• Sonuç bulunamadı

Development of a nodal method for the solution of the neutron diffusion equation in cylindrical geometry

N/A
N/A
Protected

Academic year: 2021

Share "Development of a nodal method for the solution of the neutron diffusion equation in cylindrical geometry"

Copied!
29
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Development Of A Nodal Method

For The Solution Of The Neutron

Diffusion Equation In Cylindrical

Geometry

Mehmet MERCIMEK

Istanbul Technical University Energy Institute

(2)

NODAL FORMALISM

1. The multigroup neutron balance equation

 

   

   

   

r r , g 1,2, ,G k r r r r r J G 1 g g g f g 1 g 1 g g g g g g r g                        

          2. Fick’s Law

 

r D

 

r

 

r J g g g         

Basis of nodal formalism:

 

r

   

r r Q

 

r J  r           

(3)

Nodal Mesh

 Decompose the reactor core into relatively large

subregions (nodes) in which the material composition and flux are assumed uniform.

(4)

Cell and Edge Averaged

Quantities

E

dge-based

unknowns

  



ir 1/2 1/2 ir 2 1/2 -i 2 1/2 i i

r

rdr

)

r

(r

2

  

ir 1/2 1/2 -ir r 2 1/2 -i 2 1/2 i i

Q(r)rdr

)

r

r

(

2

Q

The

cell-based

unknowns

Φi+1/2, Φi-1/2 and Ji+1/2, Ji-1/2

(5)

Relationships between

edge-based quantities

Under P1 Approximation

 

 

 

2 r J n 4 r r j u u       

   

i 1/2

2

j

i 1/2

j

i 1/2

   

i 1/ 2

2

j

i 1/2

j

i 1/2 -1/2 i 1/2 i 1/2 i

j

j

J

    1/2

i 1/2

i 1/2 i

j

j

J

-r r r r

n

J.

j

j

J

(6)

Discrete Nodal Balance

Equation

i i

2

r

S

2 r r r i 1/2 i 1/2 i     2 S S S i 1/2 i 1/2 i    

i 1/2 i 1/2

i 1/2

i 1/2 i 1/2

r i i i i i i 1/2 i j j S j j S Q S S          

           i 1/2 1/2 -i 1/2 i 1/2 i i r 1/2 i 1/2 i r r Q(r)rdr 2 (r)rdr r r Σ 2 rdr rJ(r) dr d r r r 1 2

(7)

Nodal Expansion Method (NEM)

In this lowest order form, NEM considers a

quadratic expansion of the transverse

averaged flux on each cell

The expansion coefficients are determined by

applying Fick’s law in combination with

continuity of normal current.

(8)

Polynomial Basis 1

1/2 i 1/2 -i l lP(r), r r r N 0 l a r      

i i r -r  

 where ξ=±1/2 when r=ri+1/2

1/2 ), ( P N 0 l al l         

P0()=1

 

2 / 1 2 / 1 l

ξ

0

,

l

0

P

(9)

Polynomial Basis 2

        1/2 1/2 -i i i 2 1/2 -i 2 1/2 i i r ) d ) r (r 2 ) 2 / 1 ( P a ) 2 / 1 ( P a ) 2 / 1 ( P a 1/2) ( P 2 0a 0 0 1 1 2 2 1/2 i      

l l l ) 2 / 1 ( P a ) 2 / 1 ( P a ) 2 / 1 ( P a 1/2) ( P 2 0 a 0 0 1 1 2 2 1/2 i          

l l l

 

   1 P

 

4 1 ξ 3 ξ P2  2 

(10)

Polynomial Basis 3

  

i i 1 a i i i i i i i 0 r r a                                                i i i i i i i i i 2 r r 2 r r a                                                          i 2 i i i i i 2 i i i i i ξ ) / r ( 2 1 3 4 1 ) / r ( 8 1 ξ ) / r ( 2 1 3 4 1 ) / r ( 8 1 6 2 3 1/2 ), ( P N 0 l al l     

(11)

Fick’s Law 1

d

)

(

d

D

-)

J(

i i                                       i 1/2 i i 1/2 i i i i i i 1/2 i ) / r ) / r D J                                      i 1/2 i i 1/2 i i i i i i 1/2 i ) / r ) / r D J

(12)

Fick’s Law 2

i i i i i i 1/2 i i 2 i 2 i i i 1/2 i i i i i 1/2 i D 4 1 D 6 j D 48 r D 2 1 j 4 r 1 D 2 j                                        i i i i i i 1/2 i i 2 i 2 i i i 1/2 i i i i i 1/2 i 4D D 6 j D 48 r D 2 1 j 4 r 1 D 2 j                                                      2 i i i i D 48 D 16 1

(13)

Equations per Node

i i 1/2 i i 1/2 i i 1/2 i

m

j

n

j

p

j

i i 1/2 i i 1/2 i i 1/2 i

t

j

o

j

p

j

 

                        1/2 i 1/2 i 1/2 i 1/2 i 1/2 i 1/2 i 1/2 i 1/2 i i i i r i S j S j S j S j S 1 Q 1

(14)

Matrix Form

S

J

F

k

1

J

A

eff

J

unknown vector A 3Nx3N band matrix,

where N is the total number of nodes

F

3Nx3N diagonal matrix (fission source term)only (3i-1)th elements contain nonzero

(15)

Matrix Equation 1

N N eff N N k F J 1 J A  Nx3N 3 N N N a 1/2 N N a 1/2 -N N a 1/2 -N 4)) -(3x(3N N N 1 -N 1 -N a 1/2 -N 1 -N 3)) -N 3 ( 3) -N 3 (( 1 -N )) 3 ) 6 3 (( N 1 p 0 m S S 1 S S S S -0 0 p 1 o 0 0 n 0 0 S S 0 0 t A 0 A                                                    x x N

(16)

Matrix Equation 2

       1/2 3/2 3/2 N-1/2 N 1/2 T N j j j ... j j J Nx3N 3 (3x3) 1 ) 3 3 ( ) 3 3 ( ) 3 3 ( (3x3) 1 ) 3 3 ( ) 3 3 ( ) 3 3 ( (3x3) 1 N F ... 0 0 0 ... F 0 0 ... 0 F F                  x x x x x x

(17)

Iteration

J

is known from initial estimates

New

J

vector is found with a linear system solver

New keff estimate is found after fission source iteration

Iteration continues until the difference between two successive keff estimates drops below the convergence criterion. N N eff N N k F J 1 J A 

(18)

One-group, Bare,

Homogeneous Reactor

D=0.65cm, a=0.12cm-1 and f=0.185cm-1.            r D k 1 D r dr r d r dr d r 1 f eff a        r B dr r d r dr d r 1 2

(19)
(20)

One-Group Reflected Reactor

fuel refl.

R2=5cm

 Fuel is the same material as previous

problem with same radius.

 Reflector is a graphite material with

thickness 1.25cm.

 Absorption cross-section and diffusion

coefficient of the graphite are taken to be 0.00032cm-1 and 0.84cm

(21)

Analytical Solution

B.C.

     R1 R1

|

|

dr R d D dr R d D(1)  1  (2)  1         2 (2) R2 dr d 2 D R 4 1 )) R ( K ) R ( (-LI C ) R ( J C R 1 0 1 R 0 4 1 c 0 1      )) R ( K ) R ( I (-L D C ) R ( J D C - 1 cc 1 c 14 R R 1 R 1  R 1 R 1 )) R ( K ) R ( I (L D ) R ( K ) R ( LI -) R ( J D ) R ( J 1 R 1 R 1 R 1 R R 1 R 0 1 R 0 1 c 1 c c 1 c 0             k =0.768077605

(22)
(23)

Two-group, Bare, Reactor

First, critical radius is calculated for zero incoming current boundary condition. Then, QFEMR and NEMR results are compared to see how close they can calculate keff to critical value.      S

0 D S dr d r dr d r 1 1 R1 f2 f1               

0 D -S dr d r dr d r 1 2 a2 2 S,1        

(24)

Analytical Solution

R)

(B

J

D

2B

R)

(B

J

0 1

1 1 1 1

R)

(B

J

D

2B

R)

(B

J

0 2

2 2 1 2 R=41.8931096cm S=0.116309825

(25)
(26)
(27)

TRIGA

 Fast and thermal cross-sections are obtained after

the ring homogenizations

 NEMR finds the effective multiplication factor as

(28)

k

eff

 By multiplying the number of annular regions in the

basic mesh by an integer (degree of refinement), finer meshes may be produced.

 QFEMR with 320 quadratic elements or 16 degree of

refinement (finest mesh) gives keff=1.21051196.

% 00255016 . 0 21051196 . 1 % 100 | 21054283 . 1 21051196 . 1 | Error(%)    

(29)

CONCLUSION

 NEM and quadratic FEM were shown to be of better accuracy with respect to linear

FEM. It also appears that NEM is a practical method for the problems in which the mesh is very coarse (1, 2, 3 nodes etc.).

Referanslar

Benzer Belgeler

Bu çalışmada, yaş ve kuru tip yaşa bağlı makula dejenerasyonu (YBMD) hastalarında arteriyel sertliği kalp ayak bileği vaskuler indeks (cardio - ankle vascular

procedure which uses measures of response variance and cluster analysis to identify careless respondents was developed. The effectiveness of the procedure

In this thesis we studied the Accelerated Overrelaxation Method (AOR) for the numerical solution of discrete Laplace’s equation on a rectangle obtained by 5-point

For each finite difference method we studied the local truncation error, consistency and numerical results from the solution of two model problems are considered to evaluate

Furthermore, we construct a three stage (9−point, 5−point, 5−point) difference method for approximating of the solution and its first and second derivatives of the

The transient temperature charts for a large plane wall, long cylinder and sphere has been presented by M... 3.2.2 Transient Dimensionless

In the perception layer, sensors take the information from surrounding. Sensors are low powered device if these will not use properly then probability of dying is very

The proposed system, an energy efficient and smart power management system.The internet of the things (IOT) is used in the system to monitor the supply received at the loads..