadashi-Silab,B.Kiskan,M.Antonietti,Y.Yagci,RSCAdv.4(2014) 52170–52173.

[46]H.B.Tinmaz,I.Arslan,M.A.Tasdelen,J.Polym.Sci.PartA:Polym.Chem.53 (2015)1687–1695.

[47]M.A.Tasdelen,O.S.Taskin,C.Celik,Macromol.RapidCommun.37(2016) 521–526.

[48]G.Demirci,M.A.Tasdelen,Eur.Polym.J.66(2015)282–289.

(6)

[50]S.Chatani,C.J.Kloxin,C.N.Bowman,Polym.Chem.5(2014)2187–2201.

[51]K.P.Unnikrishnan,E.T.Thachil,Des.MonomersPolym.9(2006)129–152.

[52]D.Ratna,HandbookofThemosetResins,Ismithers,Shropshire,2009.

[53]P.Penczek,Z.KlosowskaWolkowicz,Polimery42(1997)294–298.

[54]M.A.Tasdelen,A.L.Demirel,Y.Yagci,Eur.Polym.J.43(2007)4423–4430.

[55]D.D.Díaz,S.Punna,P.Holzer,A.K.McPherson,K.B.Sharpless,V.V.Fokin,M.G. Finn,J.Polym.Sci.PartA:Polym.Chem.42(2004)4392–4403.

[56]H.B.Song,A.Baranek,C.N.Bowman,Polym.Chem.7(2016)603–612.

[57]D.Konetski,T.Gong,C.N.Bowman,Langmuir32(2016)8195–8201.

[58]M.K.McBride,T.Gong,D.P.Nair,C.N.Bowman,Polymer55(2014)5880–5884.

[59]A.Baranek,H.B.Song,M.McBride,P.Finnegan,C.N.Bowman, Macromolecules49(2016)1191–1200.

[60]W.Brey,PhysicalChemistryandItsBiologicalApplications,ElsevierScience, Burlington,2012,page219.

Şekil

Fig. 1. Monitoring the formation of thermoset containing silver nanoparticles by FT-IR spectroscopy.
Fig. 4. TGA thermograms of thermoset containing silver nanoparticles with various loadings 1, 3, 5 and 10% of monomers by weight.

Referanslar

Benzer Belgeler

As declared in the “Forensic Medicine Services Model and Manpower Planning” study conducted by the Association of Forensic Medicine Specialists (AFMS) because of

12 farklı konsantrasyondaki (tablo 2.2) bdmpp/Ni +2 içeren karışımlar FT-IR cihazında ölçülmüş ve spektrumlar Şekil 3.49’da verilmiştir. Bu arada başlangıçta

The activities of the essential oils depend on several structural features of the molecules and attributed mainly to their content of phenolic components, particularly

Such collec- tions open doors to research and development of language- specific retrieval techniques for improved performance by comparative evaluation based on measurement

Towards this goal, the authors in [10] utilize LDPC codes in fast fading broadcast channels by employing superposition coding and joint decoding at the better receiver, and they

To address the challenges posed by the disparate Doppler scaling factors, a remedy for the single-resampling (SR) de- signs has been proposed in [18]. The key idea of this approach

It generates the following predictions as matching equilibrium outcomes: (i) ``good'' jobs offer premia if ``high-quality'' worker population is large; (ii) ``bad'' jobs

Biz bu makalede, Hatay‟ın Reyhanlı ilçesinde ikamet eden Çerkes kollarından; “Şapsığ, Abzah, Ubıh, Kabartay” hakkında bilgiler verdikten sonra Reyhanlı‟da etnik