• Sonuç bulunamadı

Measurement of prompt photon production in sNN=8.16 TeV p + Pb collisions with ATLAS

N/A
N/A
Protected

Academic year: 2021

Share "Measurement of prompt photon production in sNN=8.16 TeV p + Pb collisions with ATLAS"

Copied!
23
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Measurement

of

prompt

photon

production

in

s

NN

=

8

.

16 TeV

p

+

Pb

collisions

with

ATLAS

.TheATLAS Collaboration

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received7March2019

Receivedinrevisedform19June2019 Accepted15July2019

Availableonline17July2019 Editor: M.Doser

The inclusiveproduction rates of isolated, prompt photons in p+Pb collisions at √sNN=8.16 TeV

are studied withthe ATLAS detectoratthe LargeHadronColliderusing adatasetwith anintegrated luminosity of165 nb−1 recorded in2016. Thecross-section and nuclearmodification factorR

pPb are

measured asafunctionofphoton transverse energyfrom20 GeV to550 GeV and inthreenucleon– nucleon centre-of-mass pseudorapidity regions, (−2.83,−2.02), (−1.84,0.91), and (1.09,1.90). The cross-sectionandRpPbvaluesarecomparedwiththeresultsofanext-to-leading-orderperturbativeQCD

calculation,withand withoutnuclearpartondistributionfunctionmodifications,andwithexpectations basedonamodeloftheenergylossofpartonspriortothehardscattering.Thedata disfavouralarge amountofenergylossandprovidenewconstraintsonthepartondensitiesinnuclei.

©2019TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Measurements of particle and jet production rates at large transverse energy are a fundamental method of characterising hard-scatteringprocessesin allcollision systems.In collisions in-volving large nuclei, production rates are modified from those measured in proton + proton (pp) collisions dueto a combina-tion of initial- and final-state effects. The former arise from the dynamicsofpartonsinthenucleipriortothehard-scattering pro-cess, while the latter are attributed to the strong interaction of the emerging partons with the hot nuclear medium formed in nucleus–nucleus collisions. Modification due to the nuclear en-vironment is quantified by the nuclear modification factor, RAA,

defined as the ratio of the cross-section measured in A + A to thatin pp collisions,scaledby theexpectedgeometric difference betweenthesystems.

Measurementsofprompt photonproductionrates offera way to isolate the initial-state effects because the final-state photons donotinteractstrongly.Theseinitial-stateeffectsincludethe de-gree to which parton densities are modified in a nuclear envi-ronment [1–3], as well as potential modification due to an en-ergy loss arising through interactions of the partons traversing thenucleusprior tothehardscattering [4,5].Constraintsonsuch initial-stateeffectsareparticularlyimportantforcharacterisingthe observedmodificationsofstronglyinteractingfinal states,such as jetandhadron production [6,7],sincetheyaresensitive toeffects

 E-mailaddress:atlas.publications@cern.ch.

fromboth initial- andfinal-state.Due tothesignificantly simpler underlying-eventconditionsinproton–nucleuscollisions, measure-ments ofphotonratescan beperformedwithbettercontrol over systematicuncertaintiesthaninnucleus–nucleuscollisions, allow-ingamorepreciseconstraintontheseinitial-stateeffects.

Prompt photon production has been extensively measured in pp collisionsata varietyofcollisionenergies [8–12] attheLarge HadronCollider (LHC).It wasalsomeasured inlead–lead(Pb+Pb) collisions at a nucleon–nucleon centre-of-mass energy √sNN =

2.76 TeV [13,14] attheLHC,andingold–goldcollisionsat√sNN=

200 GeV attheRelativisticHeavy IonCollider(RHIC) [15],where thedatafrombothcollidersindicatethatphotonproductionrates areunaffected bythepassageofthephotonsthroughthehot nu-clear medium. At RHIC, photon production rates were measured in deuteron–goldcollisions at√sNN=200 GeV [16,17] and were

found to be in good agreement with perturbative QCD (pQCD) calculations. Additionally, jet production [18,19] and electroweak boson production [20–22] were measured in28 nb−1 ofproton–

lead (p+Pb) collision data at√sNN=5.02 TeV recorded at the

LHC;theformerisastronglyinteractingfinalstate,whilethelatter isnot.Allmeasurementsprovidedsomeconstraintsoninitial-state effects.

Thedatausedinthismeasurementwerecollectedwiththe AT-LAS detectorduring the p+Pb collisionrunning periodin2016, andcorrespondto anintegratedluminosity of165 nb−1, approx-imately sixtimeslargerthanthemeasurementsmadeinthe pre-vious 5.02 TeV data. The proton and lead beams hadan energy of 6.5 TeV and 2.51 TeV per nucleon respectively, resulting in a nucleon–nucleon centre-of-masscollision energyof 8.16 TeVand

https://doi.org/10.1016/j.physletb.2019.07.031

0370-2693/©2019TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

arapidityboost ofthisframe by±0.465 unitsrelativeto the AT-LASlaboratoryframe,dependingonthedirectionofthePbbeam.1 By convention, the results are reported as a function of photon pseudorapidity in the nucleon–nucleon collision frame, η∗, with positive η∗ correspondingtotheprotonbeamdirection,and nega-tive η∗correspondingtothePbbeamdirection.

Atleadingorder,theprocess p+Pb→γ+X hascontributions fromdirectprocesses,inwhichthephotonisproducedinthehard interaction,andfromfragmentationprocesses,inwhichitis pro-ducedin thepartonshower.Beyondleading orderthedirectand fragmentationcomponentsarenotseparableandonlytheirsumis aphysicalobservable.

To reduce contamination from the dominant background of photonsmainlyfromlight-mesondecaysinjets,themeasurements presented here require the photons to be isolated from nearby particles.Thisrequirementalsoactstoreduce therelative contri-bution of fragmentation photons in the measurement, and thus, the same fiducial requirement must be imposed on theoretical models when comparing with the data. Specifically, as in pre-vious ATLAS measurements [9,10], the sumof energy transverse to the beamaxis within a cone of R≡(η)2+ (φ)2=0.4

aroundthephoton,Eiso

T ,isrequiredtobesmallerthan4.8+4.

10−3Eγ

T [GeV], where E γ

T isthe transverseenergyof thephoton.

Atparticlelevel,EisoT iscalculatedasthesumoftransverseenergy ofallparticleswithadecaylengthabove10mm,excludingmuons andneutrinos.Thissumiscorrectedfortheambientcontribution fromunderlying-eventparticles,consistentwiththeprevious mea-surements [9,10].

This letter reports a measurement of the cross-section for prompt,isolated photonsin p+Pb collisionsat√sNN=8.16 TeV.

Photons are measured with T >20 GeV, the isolation require-mentdetailedabove,andinthreenucleon–nucleoncentre-of-mass pseudorapidity (η∗) regions, −2.83<−2.02, −1.84<

0.91, and 1.09<1.90. In addition to the cross-section, the dataare comparedtoa pp referencecross-sectionderivedfroma previous measurement of promptphoton productionin pp colli-sionsat√s=8 TeVthatusedtheidenticalisolationcondition [9]. The nuclear modification factor RpPb is derived in each pseudo-rapidity region, using an extrapolation for the different collision energy and centre-of-mass pseudorapidity selection, and is re-portedinthe region T >25 GeV where referencedatais avail-able.Furthermore,theratioof RpPbinthe forwardregion tothat inthebackward regionispresented.Themeasurementsare com-pared with next-to-leading-order (NLO) pQCD predictions from Jetphox [23] using parton distribution functions (PDF) extracted fromglobalanalysesthatincludenuclearmodificationeffects anal-yses [24,25].Additionally,thedataarecomparedwithpredictions fromamodelincludinginitial-stateenergyloss [4,5,26].

2. Experimentalset-up

The ATLAS detector [27] is a multipurpose detector with a forward–backwardsymmetric cylindricalgeometry. Forthis mea-surement, its relevant components include an inner tracking de-tector surrounded by a thin superconducting solenoid, and elec-tromagneticandhadroniccalorimeters.Theinner-detectorsystem

1 ATLASusesaright-handedcoordinatesystemwithitsoriginatthe nominal

interactionpoint(IP)inthecentreofthedetectorandthez-axisalongthebeam pipe.Thex-axispointsfromtheIPtothecentreoftheLHCring,andthe y-axis

pointsupward.Cylindricalcoordinates(r,φ)areusedinthe transverseplane,φ

beingtheazimuthalanglearoundthez-axis.Thepseudorapidityisdefinedinterms ofthepolarangleθasη= −ln tan(θ/2)andtherapidityofthecomponentsofthe beam,y,aredefinedintermsoftheirenergy,E,andlongitudinalmomentum,pz,

asy=0.5lnE+pz E−pz.

is immersedin a 2 T axial magnetic field andprovides charged-particle tracking in the pseudorapidity range ηlab<2.5 in the

laboratory frame. In order of closest to furthest from the beam pipe, itconsists ofa high-granularitysiliconpixel detector,a sil-icon microstrip tracker, and a transition radiation tracker. Addi-tionally,thenewinsertableB-layer [28] hasbeenoperatingasthe innermostlayer ofthetrackingsystemsince 2015. The calorime-ter system covers the range ηlab<4.9. In the region ηlab<

3.2, electromagnetic calorimetry is provided by barrel and end-caphigh-granularitylead/liquid-argon(LAr)samplingcalorimeters. An additional thin LAr presampler covers ηlab<1.8 to

cor-rect for energy loss in material before the calorimeters. The LAr calorimetersaredividedintothreelayersinradialdepth.Hadronic calorimetryisprovidedby asteel/scintillator-tilecalorimeter, seg-mented into three barrelstructures within ηlab<1.7, andtwo

copper/LAr hadronicendcapcalorimeters,which coverthe region 1.5<ηlab<3.2. Finally, the forward calorimeter covers 3.2<

ηlab<4.9 andisdividedintothreecompartments.Thefirst

com-partment is a copper/LAr electromagnetic calorimeter, while the remainingtwotungsten/LAr calorimetercompartmentscollectthe hadronicenergy.

Duringdata-taking,eventswereinitiallyselectedusingalevel-1 trigger, implemented in custom electronics, based on energy de-positionintheelectromagneticcalorimeter.Thehigh-level trigger [29] was then used to select events consistent with a high-ETγ photon candidate.The highleveltriggerwas configuredwithfive online T thresholds from 15 GeV to 35 GeV. Each trigger is used foran exclusiveregion of the T spectrum, starting 5 GeV above the trigger threshold because there the trigger is fully ef-ficient.The highest-thresholdtrigger isused inthemeasurement over the whole T rangeabove 40 GeV andis unprescaled. The lower-threshold,prescaled, triggers areusedto performthe mea-surementforT intherangeof20–40 GeV.

Data-taking was divided into two periods with different con-figurations of the LHC beams. In the first period, the lead ions circulatedinbeam1(clockwise)andprotonscirculatedinbeam2, whileinthesecondperiodthebeamswerereversed.Theseperiods correspondedtointegratedluminositiesof57 nb−1 and108 nb−1

respectively.

3. Photonreconstructionandidentification

Photons are reconstructed following a procedure used exten-sively in previous ATLAS measurements [10], of which only the mainfeaturesaresummarisedhere.

Photoncandidatesarereconstructedfromclustersofenergy de-positedintheelectromagneticcalorimeterinthree regions corre-spondingtothelaboratory-frame(ηlab)positionsofthebarreland

forwardandbackwardendcapsηlab<2.37.Thetransitionregion

betweenthebarrelandendcapcalorimeters,1.37<ηlab<1.56,

isexcluded dueto its higherlevelofinactive material.The mea-surementof the photon energyis based on theenergy collected incalorimetercellsinanareaofsizeη× φ =0.075×0.175 in thebarrelandη× φ =0.125×0.125 intheendcaps.Itis cor-rectedvia adedicated energycalibration [30] whichaccountsfor lossesinthematerialbeforethecalorimeter,bothlateraland lon-gitudinal leakage, andforvariation of thesampling-fraction with energyandshowerdepth.

The photonsare identified usingthe tight calorimetershower shaperequirementsdescribed inRef. [31].Thetight requirements selectclusterswhicharecompatiblewithoriginatingfromasingle photon impacting the calorimeter.The information usedincludes thatfromthehadroniccalorimeter,thelateralshowershapeinthe second layer ofthe electromagneticcalorimeter,andthe detailed showershapeinthefinelysegmentedfirstlayer.

(3)

Theisolationtransverseenergy,EisoT ,iscomputedfromthesum ofET valuesintopologicalclustersofcalorimetercells [32] inside

acone ofsizeR=0.4 centred onthephoton. Thisconesizeis chosen tobecompatiblewithaprevious measurementofphoton production in pp collisions at √s=8 TeV [9], which is used to constructthereferencespectrumforthe RpPb measurement. This estimateexcludesanareaofη× φ =0.125×0.175 centredon thephoton,andiscorrectedfortheexpectedleakageofthephoton energyfromthisregionintotheisolationcone.

4. Simulatedeventsamples

Samples of Monte Carlo (MC) simulated events were gener-atedtostudythedetectorperformanceforsignalphotons.Proton– proton generators were used as the source of events containing photons.Toincludetheeffectsofthe p+Pb underlying-event en-vironment,thesesimulatedpp eventswerecombinedwithp+Pb eventsfromdatabeforereconstruction.Inthisway,thesimulated eventscontaintheeffectsofthe p+Pb underlying-eventidentical tothoseobservedindata.

The Pythia 8.186 [33] generatorwasusedtogeneratethe nom-inal set of MC events, with the NNPDF23LO parton distribution function (PDF) set [34] anda set of generator parameters tuned toreproduceminimum-biaspp eventswiththesamecollision en-ergyasthatinthep+Pb data(“A14”tune) [35].Acentre-of-mass boostwasapplied tothegeneratedeventstobringthemintothe same laboratory frame as the data. The generator simulates the directphoton contribution and, through final-stateQEDradiation in 2→2 QCD processes,also includes the fragmentationphoton contributions;thesecomponentsaredefinedtobesignalphotons. Eventsweregeneratedinsixexclusive T rangesfrom17 GeVto 500 GeV.

An additional MC sample was used to assess the sensitiv-ity of the measurement to this choice of generator. The Sherpa 2.2.4 [36] eventgeneratorproducesfragmentationphotonsina dif-ferentwayfrom Pythia andwas thuschosen forthecomparison. The NNPDF3.0NNLOPDF set [37] was used, andthe eventswere generated in the same kinematic regions as the Pythia events. Theseeventswere generated withleading-ordermatrix elements forphoton-plus-jetfinalstateswithuptothreeadditionalpartons, whichwere mergedwiththe Sherpa parton shower.The Sherpa sampleproducedresultsconsistentwith Pythia,and,thus,no cor-rectionoruncertaintyisapplied.

The Pythia and Sherpa pp eventswere passed through a full Geant4simulationoftheATLASdetector [38,39].Tomodelthe un-derlyingeventeffects,eachsimulatedeventwascombinedwitha minimum-biasp+Pb dataeventandthetwowerereconstructed together asa singleevent, usingthesamealgorithms asused for the data. These events were split between the two beam con-figurations in a proportion matched to that in data-taking. The underlying event activity levels, as characterized by the sum of the transverse energy in the outgoing-Pb-beam side of the for-wardcalorimeter(3.1<|ηlab|<4.9), are differentinthe

photon-containing data eventsfrom the minimum-biasdata eventsused inthesimulation.Thus,thesimulatedeventswereweightedona per-eventbasistomatchtheunderlyingeventactivitydistribution indata.Furthermore,thephotonshowershapesandidentification efficiency in simulation were adjusted for small differences pre-viouslyobserved betweenthesequantities indataandin Geant4 simulation [31].

5. Dataanalysis

Thedifferential cross-sectionis calculatedforeach T and η∗ binas dσ dEγT = 1 Lint 1 EγT NsigPsig sel trigCMC,

where Lint isthe integratedluminosity,EγT is thewidth ofthe T bin, Nsig isthe yieldof photon candidatespassing

identifica-tion and isolation requirements, Psig is the purity of the signal

selection, sel is the combined reconstruction, identification and

isolationefficiencyforsignalphotons, trigisthetriggerefficiency,

and CMC is a MC derived bin-by-bin correction for the change

in the T spectrum fromphotonsmigratingbetweenbins inthe spectrum duetothewidthin theenergyresponse. CMC is

deter-minedafterallselectioncriteriaatbothreconstructionandparticle levelsareimposed.

Triggerefficiencies trig arestudiedusingeventsselectedwith

minimum-biastriggers,level-1triggerswithoutadditional require-ments, and photon high-level triggers without identification re-quirements. They are greater than 99.5% for all triggers [29]. In thisanalysistheyaretakenas trig=1,andanyuncertaintyis

ne-glectedasbeingsub-dominanttootheruncertainties.

Thepurity Psigisdeterminedviaadouble-sideband procedure

used extensively in previous measurements of cross-sections for processes witha photon inthe final state [9,10,40,41] and sum-marised here. In the procedure, four regions are defined which categorisephoton candidatesalong two axes:(1) isolation, corre-sponding toan isolated andan inverted “non-isolated”selection; (2) identification, corresponding to photons that pass the tight identification requirementsdescribed inRef. [31],and those that passtheloose requirementsofRef. [31] butfailcertaincomponents of the tight requirements, designedto mostly selectbackground. Themajorityofsignalphotonsareinthetight,isolatedregion, de-fined to be the signal region, while the other three regions are dominated by the background. Photon candidates that comprise thebackgroundareassumedtobedistributedinawaythatis un-correlated along thetwo axes.The yields inthe threenon-signal sidebandsareusedtoestimatetheyieldofbackgroundinthe sig-nal regionandiscombinedwiththeyield inthesignal regionto extractthepurity.Theprocedurealsoaccountsforthesmall frac-tion of signal photonswhich are reconstructed inthe non-signal sidebands;thesequantities,knownasleakagefractions,are deter-minedfromthesimulationsamplesdescribedinSection4.The pu-rityistypically45%atT =20 GeV,risesto80%atT =100 GeV andreaches99%atT =300 GeV.

Fig. 1showsexample Eiso

T distributions foridentified and

iso-latedphotons,thecorrespondingdistributionsforbackground pho-tons with the normalisation determined by the double-sideband method, andthe resulting signal-photondistributions after back-groundsubtraction, comparedwiththose forgenerator-level pho-tons in MC simulation. The figure showsthe shape of the back-ground distribution within the signal region, and the correspon-dencebetweenthebackground-subtracteddataandthesignal-only Pythia 8distributions givesconfidencethat thesimulations accu-ratelyrepresentthedata.

The photon selection efficiency is determined from MC sim-ulations. Generated prompt photons are required to be isolated at the generator level, after an estimate of the underlyingevent hasbeensubtractedfromtheisolationenergy,asdescribedabove. Reconstruction efficiency isdetermined by requiring a photon to have been reconstructed within R=0.2 of the generated pho-ton. Reconstructed photons matching to a generated photon are further required to satisfy tight identificationand isolation crite-riadefinedinSection1.Thecombinedefficiencyofsignalphotons to passall reconstructionlevel selections, sel, istypically90% at

all T and η∗,exceptatT ≈20 GeVwhereitdecreasestoabout 80%.Fig.2summarisesthedifferentcomponentsofthetotal selec-tionefficiency.Thereconstructionefficiencyis96–99%everywhere,

(4)

Fig. 1. Distributionsofdetector-levelphotonisolationtransverseenergyEiso

T foridentifiedphotonsindata(blackpoints),backgroundphotonsscaledtomatchthedataat

largeEiso

T (bluesolidline),theresultingdistributionforsignalphotonsscaledsothatthemaximumvalueisthesameasthatforidentifiedphotons(greendot-dashedline),

andthatforphotonsinsimulationwhichareisolatedatthegeneratorlevelnormalisedtohavethesameintegralasthesignalphotondistribution(reddashedline).Each panelshowsadifferentpseudorapidityregion,whilethetopandbottompanelsshowthelow-EγT andhigh-EγT rangerespectively.Theverticalerrorbarsrepresentstatistical uncertaintiesonly.

Fig. 2. Efficiencyforsimulatedphotonspassingthegenerator-levelisolationrequirement,shownasafunctionofphotontransverseenergyT withadifferentpseudorapidity

regionineachpanel.Thereconstruction(redcircles),reconstructionplusidentification(bluesquares)andtotalselection(greentriangles)efficienciesareshownseparately.

withthe lowestvalues atthe lowest T.The isolation efficiency is lowest at high T, most likely because the associated prod-uctsoffragmentationphotonsare,onaverage,moreenergeticand collimated when the energyof the photon is higher. The largest inefficiency isdueto theidentificationrequirements. This identi-fication efficiency islowest at 20 GeV and increases with T as higher-energyphotonscreatelargerandmoreidentifiableshowers inthe calorimeter.It peaks around 100 GeV,and decreases with

increasing T dueto thedifficulty ofseparatingconversion elec-tronsathighenergy.

InMCevents,theETresponseforprompt,isolatedphotons,

de-finedastheratioofthereconstructedtogeneratorET,isfoundto

be within 1% of unity, with a resolution that decreases from 3% to 2%over the T range ofthe measurement.The binmigration correction factors CMC are determined using the event

(5)

Fig. 3. Summaryofextrapolationfactorsappliedtothemeasuredpps=8 TeV datatoconstructanapproximate√s=8.16 TeVspectrummatchingtheshiftofthe centre-of-massinp+Pb dataplottedasafunctionofgenerator-levelphoton trans-verseenergy.Hererepresentstheboostofthecentre-of-massframeof0.465. Thefactorsdeterminedusing Jetphox (dashedlines)and Pythia 8(solidlines)are shownforthethreeηlabrangesusedinthemeasurement(differentcolours).The

relativedifferencebetweenthesetwoextrapolationmethodsistakenasa system-aticuncertainty.

ratio CMC=NpartMC/NrecoMC of the reconstructed, identified, and

iso-latedphoton T spectrum,where NpartMC isthenumberina given T binattheparticlelevelandNreco

MC isthenumberinthe

corre-spondingbinatthereconstructionlevel.

ThenuclearmodificationfactorRpPbcanbeexpressedasaratio ofcross-sectionsinthefollowingway:

RpPb= (dσp+Pb→γ+X/dEγT)/(A·dσppγ+X/dE γ

T) , (1)

wherethegeometricfactor A issimplythenumberofnucleonsin thePbnucleus,208.Thereferencepp spectrumisconstructed us-ingmeasurementsof√s=8 TeVpp databyATLAS [9] thatusethe sameparticle-levelisolationrequirement.The8 TeVmeasurements intheregions|ηlab|<1.37 and1.56<|ηlab|<2.37 areusedasthe

referencespectraforthecentralandtheforwardandbackward ra-piditydata,afterapplyingamultiplicativecorrectionfortheeffects of the boost in the 8.16 TeV p+Pb system. For each kinematic region, extrapolation factors are determined as the ratioof pho-toncrosssectionsfrom Jetphox calculationsfor pp collisions.The numeratorhas√s=8.16 TeVwitha boostofthecentre-of-mass correspondingtothep+Pb system,andthedenominator has

en-ergy √s=8 TeV with its rest frame corresponding with that of the laboratory reference frame. That is,the cross-sections in the numerator anddenominator use the same ηlab regions, although

in theformer casethiscorresponds to adifferent centre-of-mass pseudorapidity. Thesefactorsare showninFig.3andare applied as multiplicative factors to the measured 8 TeV data. They are dominated bythe effectfromtheboost ofthe p+Pb system,as the effect dueto the difference in collision energy alone is less than 1%for all T.For −1.84<0.91, or T <100 GeVat large rapidities, the factors are typically within a few percent of unity. However, at large T, where the rapidity distribution be-comes steeper, the extrapolation factors become more sensitive to the rapidity shift from the centre-of-mass boost between the frames,andatlargepseudorapiditytheyreachafactorof2–3.An alternative setoffactors,derived fromthe generator-level predic-tionsof Pythia 8,arealsoshowninFig.3;theseareusedtoassess the sensitivityoftheextrapolationfactorsto therapidity andT dependenceofthemodelcrosssections.

6. Systematicuncertainties

The sourcesof systematicuncertainties affectingthe measure-mentaredescribedinthissection,whichisbrokenintotwoparts discussing theuncertainty in1) the cross-section and2) the nu-clearmodificationfactor RpPb,includingitsratiobetweenforward andbackwardpseudorapidityregions.

6.1. Cross-sectionuncertainty

The major uncertainties in the cross-section can be divided intotwomaincategories:thoseaffectingthepuritydetermination, which are dominantat low T where the sample purity is low, and those affecting the detector performance corrections, which are dominant at high T. All other sources tend to be weakly dependent on T. A summary is shownin Fig. 4. In each cate-gory, the uncertainty is the sumin quadrature of the individual components; the combineduncertainty isthe sumin quadrature ofall contributions,excluding thoseassociatedwiththe luminos-ity. The total uncertainties range from 15% atlow and high T, wheretheyaredominatedbythepurityanddetectorperformance uncertainties respectively, to a minimum of approximately 6%at T≈100 GeV,wherebothoftheseuncertaintiesaremodest.

To assess the uncertainty in the purity determination, each boundary defining the sidebands used in the calculation is var-ied independently in order to understand the sensitivity of the

Fig. 4. Summaryoftherelativesizesofmajorsourcesofsystematicuncertaintyinthecross-sectionmeasurement,aswellasthecombineduncertainty(excludingluminosity), shownasafunctionofphotontransverseenergyT.

(6)

measurementto thedouble sidebandbinning andcorrelation as-sumptions. The dominant uncertainty arises from uncertainty in the level ofsideband correlation. This is estimated directly from data by dividing the non-isolated region in two subregions and calculatingthe ratio of identified to background-enhanced yields in each subregion. These ratios differ at the level of 10% which agreeswithestimatesfromprevious studies [10].This±10% vari-ation inthe sidebandcorrelation yields a 13% uncertainty inthe cross-section inthe lowest T range,decreasing to lessthan 1% forT >100 GeV.Theinvertedphotonidentificationrequirement for the background candidates is varied to be less or more re-strictive about which shower shapes the background candidates are required to fail. This variation yields an uncertainty that is less than 1% for all T in the forward and backward rapidity bins,butissignificantatmid-rapidity(−1.84<0.91)where it is 9% in the lowest ETγ bin and decreases to be less than 1% forT >100 GeV.Variationsintheisolation energythresholdof ±1 GeVhavebeenshowntocoveranydifferencebetween simula-tionsanddata [10].Thesevariationsresultina1–2%effectonthe cross-sectioninthelowestT rangeandlessthan1%athigherT. The uncertainty associated with the inverted shower-shape was smoothedandsymmetrised, however,the other uncertainties are derived asymmetrically fromthe positive andnegative variations separately.

Uncertaintiesassociatedwithdetectorperformancecorrections are dominant at high T. A detailed description of the several componentsofthephotonenergyscaleandresolution uncertain-tiesaregiveninRef. [10].Theimpactoftheseonthemeasurement isdeterminedbyvarying thereconstructedphoton T in simula-tionwithintheenergyscaleuncertainties andderivingalternative correctionfactorsforpositiveandnegativevariationsseparately.Of these,theimpactoftheenergyscalevariationisdominant, giving a 10–15% contributionat 500 GeV in the forwardand backward regions,decreasingto lessthan 2%atthelowest T.Inthe mid-rapidityregion,theenergyscalevariationgivesa5%uncertaintyat highT,decreasingtolessthan1%atlow T.Additionally,there areuncertainties associatedwithcorrectionsforsmalldifferences inreconstruction,identificationandisolation efficienciesobserved betweendata andsimulation [31]. These uncertainties are about 5%intheforwardregionsandlow ETγ andlessthan2%elsewhere. Systematicuncertaintiesrelatedtomodellinginsimulation, lu-minosity, electron contamination, and other sources tend to be lower than those previously discussed. However, their combined effectisdominantinthemid-rapidityregionandbetween90 GeV and250 GeV. To test the sensitivityof the measurement to the differenceof isolation energybetweenparticle-levelanddetector level in the simulation,the generator-level isolation definition is changedtobettercorrespondtothereconstruction-leveldefinition. Therelative change inthe cross-section afterthisdeviationfrom thenominalisabout2%atlowT,decreasingtoabout1%athigh T, foreach pseudorapidity region, and istaken asa symmetric uncertainty.Anuncertaintyisassignedtocoverthepossible con-tributionofmisreconstructedelectrons,primarily fromthedecays ofW±and Z bosons,totheselectedphotonyield.Basedon sim-ulationstudies, andthe resultsof previous measurements [9,10], thisisassignedto be1.3% for T <105 GeV inforward pseudo-rapidityregions, and0.5%everywhere else. Totest thebeam ori-entationdependence,thecross-sectionismeasuredusingthedata fromeachbeam configurationseparately.The two measurements agreeatthelevelof1%, well abovethestatisticaluncertaintyfor mostT bins.Thisdifferenceistakenasaglobal, symmetric un-certainty in the combined results. To test the sensitivity to the relative fractions ofdirect and fragmentationphotons in the MC samples,thesimulationisweightedsuchthatthefractionofdirect photonsisunity,thatis,allphotonsinthesamplearedirect.This

reflects aconservative difference comparedwiththe default esti-mateofthisfractionofabout50–80%fromtheMC samples.This variation gives a relative change in the cross-section of approxi-mately1%forallkinematicregions,whichistakenasasystematic uncertainty. The uncertainty in the integrated luminosity of the combined datasample is 2.4%It isderived, following a method-ology similarto that detailedinRef. [42],andusingthe LUCID-2 detectorforthebaselineluminositymeasurements[43],from cali-brationoftheluminosityscaleusingx-ybeam-separationscans. 6.2. RpPbuncertainty

The nuclearmodification factor RpPb is affectedby systematic uncertainties associated with the p+Pb and pp measurements. The uncertaintiesinthe differentialcross-sectionof the pp refer-ence data are obtained directlyfrom Ref. [9]. Due to differences in photon reconstruction, energy calibration, isolation and iden-tification procedures between the pp and p+Pb datasets, the uncertaintiesaretreatedasuncorrelatedandaddedinquadrature. The uncertainty in the extrapolation of the pp EγT spectrum at8 TeV isdetermined by usingan alternative method toderive themultiplicativeextrapolationfactors.Insteadof Jetphox,photon cross-sectionsfor the 8 TeV andrapidity-boosted √s=8.16 TeV kinematicsaredeterminedfrom Pythia 8.Theextrapolationfactors fromboth Jetphox and Pythia 8areshowninFig.3.Additionally, Jetphoxisrunwithan alternativePDFsettoquantifytheimpact ofa givenPDF choice. The differencesbetweenthe extrapolation factors from thesetwo variations, which are at mosta few per-centinthekinematicregionofthemeasurementandsubdominant with respect to the other uncertainties in the cross-sections, are addedinquadratureandusedasanestimateoftheuncertaintyin theextrapolationprocedure.

Forthe measurementof theratio of RpPb values(Eq. (1)) be-tweentheforwardandbackwardpseudorapidityregions,each sys-tematic variation affecting the purity and detector performance correctionsisappliedtothenumeratoranddenominatorina co-herentway,allowing themtopartiallycancelout intheratio.All uncertainties in the other categories, except those fromelectron contamination and the beam direction difference, are treated as correlated.Forthisreason,theycancelout;notablythe p+Pb lu-minosityandpp cross-sectionuncertaintiescanceloutcompletely. Theextrapolationuncertaintiesaretreatedasindependentandare addedinquadraturetotheotheruncertaintiesinRpPb.

The resulting uncertaintyranges from about5% at thelowest T, where it is dominated by the uncertainty in the purity, to about3% atmid-EγT, andagainabout5% athigh T,whereit is dominatedby uncertaintyinthe energyscale.A summaryof the uncertaintiesintheforward-to-backwardratioisshowninFig.5.

7. Results

Photonproduction cross-sectionsareshownin Fig.6 for pho-tonswith T >20 GeVinthreepseudorapidityregions.The mea-sured dσ/dEγT valuesdecrease by five orders of magnitudeover the complete T range, whichextends out to T ≈500 GeV for photonsat mid-rapidity. In Pythia 8, photonsin thisrange typi-cally arise frompartonconfigurationsinwhich thepartonin the nucleus has Bjorken scale variable, xA, in the range 3×10−3 xA4×10−1. In the nuclear modified PDF (nPDF) picture, this

range probes theso-calledshadowing (suppressionfor xA0.1),

anti-shadowing (enhancementfor0.1xA0.3),andEMC

(sup-pressionfor0.3xA0.7)regions [24].

The dataare compared withan NLO pQCD calculationsimilar tothatusedinRef. [3],wherethedataissimilarlyunderestimated

(7)

Fig. 5. Summaryoftherelativesizeofmajorsourcesofsystematicuncertaintyin theforward-to-backwardratioofthenuclearmodificationfactor RpPb,aswellas

thecombineduncertainty,shownasafunctionofphotontransverseenergy T.

TheReferenceextrapolationreferstotheuncertaintyrelatedtotheextrapolationof thepreviouslymeasured8 TeVpp spectrumto8.16 TeVandboostedkinematics.

atlow ET, butusingtheupdated CT14 [44] PDFset forthe free-nucleon parton densities. Jetphox [23] is used to perform a full NLO pQCD calculation of the direct and fragmentation

contribu-tions tothecross-section.TheBFGsetII [45] ofparton-to-photon fragmentation functionsare used,the number of massless quark flavours is set to five,and the renormalisation, factorisation and fragmentationscales are chosen tobe T.Inaddition tothe cal-culationwiththefree-nucleonPDFs,separatecalculationsare per-formed with the EPPS16 [24] and nCTEQ15 [25] nPDF sets. The EPPS16calculationusesthesamefree-protonPDFset,CT14,asthe free-nucleon baselinetowhich themodificationsare applied.The prediction is systematically lower than thedata by up to 20% at low T butisclosertothedataathigher T,consistentwiththe resultsofsuchcomparisonsinpp collisionsatLHCenergies [9,10]. ArecentcalculationofisolatedphotonproductionatNNLO found thatthepredictedcross-sectionsweresystematicallylargeratlow T than the NLO prediction [46], andthus mayprovide a better descriptionofthedatainthisandpreviousmeasurements.

Uncertaintiesassociatedwiththesecalculationsareassessedin a numberof ways. Factorisation, renormalisation,and fragmenta-tion scales are varied, up and down, by a factor of two as in Ref. [9]. The uncertaintyis takenas theenvelope formed by the minimumandmaximumofeach variationinevery kinematic re-gion andis dominantinmost regions.PDF uncertainties are cal-culated viathestandard CT14errorsetsandcorrespondtoa 68% confidence interval.Again followingRef. [9] thesensitivityto the choiceof αSisevaluatedbyvarying αSby±0.002 aroundthe

cen-tral value of0.118inthecalculation andPDF. Uncertaintiesfrom

Fig. 6. Prompt,isolatedphotoncross-sectionsasafunctionoftransverseenergyT,shownfordifferentcentre-of-masspseudorapidity,η∗,regionsineachpanel.Thedata

arecomparedwith Jetphox withtheEPPS16nuclearPDFset [24],withtheratiooftheorytodatashowninthelowerpanels.Yellowbandscorrespondtototalsystematic uncertaintiesinthedata(notincludingtheluminosityuncertainty),verticalbarscorrespondtothestatisticaluncertaintiesinthedata,andtheredbandscorrespondtothe uncertaintiesinthetheoreticalcalculation.Thegreenbox(atthefarright)representsthe2.4%luminosityuncertainty.

(8)

Fig. 8. Nuclearmodificationfactor RpPbforisolated,promptphotonsasafunctionofphotontransverseenergyT,shownfordifferentcentre-of-masspseudorapidity,η∗,

regionsineachpanel.The RpPbismeasuredusingareferencewhichisasimulation-derivedextrapolationfrom√s=8 TeVpp data(seetext).Thedataareidenticalin

eachrow,butshowcomparisonswiththeexpectationsbasedon Jetphox withtheEPPS16nuclearPDFset(top) [24],withthenCTEQ15nuclearPDFset(middle) [25],and withaninitial-stateenergy-losscalculation(bottom) [4,5,26].Inallplots,theyellowbandsandverticalbarscorrespondtototalsystematicandstatisticaluncertaintiesin thedatarespectively.Inthetopandmiddlepanels,theredandpurplebandscorrespondtothesystematicuncertaintiesinthetheoreticalcalculations.Thegreenbox(at thefarright)representsthecombined2.4%p+Pb and1.9%pp luminosityuncertainties.

nPDFsarecalculatedfromtheerrorsetswhichcorrespondto90% confidenceintervals,asdescribedinRef. [24].Theseareconverted intouncertaintybandswhichcorrespond toa 68%confidence in-terval.AsummaryofeachvariationisshowninFig.7.

Fig. 8 shows the nuclear modification factor RpPb asa func-tion of T in different η∗ regions. At forward rapidities (1.09<

η<1.90),theRpPbvalueisconsistentwithunity,indicatingthat nucleareffectsare small.In Pythia 8, photonsinthisregion typ-ically arise from configurations with gluon partons from the Pb nucleuswithxA≈10−2.Nuclear modificationpullsthepQCD

cal-culationdown slightlyfor ETγ<100 GeV,above which the mod-ification reverses, indicating a crossover between shadowing and

anti-shadowing regions. At mid-rapidity, nucleareffects are simi-larlysmallandconsistentwithunityatlow T,butathigherT, there is a hintthat RpPb is lower.This feature primarily reflects thedifferentup- anddown-quarkcompositionofthenucleus rela-tivetotheprotonandismoreimportantatlargerpartonx.Inthis case,thelarger relativedown-quarkdensitydecreasesthephoton yield. This effect is evident in the Jetphox theory curve in blue dash-dotted line, which includes the proton–neutron asymmetry andthefree-nucleonPDFsetCT14.Thiseffectismostpronounced atbackwardpseudorapiditywhere,in Pythia 8,thenuclearparton compositionistypicallyaquarkwithxA≈0.2.Here,nPDF

(9)

Fig. 9. RatioofthenuclearmodificationfactorRpPbbetweenforwardandbackwardpseudorapidityforisolated,promptphotonsasafunctionofphotontransverseenergy T.Thedataareidenticalineachpanel,butshowcomparisonswiththeexpectationsbasedon Jetphox withtheEPPS16nuclearPDFset(top,left) [24] orwiththenCTEQ15

nuclearPDFset(top,right) [25],andwithaninitial-stateenergy-losscalculation(bottom) [4,5,26].Thestrengthoftheinitial-stateenergy-losseffectisparameterisedbyλq,

whichrepresentsthemeanfreepathofpartonsinthenuclearmediumandissmallerforalargerdegreeofenergyloss.Inallplots,theyellowbandsandverticalbars correspondtototalsystematicandstatisticaluncertaintiesinthedatarespectively.Intheleftandrightpanels,theredand purplebandscorrespondtothesystematic uncertaintiesinthecalculations.

T butbelowathigh T,indicating thecrossoverfromthe anti-shadowingtotheEMCregion.

The RpPb calculationsincludingnPDFsconsider onlythe nPDF uncertainty,sincepreviouscalculationshaveshownthatthescale andPDF uncertainties cancel out almost completely in the kine-matic region of the measurement [3], and no non-perturbative correctionsareapplied.Withinthepresentuncertainties,thedata areconsistentwithboththefree-protonPDFsandwiththesmall effectsexpectedfromanuclear modificationoftheparton densi-ties.

TheRpPbmeasurementsarealsocomparedwithaninitial-state energy-losspredictionthatiscalculatedwithintheframework de-scribed inRefs. [4,5,24].In thismodel,the energetic partons un-dergo multiple scatteringin the cold nuclear medium, and thus lose energy due to this medium-induced gluon bremsstrahlung, before the hard collision. The calculation is performed with a parton–gluon momentum transfer μ =0.35 GeV and mean free pathforquarksλq=1.5 fm.Alternativecalculationswithashorter pathlength(λq=1 fm),andacontrolversionwithnoinitial-state energy loss,are alsoconsidered. The data disfavoura large sup-pressionofthecross-sectionfrominitial-stateenergy-losseffects.

The ratio of the RpPb values between forward and backward pseudorapidity, shown in Fig. 9, is studied as a way to reduce the effectof common systematicuncertainties andbetter isolate the magnitude of nuclear effects [47]. The remaining systematic uncertainty, discussed in Sec. 6.2, is dominatedby the reference extrapolation andtreated asuncorrelated betweenpoints. Below

T ≈100 GeV,thiscorrespondsroughlytotheratioofRpPbfrom photonsfromgluonnuclearpartonconfigurationsinthe shadow-ing xA region to that from quark partons in the anti-shadowing

region.ThiscanbeseeninthetoptwopanelsofFig.9,wherethe nuclearmodification(red/purple bands)bringsthe Jetphox calcu-lationbelowthatofthefree-nucleonPDF(bluecurve),thoughthe effectfromEPPS16 islesssignificant.Incontrast,thebehaviouris reversed at higher T wherethe numerator probes the shadow-ing/anti-shadowing crossover region and the denominator moves deeper into the EMC region [24]. The data are consistent with the pQCD calculation before incorporatingnuclear effects, except possibly in the region T <55 GeV, which is sensitive to the effectsfromgluonshadowing.At low T,thedataare systemati-cally higherthanthecalculationswhichincorporatenPDFeffects, but approximately within their theoretical uncertainty. Addition-ally,inthelowerplotofFig.9,theforward-to-backwardratiosare comparedwithpredictionsfromamodelincorporatinginitial-state energy loss.Thedata show apreferencefor nooronly alimited amountofenergyloss.

8. Conclusion

This letter presents a measurement of the inclusive prompt, isolated photon cross-section in p+Pb collisions at √sNN =

8.16 TeV,usingadatasetcorrespondingtoanintegrated luminos-ity of 165 nb−1 recorded by the ATLAS experiment at the LHC.

The differential cross-section as a function of the photon trans-verse energy is reported in three pseudorapidity regions in the

(10)

nucleon–nucleoncollisionframe,andcoversphotontransverse en-ergies from 20 GeV to 550 GeV. The data are compared with a next-to-leading-order calculation which incorporates nuclear PDF effects. A measurement of the nuclear modification factor is re-portedinthe region above 25 GeVusing a NLO pQCD-based ex-trapolation of previously published pp data at √s=8 TeV. The dataarecompatiblewiththe expectationthat thePDFsare mod-estlymodifiedinnucleiinthiskinematicregionandmayhelpto placeanupperlimitonthepossibleamountofenergylostby par-tonsintheinitialstagesofnuclearcollisions.

Acknowledgements

We thankCERN for thevery successful operation ofthe LHC, aswell asthe support stafffromour institutions without whom ATLAScouldnotbeoperatedefficiently.

WeacknowledgethesupportofANPCyT,Argentina;YerPhI, Ar-menia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azer-baijan;SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI,Canada; CERN; CONICYT,Chile; CAS, MOSTandNSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic;DNRFandDNSRC,Denmark;IN2P3-CNRS,CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, andMPG, Germany; GSRT, Greece;RGC,HongKong SAR,China;ISFandBenoziyo Center, Is-rael; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands;RCN, Norway;MNiSW andNCN, Poland;FCT, Portu-gal; MNE/IFA, Romania; MES of Russiaand NRC KI, Russian Fed-eration; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia;DST/NRF,SouthAfrica;MINECO,Spain;SRCand Wallen-berg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom;DOEandNSF, UnitedStatesofAmerica. Inaddition, in-dividualgroupsandmembershavereceivedsupportfromBCKDF, Canarie,CRCandComputeCanada,Canada;COST,ERC,ERDF, Hori-zon2020, andMarie Skłodowska-Curie Actions, European Union; Investissementsd’ Avenir Labex andIdex, ANR,France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia pro-grammesco-financedbyEU-ESFandtheGreekNSRF,Greece; BSF-NSF andGIF, Israel; CERCA Programme Generalitat de Catalunya, Spain;TheRoyalSocietyandLeverhulmeTrust,UnitedKingdom.

The crucialcomputing support fromall WLCG partners is ac-knowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Swe-den),CC-IN2P3(France),KIT/GridKA(Germany),INFN-CNAF(Italy), NL-T1(Netherlands),PIC(Spain),ASGC(Taiwan),RAL(UK)andBNL (USA),theTier-2facilitiesworldwideandlargenon-WLCGresource providers.Majorcontributorsofcomputingresources arelistedin Ref. [48].

References

[1]C.A.Salgado,etal.,Proton-nucleuscollisionsattheLHC:scientific opportuni-tiesandrequirements,J.Phys.G39(2012)015010,arXiv:1105.3919 [hep-ph] (cit.onp.2).

[2]F.Arleo,K.J.Eskola,H.Paukkunen,C.A.Salgado,Inclusivepromptphoton pro-ductioninnuclearcollisionsatRHICandLHC,J.HighEnergyPhys.04(2011) 055,arXiv:1103.1471 [hep-ph] (cit.onp.2).

[3]I.Helenius,K.J.Eskola,H.Paukkunen,Probingthesmall-x nucleargluon distri-butionswithisolatedphotonsatforwardrapiditiesinp+Pbcollisionsatthe LHC,J.HighEnergyPhys.09(2014)138,arXiv:1406.1689 [hep-ph] (cit.onpp. 2,11,13).

[4]I.Vitev,B.-W.Zhang,Asystematicstudyofdirectphotonproductioninheavy ioncollisions,Phys.Lett.B669(2008)337,arXiv:0804.3805 [hep-ph] (cit.on pp.2,3,14,15).

[5]Z.-B.Kang,I.Vitev,H.Xing,Effectsofcoldnuclearmatterenergylosson in-clusivejet productionin p + A collisionsat energiesavailableatthe BNL RelativisticHeavyIonColliderandtheCERNLargeHadronCollider,Phys.Rev. C92(2015)054911,arXiv:1507.05987 [hep-ph] (cit.onpp.2,3,14,15).

[6]ATLASCollaboration,Measurementsofthenuclearmodificationfactorforjets inPb+Pbcollisionsat√sNN=2.76 TeVwiththeATLASdetector,Phys.Rev.

Lett.114(2015)072302,arXiv:1411.2357 [hep-ex] (cit.onp.2).

[7]ATLASCollaboration,Measurementofcharged-particlespectrainPb+Pb col-lisionsat√sNN=2.76 TeVwiththeATLASdetectorattheLHC,J.HighEnergy

Phys.09(2015)050,arXiv:1504.04337 [hep-ex] (cit.onp.2).

[8]ATLAS Collaboration, Measurement ofthe inclusiveisolatedprompt photon cross sectioninpp collisionsat√s=7 TeVwith theATLASdetector,Phys. Rev.D83(2011)052005,arXiv:1012.4389 [hep-ex] (cit.onp.2).

[9]ATLAS Collaboration, Measurement ofthe inclusiveisolatedprompt photon crosssectioninppcollisionsat√s=8 TeVwiththeATLASdetector,J.High EnergyPhys.08(2016)005,arXiv:1605.03495 [hep-ex] (cit.onpp.2–4,6,7, 10–12).

[10]ATLASCollaboration,Measurementofthecrosssectionforinclusive isolated-photonproductioninppcollisionsat√s=13 TeVusingtheATLASdetector, Phys.Lett.B770(2017)473,arXiv:1701.06882 [hep-ex] (cit.onpp.2–4,6,9, 10,12).

[11]CMSCollaboration,Measurementofthedifferentialcrosssectionforisolated promptphotonproductioninppcollisionsat 7TeV,Phys.Rev.D84(2011) 052011,arXiv:1108.2044 [hep-ex] (cit.onp.2).

[12]CMSCollaboration,Measurementoftheproductioncrosssectionforpairsof isolatedphotonsinppcollisionsat√s=7 TeV,J.HighEnergyPhys.01(2012) 133,arXiv:1110.6461 [hep-ex] (cit.onp.2).

[13]ATLAS Collaboration, Centrality, rapidityand transversemomentum depen-denceofisolatedpromptphotonproductioninlead–leadcollisionsat√sNN=

2.76 TeVmeasuredwiththeATLASdetector,Phys.Rev.C93(2016)034914, arXiv:1506.08552 [hep-ex] (cit.onp.2).

[14]ALICECollaboration,DirectphotonproductioninPb−Pbcollisionsat√sNN=

2.76 TeV,Phys.Lett.B754(2016)235,arXiv:1509.07324 [nucl-ex](cit.onp. 2).

[15]PHENIXCollaboration,MeasurementofdirectphotonsinAu+Aucollisionsat

s

NN=200 GeV,Phys.Rev.Lett.109(2012)152302,arXiv:1205.5759 [nucl

-ex] (cit.onp.2).

[16]STAR Collaboration, Inclusive π0, η, and direct photon production at high

transversemomentuminp +p andd+Aucollisionsat√sNN=200 GeV,

Phys.Rev.C81(2010)064904,arXiv:0912.3838 [hep-ex] (cit.onp.2).

[17]PHENIX Collaboration, Direct photon production in d + Au collisions at

sNN=200 GeV,Phys. Rev.C87(2013)054907,arXiv:1208.1234 [nucl-ex]

(cit.onp.2).

[18]ATLASCollaboration,Centralityandrapiditydependenceofinclusivejet pro-ductionin√sNN=5.02 TeVproton-leadcollisionswiththeATLAS detector,

Phys.Lett.B748(2015)392,arXiv:1412.4092 [hep-ex] (cit.onp.2).

[19]CMSCollaboration,Measurementofinclusivejetproductionandnuclear mod-ificationsinpPbcollisionsat√sNN=5.02 TeV,Eur.Phys.J.C76(2016)372,

arXiv:1601.02001 [hep-ex] (cit.onp.2).

[20]ATLASCollaboration,Zbosonproductioninp+Pbcollisionsat√sNN=5.02

TeVmeasuredwiththeATLASdetector,Phys.Rev.C92(2015)044915,arXiv: 1507.06232 [hep-ex] (cit.onp.2).

[21]CMSCollaboration,StudyofZbosonproductioninpPbcollisionsat√sNN=

5.02 TeV,Phys.Lett.B759(2016)36,arXiv:1512.06461 [hep-ex] (cit.onp.2).

[22]CMSCollaboration, StudyofWboson productioninpPbcollisionsat √sNN

5.02TeV,Phys.Lett.B750(2015)565,arXiv:1503.05825 [hep-ex] (cit.onp. 2).

[23]P. Aurenche,M. Fontannaz,J.-P.Guillet,E.Pilon,M. Werlen, Recentcritical study ofphoton production in hadroniccollisions, Phys. Rev.D 73 (2006) 094007,arXiv:hep-ph/0602133 [hep-ph] (cit.onpp.3,11).

[24]K.J.Eskola,P.Paakkinen,H.Paukkunen,C.A.Salgado,EPPS16:nuclearparton distributionswithLHCdata,Eur.Phys.J.C77(2017)163,arXiv:1612.05741 [hep-ph] (cit.onpp.3,11–16).

[25]K. Kovaˇrík,et al.,nCTEQ15 –globalanalysisofnuclearparton distributions with uncertaintiesinthe CTEQframework, Phys. Rev.D 93(2016)085037, arXiv:1509.00792 [hep-ph] (cit.onpp.3,11,14,15).

[26]Y.-T.Chien,A.Emerman,Z.-B.Kang,G.Ovanesyan,I.Vitev,Jetquenchingfrom QCDevolution,Phys.Rev.D93(2016)074030,arXiv:1509.02936 [hep-ph] (cit. onpp.3,14,15).

[27]ATLASCollaboration,TheATLASexperimentattheCERNLargeHadronCollider, J.Instr.3(2008)S08003(cit.onp.3).

[28] ATLASCollaboration,ATLASInsertableB-LayerTechnicalDesignReport, ATLAS-TDR-19, 2010, https://cds.cern.ch/record/1291633, ATLAS Insertable B-Layer TechnicalDesignReportAddendum,ATLAS-TDR-19-ADD-1,https://cds.cern.ch/ record/1451888,2012(cit.onp.3).

[29]ATLAS Collaboration,Performanceofthe ATLAStriggersystemin2015,Eur. Phys.J.C77(2017)317,arXiv:1611.09661 [hep-ex] (cit.onpp.4,6).

[30]ATLAS Collaboration,ElectronandphotonenergycalibrationwiththeATLAS detectorusing2015-2016LHCproton-protoncollisiondata,arXiv:1812.03848 [hep-ex],2018(cit.onp.4).

[31]ATLAS Collaboration, Measurement of the photon identification efficiencies with theATLASdetectorusingLHCRun2datacollectedin2015and 2016, Eur.Phys.J.(2018),arXiv:1810.05087 [hep-ex] (cit.onpp.4–6,10).

(11)

[32]ATLASCollaboration,TopologicalcellclusteringintheATLAScalorimetersand itsperformanceinLHCRun1,Eur.Phys.J.C77(2017)490,arXiv:1603.02934 [hep-ex] (cit.onp.4).

[33]T.Sjöstrand,S.Mrenna,P.Z.Skands,AbriefintroductiontoPYTHIA8.1,Comput. Phys.Commun.178(2008)852,arXiv:0710.3820 [hep-ph] (cit.onp.5).

[34]R.D.Ball,etal.,PartondistributionswithLHCdata,Nucl.Phys.B867(2013) 244,arXiv:1207.1303 [hep-ph] (cit.onp.5).

[35] ATLASCollaboration, ATLAS Pythia8Tunes to7TeV Data,

ATL-PHYS-PUB-2014-021,https://cds.cern.ch/record/1966419,2014(cit.onp.5).

[36]T.Gleisberg,etal.,EventgenerationwithSHERPA1.1,J.HighEnergyPhys.02 (2009)007,arXiv:0811.4622 [hep-ph] (cit.onp.5).

[37]R.D.Ball,etal.,PartondistributionsfortheLHCRunII,J.HighEnergyPhys.04 (2015)040,arXiv:1410.8849 [hep-ph] (cit.onp.5).

[38]S.Agostinelli,etal.,GEANT4–asimulationtoolkit,Nucl.Instrum.MethodsA 506(2003)250(cit.onp.5).

[39]ATLAS Collaboration,TheATLAS simulationinfrastructure,Eur.Phys.J. C70 (2010)823,arXiv:1005.4568 [physics.ins-det](cit.onp.5).

[40]ATLAS Collaboration,Measurementofthe inclusiveisolatedpromptphotons crosssectioninppcollisionsat√s=7 TeVwiththeATLASdetectorusing4.6 fb−1,Phys.Rev.D89(2014)052004,arXiv:1311.1440 [hep-ex] (cit.onp.6).

[41]ATLASCollaboration,High-ET isolated-photonplusjetsproductioninpp

col-lisionsat√s=8 TeVwiththeATLASdetector,Nucl.Phys.B918(2017)257, arXiv:1611.06586 [hep-ex] (cit.onp.6).

[42]ATLASCollaboration,Luminositydeterminationinppcollisionsat√s=8 TeV usingtheATLASdetectorattheLHC,Eur.Phys.J.C76(2016)653,arXiv:1608. 03953 [hep-ex] (cit.onp.10).

[43]G.Avoni,et al.,ThenewLUCID-2detectorforluminositymeasurementand monitoringinATLAS,J.Instrum.13(2018)P07017(cit.onp.10).

[44]S.Dulat,et al.,New partondistributionfunctionsfroma globalanalysisof quantumchromodynamics,Phys.Rev.D93(2016)033006,arXiv:1506.07443 [hep-ph] (cit.onp.11).

[45]L.Bourhis,M.Fontannaz,J.P.Guillet,Quarksandgluonfragmentationfunctions intophotons,Eur.Phys.J.C2(1998)529,arXiv:hep-ph/9704447 [hep-ph] (cit. onp.11).

[46]X.Chen,T.Gehrmann,N.Glover,M.Höfer,A.Huss,Isolatedphotonand pho-ton+jetproductionatNNLOQCDaccuracy,submittedtoJ.HighEnergyPhys. (2019),arXiv:1904.01044 [hep-ph] (cit.onp.12),inpress.

[47]H.Paukkunen,C.A.Salgado, Constraintsforthe nuclearpartondistributions fromZandWproductionattheLHC,J.HighEnergyPhys.03(2011)071,arXiv: 1010.5392 [hep-ph] (cit.onp.15).

[48] ATLAS Collaboration, ATLAS Computing Acknowledgements,

ATL-GEN-PUB-2016-002,https://cds.cern.ch/record/2202407(cit.onp.17).

TheATLASCollaboration

M. Aaboud34d,G. Aad99,B. Abbott125, D.C. Abbott100,O. Abdinov13,∗, B. Abeloos129,

D.K. Abhayasinghe91,S.H. Abidi164,O.S. AbouZeid39, N.L. Abraham153,H. Abramowicz158, H. Abreu157,

Y. Abulaiti6, B.S. Acharya64a,64b,o, S. Adachi160,L. Adam97,L. Adamczyk81a,L. Adamek164,

J. Adelman119,M. Adersberger112, A. Adiguzel12c,ah, T. Adye141,A.A. Affolder143,Y. Afik157,

C. Agheorghiesei28c, J.A. Aguilar-Saavedra137f,137a,ag, F. Ahmadov77,ae, G. Aielli71a,71b, S. Akatsuka83,

T.P.A. Åkesson94,E. Akilli52, A.V. Akimov108,G.L. Alberghi23b,23a,J. Albert173,P. Albicocco49,

M.J. Alconada Verzini86,S. Alderweireldt117, M. Aleksa35,I.N. Aleksandrov77,C. Alexa28b,

D. Alexandre19, T. Alexopoulos10,M. Alhroob125, B. Ali139, G. Alimonti66a, J. Alison36, S.P. Alkire145,

C. Allaire129,B.M.M. Allbrooke153, B.W. Allen128,P.P. Allport21,A. Aloisio67a,67b, A. Alonso39,

F. Alonso86,C. Alpigiani145, A.A. Alshehri55, M.I. Alstaty99,B. Alvarez Gonzalez35,

D. Álvarez Piqueras171,M.G. Alviggi67a,67b,B.T. Amadio18, Y. Amaral Coutinho78b,A. Ambler101,

L. Ambroz132, C. Amelung27, D. Amidei103,S.P. Amor Dos Santos137a,137c, S. Amoroso44,

C.S. Amrouche52,F. An76,C. Anastopoulos146, L.S. Ancu52,N. Andari142,T. Andeen11, C.F. Anders59b,

J.K. Anders20, A. Andreazza66a,66b, V. Andrei59a,C.R. Anelli173,S. Angelidakis37, I. Angelozzi118,

A. Angerami38, A.V. Anisenkov120b,120a, A. Annovi69a, C. Antel59a,M.T. Anthony146,M. Antonelli49,

D.J.A. Antrim168, F. Anulli70a,M. Aoki79, J.A. Aparisi Pozo171,L. Aperio Bella35,G. Arabidze104,

J.P. Araque137a,V. Araujo Ferraz78b, R. Araujo Pereira78b, A.T.H. Arce47, R.E. Ardell91, F.A. Arduh86,

J-F. Arguin107,S. Argyropoulos75,J.-H. Arling44,A.J. Armbruster35, L.J. Armitage90, A. Armstrong168,

O. Arnaez164, H. Arnold118, M. Arratia31,O. Arslan24,A. Artamonov109,∗,G. Artoni132, S. Artz97,

S. Asai160,N. Asbah57, E.M. Asimakopoulou169, L. Asquith153, K. Assamagan26b,R. Astalos29a,

R.J. Atkin32a,M. Atkinson170, N.B. Atlay148,K. Augsten139,G. Avolio35,R. Avramidou58a,M.K. Ayoub15a,

A.M. Azoulay165b, G. Azuelos107,av,A.E. Baas59a, M.J. Baca21,H. Bachacou142, K. Bachas65a,65b,

M. Backes132,P. Bagnaia70a,70b,M. Bahmani82,H. Bahrasemani149, A.J. Bailey171, V.R. Bailey170,

J.T. Baines141,M. Bajic39,C. Bakalis10, O.K. Baker180, P.J. Bakker118,D. Bakshi Gupta8,S. Balaji154,

E.M. Baldin120b,120a, P. Balek177,F. Balli142, W.K. Balunas134, J. Balz97, E. Banas82, A. Bandyopadhyay24,

S. Banerjee178,k,A.A.E. Bannoura179, L. Barak158,W.M. Barbe37, E.L. Barberio102, D. Barberis53b,53a,

M. Barbero99,T. Barillari113, M-S. Barisits35, J. Barkeloo128, T. Barklow150,R. Barnea157, S.L. Barnes58c,

B.M. Barnett141,R.M. Barnett18,Z. Barnovska-Blenessy58a, A. Baroncelli72a,G. Barone26b, A.J. Barr132,

L. Barranco Navarro171, F. Barreiro96,J. Barreiro Guimarães da Costa15a, R. Bartoldus150, A.E. Barton87,

P. Bartos29a,A. Basalaev135,A. Bassalat129, R.L. Bates55,S.J. Batista164,S. Batlamous34e,J.R. Batley31,

M. Battaglia143,M. Bauce70a,70b,F. Bauer142, K.T. Bauer168,H.S. Bawa150,J.B. Beacham123, T. Beau133,

P.H. Beauchemin167,P. Bechtle24,H.C. Beck51, H.P. Beck20,r,K. Becker50, M. Becker97, C. Becot44,

A. Beddall12d, A.J. Beddall12a, V.A. Bednyakov77,M. Bedognetti118,C.P. Bee152, T.A. Beermann74,

M. Begalli78b,M. Begel26b, A. Behera152,J.K. Behr44, F. Beisiegel24, A.S. Bell92,G. Bella158,

(12)

O. Benary158,∗, D. Benchekroun34a,M. Bender112,N. Benekos10, Y. Benhammou158,

E. Benhar Noccioli180,J. Benitez75,D.P. Benjamin6, M. Benoit52,J.R. Bensinger27,S. Bentvelsen118,

L. Beresford132,M. Beretta49,D. Berge44,E. Bergeaas Kuutmann169, N. Berger5,B. Bergmann139,

L.J. Bergsten27,J. Beringer18, S. Berlendis7, N.R. Bernard100,G. Bernardi133, C. Bernius150,

F.U. Bernlochner24, T. Berry91,P. Berta97,C. Bertella15a,G. Bertoli43a,43b, I.A. Bertram87,G.J. Besjes39,

O. Bessidskaia Bylund179, M. Bessner44, N. Besson142,A. Bethani98, S. Bethke113, A. Betti24,

A.J. Bevan90,J. Beyer113, R. Bi136,R.M. Bianchi136,O. Biebel112,D. Biedermann19,R. Bielski35,

K. Bierwagen97,N.V. Biesuz69a,69b, M. Biglietti72a,T.R.V. Billoud107,M. Bindi51, A. Bingul12d,

C. Bini70a,70b, S. Biondi23b,23a,M. Birman177,T. Bisanz51, J.P. Biswal158, C. Bittrich46,D.M. Bjergaard47,

J.E. Black150,K.M. Black25,T. Blazek29a, I. Bloch44,C. Blocker27, A. Blue55,U. Blumenschein90,

Dr. Blunier144a,G.J. Bobbink118, V.S. Bobrovnikov120b,120a, S.S. Bocchetta94,A. Bocci47,D. Boerner179,

D. Bogavac112,A.G. Bogdanchikov120b,120a,C. Bohm43a,V. Boisvert91, P. Bokan51,169,T. Bold81a,

A.S. Boldyrev111,A.E. Bolz59b, M. Bomben133,M. Bona90,J.S. Bonilla128,M. Boonekamp142,

H.M. Borecka-Bielska88, A. Borisov121,G. Borissov87,J. Bortfeldt35,D. Bortoletto132,V. Bortolotto71a,71b,

D. Boscherini23b,M. Bosman14, J.D. Bossio Sola30,K. Bouaouda34a,J. Boudreau136,

E.V. Bouhova-Thacker87,D. Boumediene37, C. Bourdarios129,S.K. Boutle55,A. Boveia123,J. Boyd35,

D. Boye32b,ap, I.R. Boyko77, A.J. Bozson91, J. Bracinik21, N. Brahimi99, A. Brandt8,G. Brandt179,

O. Brandt59a, F. Braren44, U. Bratzler161,B. Brau100, J.E. Brau128,W.D. Breaden Madden55,

K. Brendlinger44, L. Brenner44, R. Brenner169,S. Bressler177, B. Brickwedde97, D.L. Briglin21,

D. Britton55,D. Britzger113,I. Brock24, R. Brock104, G. Brooijmans38,T. Brooks91,W.K. Brooks144b,

E. Brost119, J.H Broughton21, P.A. Bruckman de Renstrom82,D. Bruncko29b,A. Bruni23b,G. Bruni23b,

L.S. Bruni118,S. Bruno71a,71b, B.H. Brunt31,M. Bruschi23b,N. Bruscino136, P. Bryant36,L. Bryngemark94,

T. Buanes17,Q. Buat35,P. Buchholz148, A.G. Buckley55, I.A. Budagov77,M.K. Bugge131, F. Bührer50,

O. Bulekov110, D. Bullock8,T.J. Burch119, S. Burdin88, C.D. Burgard118, A.M. Burger5,B. Burghgrave8,

K. Burka82, S. Burke141,I. Burmeister45,J.T.P. Burr132, V. Büscher97,E. Buschmann51, P. Bussey55,

J.M. Butler25,C.M. Buttar55,J.M. Butterworth92,P. Butti35,W. Buttinger35, A. Buzatu155,

A.R. Buzykaev120b,120a,G. Cabras23b,23a,S. Cabrera Urbán171,D. Caforio139,H. Cai170,V.M.M. Cairo2,

O. Cakir4a, N. Calace35,P. Calafiura18, A. Calandri99,G. Calderini133, P. Calfayan63,G. Callea55,

L.P. Caloba78b,S. Calvente Lopez96, D. Calvet37, S. Calvet37,T.P. Calvet152,M. Calvetti69a,69b,

R. Camacho Toro133,S. Camarda35, D. Camarero Munoz96, P. Camarri71a,71b, D. Cameron131,

R. Caminal Armadans100,C. Camincher35,S. Campana35, M. Campanelli92,A. Camplani39,

A. Campoverde148,V. Canale67a,67b,M. Cano Bret58c, J. Cantero126, T. Cao158, Y. Cao170,

M.D.M. Capeans Garrido35,M. Capua40b,40a,R.M. Carbone38,R. Cardarelli71a,F.C. Cardillo146,I. Carli140,

T. Carli35, G. Carlino67a, B.T. Carlson136, L. Carminati66a,66b, R.M.D. Carney43a,43b,S. Caron117, E. Carquin144b, S. Carrá66a,66b,J.W.S. Carter164,D. Casadei32b,M.P. Casado14,g,A.F. Casha164,

D.W. Casper168, R. Castelijn118,F.L. Castillo171,V. Castillo Gimenez171, N.F. Castro137a,137e,

A. Catinaccio35,J.R. Catmore131, A. Cattai35, J. Caudron24, V. Cavaliere26b, E. Cavallaro14,D. Cavalli66a,

M. Cavalli-Sforza14, V. Cavasinni69a,69b, E. Celebi12b,F. Ceradini72a,72b,L. Cerda Alberich171,

A.S. Cerqueira78a,A. Cerri153,L. Cerrito71a,71b, F. Cerutti18, A. Cervelli23b,23a,S.A. Cetin12b,

A. Chafaq34a,D. Chakraborty119, S.K. Chan57, W.S. Chan118, W.Y. Chan88,J.D. Chapman31,

B. Chargeishvili156b,D.G. Charlton21, C.C. Chau33, C.A. Chavez Barajas153,S. Che123, A. Chegwidden104,

S. Chekanov6, S.V. Chekulaev165a, G.A. Chelkov77,au,M.A. Chelstowska35, B. Chen76,C. Chen58a,

C.H. Chen76,H. Chen26b, J. Chen58a, J. Chen38,S. Chen134,S.J. Chen15c,X. Chen15b,at,Y. Chen80,

Y-H. Chen44,H.C. Cheng61a, H.J. Cheng15d, A. Cheplakov77, E. Cheremushkina121,

R. Cherkaoui El Moursli34e, E. Cheu7,K. Cheung62,T.J.A. Chevalérias142,L. Chevalier142, V. Chiarella49,

G. Chiarelli69a,G. Chiodini65a, A.S. Chisholm35,21,A. Chitan28b,I. Chiu160,Y.H. Chiu173,M.V. Chizhov77,

K. Choi63,A.R. Chomont129,S. Chouridou159,Y.S. Chow118, V. Christodoulou92, M.C. Chu61a,

J. Chudoba138,A.J. Chuinard101,J.J. Chwastowski82,L. Chytka127,D. Cinca45, V. Cindro89,I.A. Cioar˘a24,

A. Ciocio18,F. Cirotto67a,67b, Z.H. Citron177, M. Citterio66a, A. Clark52, M.R. Clark38,P.J. Clark48,

C. Clement43a,43b,Y. Coadou99,M. Cobal64a,64c, A. Coccaro53b,J. Cochran76,H. Cohen158,

A.E.C. Coimbra177,L. Colasurdo117, B. Cole38,A.P. Colijn118, J. Collot56, P. Conde Muiño137a,h,

(13)

A.M. Cooper-Sarkar132,F. Cormier172,K.J.R. Cormier164, L.D. Corpe92, M. Corradi70a,70b, E.E. Corrigan94,

F. Corriveau101,ac,A. Cortes-Gonzalez35, M.J. Costa171,F. Costanza5,D. Costanzo146,G. Cottin31,

G. Cowan91, J.W. Cowley31, B.E. Cox98,J. Crane98, K. Cranmer122, S.J. Crawley55, R.A. Creager134,

G. Cree33,S. Crépé-Renaudin56,F. Crescioli133,M. Cristinziani24, V. Croft122, G. Crosetti40b,40a,

A. Cueto96,T. Cuhadar Donszelmann146,A.R. Cukierman150,S. Czekierda82, P. Czodrowski35,

M.J. Da Cunha Sargedas De Sousa58b,C. Da Via98,W. Dabrowski81a,T. Dado29a,x,S. Dahbi34e,T. Dai103,

F. Dallaire107,C. Dallapiccola100, M. Dam39,G. D’amen23b,23a,J. Damp97, J.R. Dandoy134, M.F. Daneri30,

N.P. Dang178,k, N.D Dann98,M. Danninger172, V. Dao35,G. Darbo53b,S. Darmora8,O. Dartsi5,

A. Dattagupta128,T. Daubney44,S. D’Auria66a,66b, W. Davey24,C. David44,T. Davidek140, D.R. Davis47,

E. Dawe102,I. Dawson146, K. De8,R. De Asmundis67a, A. De Benedetti125, M. De Beurs118,

S. De Castro23b,23a, S. De Cecco70a,70b, N. De Groot117,P. de Jong118, H. De la Torre104,F. De Lorenzi76,

A. De Maria69a,69b, D. De Pedis70a, A. De Salvo70a,U. De Sanctis71a,71b, M. De Santis71a,71b,

A. De Santo153,K. De Vasconcelos Corga99, J.B. De Vivie De Regie129,C. Debenedetti143,

D.V. Dedovich77,N. Dehghanian3,M. Del Gaudio40b,40a,J. Del Peso96,Y. Delabat Diaz44,D. Delgove129,

F. Deliot142,C.M. Delitzsch7,M. Della Pietra67a,67b,D. Della Volpe52,A. Dell’Acqua35,L. Dell’Asta25,

M. Delmastro5, C. Delporte129,P.A. Delsart56, D.A. DeMarco164, S. Demers180, M. Demichev77,

S.P. Denisov121,D. Denysiuk118, L. D’Eramo133,D. Derendarz82,J.E. Derkaoui34d, F. Derue133,

P. Dervan88,K. Desch24, C. Deterre44, K. Dette164, M.R. Devesa30,P.O. Deviveiros35, A. Dewhurst141,

S. Dhaliwal27, F.A. Di Bello52, A. Di Ciaccio71a,71b,L. Di Ciaccio5, W.K. Di Clemente134,

C. Di Donato67a,67b,A. Di Girolamo35,G. Di Gregorio69a,69b, B. Di Micco72a,72b, R. Di Nardo100,

K.F. Di Petrillo57, R. Di Sipio164,D. Di Valentino33, C. Diaconu99, M. Diamond164,F.A. Dias39,

T. Dias Do Vale137a, M.A. Diaz144a, J. Dickinson18, E.B. Diehl103,J. Dietrich19,S. Díez Cornell44,

A. Dimitrievska18, J. Dingfelder24, F. Dittus35,F. Djama99,T. Djobava156b, J.I. Djuvsland17,

M.A.B. Do Vale78c, M. Dobre28b,D. Dodsworth27,C. Doglioni94,J. Dolejsi140, Z. Dolezal140,

M. Donadelli78d, J. Donini37,A. D’onofrio90,M. D’Onofrio88,J. Dopke141, A. Doria67a,M.T. Dova86,

A.T. Doyle55,E. Drechsler149,E. Dreyer149, T. Dreyer51,Y. Du58b,F. Dubinin108, M. Dubovsky29a,

A. Dubreuil52, E. Duchovni177, G. Duckeck112, A. Ducourthial133,O.A. Ducu107,w,D. Duda113,

A. Dudarev35, A.C. Dudder97, E.M. Duffield18,L. Duflot129,M. Dührssen35, C. Dülsen179,

M. Dumancic177,A.E. Dumitriu28b,e, A.K. Duncan55, M. Dunford59a, A. Duperrin99,H. Duran Yildiz4a,

M. Düren54,A. Durglishvili156b, D. Duschinger46,B. Dutta44,D. Duvnjak1, G. Dyckes134, M. Dyndal44,

S. Dysch98, B.S. Dziedzic82,K.M. Ecker113,R.C. Edgar103,T. Eifert35,G. Eigen17, K. Einsweiler18,

T. Ekelof169,M. El Kacimi34c, R. El Kosseifi99, V. Ellajosyula99, M. Ellert169,F. Ellinghaus179,

A.A. Elliot90,N. Ellis35, J. Elmsheuser26b,M. Elsing35,D. Emeliyanov141, A. Emerman38,Y. Enari160,

J.S. Ennis175,M.B. Epland47,J. Erdmann45, A. Ereditato20, S. Errede170,M. Escalier129, C. Escobar171,

O. Estrada Pastor171,A.I. Etienvre142, E. Etzion158,H. Evans63, A. Ezhilov135,M. Ezzi34e,F. Fabbri55,

L. Fabbri23b,23a,V. Fabiani117,G. Facini92, R.M. Faisca Rodrigues Pereira137a,R.M. Fakhrutdinov121,

S. Falciano70a, P.J. Falke5, S. Falke5,J. Faltova140, Y. Fang15a,M. Fanti66a,66b,A. Farbin8,A. Farilla72a, E.M. Farina68a,68b,T. Farooque104,S. Farrell18, S.M. Farrington175, P. Farthouat35,F. Fassi34e,

P. Fassnacht35,D. Fassouliotis9, M. Faucci Giannelli48, W.J. Fawcett31,L. Fayard129, O.L. Fedin135,p,

W. Fedorko172, M. Feickert41, S. Feigl131, L. Feligioni99, C. Feng58b,E.J. Feng35, M. Feng47,

M.J. Fenton55,A.B. Fenyuk121, J. Ferrando44, A. Ferrari169,P. Ferrari118, R. Ferrari68a,

D.E. Ferreira de Lima59b, A. Ferrer171,D. Ferrere52, C. Ferretti103, F. Fiedler97, A. Filipˇciˇc89, F. Filthaut117, K.D. Finelli25, M.C.N. Fiolhais137a,137c,a, L. Fiorini171, C. Fischer14,W.C. Fisher104,

N. Flaschel44,I. Fleck148, P. Fleischmann103, R.R.M. Fletcher134, T. Flick179, B.M. Flierl112,L.M. Flores134,

L.R. Flores Castillo61a,F.M. Follega73a,73b,N. Fomin17,G.T. Forcolin73a,73b, A. Formica142, F.A. Förster14, A.C. Forti98, A.G. Foster21,D. Fournier129,H. Fox87, S. Fracchia146,P. Francavilla69a,69b,

M. Franchini23b,23a, S. Franchino59a, D. Francis35, L. Franconi143,M. Franklin57,M. Frate168,A.N. Fray90,

D. Freeborn92, B. Freund107, W.S. Freund78b, E.M. Freundlich45,D.C. Frizzell125, D. Froidevaux35,

J.A. Frost132, C. Fukunaga161, E. Fullana Torregrosa171,E. Fumagalli53b,53a,T. Fusayasu114,J. Fuster171,

O. Gabizon157,A. Gabrielli23b,23a, A. Gabrielli18,G.P. Gach81a, S. Gadatsch52, P. Gadow113,

G. Gagliardi53b,53a,L.G. Gagnon107, C. Galea28b,B. Galhardo137a,137c,E.J. Gallas132, B.J. Gallop141,

Şekil

Fig. 1. Distributions of detector-level photon isolation transverse energy E iso
Fig. 3. Summary of extrapolation factors applied to the measured pp √ s = 8 TeV data to construct an approximate √ s = 8
Fig. 7. A breakdown of all systematic uncertainties in the cross-section prediction from Jetphox with the EPPS16 nPDF set.
Fig. 8. Nuclear modification factor R pPb for isolated, prompt photons as a function of photon transverse energy E γ T , shown for different centre-of-mass pseudorapidity, η ∗ ,
+2

Referanslar

Benzer Belgeler

A new dynamic deformation analysis technique was developed to analyze four geodetic monitoring records consisting of vertical and horizontal displacements of nine

In this project, the documents (video recordings and transcripts) which were collected by the recording of history lessons that were taught in different countries, have been

Post Otistik İktisat Hareketi, Neo-klasik iktisat kuramının varsayımları ve metodolojisini eleştirerek son dönemde yaşanan küresel ekonomik krizin sinyallerinin

Veriler aylara göre incelendiğinde Kasım ve Aralık aylarında avlanan balıkların ortalama boy ve ağırlıklarının Ekim ve Mart aylarında avlananlardan daha büyük olduğu

(2) tested “whether controlling for endotracheal tube/laryngeal wall interactions by cervical retraction system [would] reduce symptomatic or asymptomatic RLNP or

Yapılan LSD testine göre, öğrencilerin sınıf dışı problemlerinin başarılarını etkilemesi hususunda, Sosyal Bilgiler Öğretmenliği Anabilim Dalı öğrencilerinin

Araştırma sonucunda ilköğretim dördüncü sınıf sosyal bilgiler dersi “Đnsanlar ve Yönetim” ile “Uzaktaki Arkadaşlarım” ünitelerinde projeye dayalı öğrenme

Diğer öğrenciler ise denklem kurmakta zorlandıkları için soruyu verilenleri kullanıp ilköğretim birinci kademede kazandıkları bir problem çözme stratejisi