• Sonuç bulunamadı

Paeonia arietina and Paeonia kesrounansis bioactive constituents: NMR, LC-DAD-MS fingerprinting and in vitro assays

N/A
N/A
Protected

Academic year: 2021

Share "Paeonia arietina and Paeonia kesrounansis bioactive constituents: NMR, LC-DAD-MS fingerprinting and in vitro assays"

Copied!
11
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

JournalofPharmaceuticalandBiomedicalAnalysis165(2019)1–11

ContentslistsavailableatScienceDirect

Journal

of

Pharmaceutical

and

Biomedical

Analysis

jou rn al h om e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / j p b a

Paeonia

arietina

and

Paeonia

kesrounansis

bioactive

constituents:

NMR,

LC-DAD-MS

fingerprinting

and

in

vitro

assays

Stefania

Sut

a

,

Gokhan

Zengin

b,∗

,

Stefano

Dall’Acqua

c

,

Markéta

Gazdová

d

,

Karel ˇSmejkal

d

,

Gizem

Bulut

e

,

Ahmet

Dogan

e

,

Mehmet

Zeki

Haznedaroglu

f

,

Muhammad

Zakariyyah

Aumeeruddy

g

,

Filippo

Maggi

h

,

Mohamad

Fawzi

Mahomoodally

g

aDAFNAE,DepartmentofAgronomy,Food,Naturalresources,AnimalsandEnvironment,UniversityofPadova,Vialedell’Università,

16,35020Legnaro,PD,Italy

bSelcukUniversity,ScienceFaculty,DepartmentofBiology,Campus,42250,Konya,Turkey

cNPLlab,DepartmentofPharmaceuticalandPharmacologicalSciences,UniversityofPadova,ViaMarzolo,35121,Padova,Italy

dDepartmentofNaturalDrugs,FacultyofPharmacy,UniversityofVeterinaryandPharmaceuticalSciencesBrno,Palackého1/3,61242,Brno,Czech

Republic

eMarmaraUniversity,PharmacyFaculty,DepartmentofPharmaceuticalBotany,Istanbul,Turkey fIzmirKatipCelebiUniversity,PharmacyFaculty,DepartmentofPharmaceuticalBotany,Izmir,Turkey gDepartmentofHealthSciences,FacultyofScience,UniversityofMauritius,230Réduit,Mauritius hSchoolofPharmacy,UniversityofCamerino,Camerino,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received24September2018 Receivedinrevisedform 14November2018 Accepted16November2018 Availableonline19November2018 Keywords: Paeoniaarietina Paeoniakesrounansis Antioxidant Cholinesterase Tyrosinase ␣-Glucosidase ␣-Amylase

a

b

s

t

r

a

c

t

Paeoniaspecieshavebeen valuedfortheir ethnomedicinalusesinvarious countriesand received

muchinterestamongthescientificcommunityfortheirtherapeuticproperties,includinganti-microbial,

anti-inflammatory,anti-cancer,nephroprotectiveandhepatoprotectiveeffects.Themultiple

phytother-apeuticalapplicationsofPaeoniaspeciesinspiredustoestablishthephytochemical fingerprintand

toevaluatethebiologicalpropertiesofethylacetate,methanol,andaqueousextractsfromtheroots

andaerialpartsoftwoPaeoniaspecies(P.arietinaG.Anderson andP.kesrounansisThiébaut).

Phy-toconstituentsofP.arietinaandP.kesrounansisextractswereanalyzedusing1Dand2DNMRand

LC-DAD-ESI-MS.Thetotalcontentofphenolics(TPC)andflavonoids(TFC)intheextractswasalso

eval-uated.TheantioxidantactivitywasprofiledusingDPPH,ABTS,CUPRAC,FRAP,phosphomolybdenum,

andmetalchelationassays.Enzymeinhibitorypropertieswereevaluatedagainstacetylcholinesterase

(AChE),butyrylcholinesterase(BChE),tyrosinase,␣-amylase,and␣-glucosidase.Phytochemical

analy-sisofP.arietinaandP.kesrounansisextractsshowedthepresenceofgalloylestersofsugars,galloyl

monoterpenes,andglycosylatedflavonoids.Thethreesolventextractspresenteddifferentbehaviorin

thebioassays.Thehighestantioxidantactivity,tyrosinaseandAChEinhibitionwereobservedforthe

methanolicextractoftheaerialpartsofP.kesrounansis.Inaddition,theethylacetateextractsofthe

aerialpartsofbothplantswerethemosteffectiveinhibitorsof␣-amylase.ThehighestBChEinhibition

wasobservedforrootmethanolicextractofP.kesrounansiswhiletherootethylacetateextractofP.

ari-etinaexertedthestrongestinhibitionof␣-glucosidase.MethanolextractofP.kesrounansisaerialparts

presentedthehighestTPC,whileTFCwasgreatestinthecorrespondingextractofP.arietina.Ourfindings

canbeconsideredasastartingpointforfuturestudiestofurthervalidatetheeffectivenessandsafety

profilesoftheseplantsinfolkmedicine.

©2018ElsevierB.V.Allrightsreserved.

∗ Correspondingauthor.

E-mailaddresses:stefaniasut@hotmail.it(S.Sut),gokhanzengin@selcuk.edu.tr(G.Zengin),stefano.dallacqua@unipd.it(S.Dall’Acqua),gazdova.marketa@seznam.cz(M. Gazdová),karel.mejkal@post.cz(K. ˇSmejkal),gizem.bulut@marmara.edu.tr(G.Bulut),adogan@marmara.edu.tr(A.Dogan),zeki.haznedaroglu@ikc.edu.tr(M.Z.Haznedaroglu),

muhammad.aumeeruddy2@umail.uom.ac.mu(M.Z.Aumeeruddy),filippo.maggi@unicam.it(F.Maggi),f.mahomoodally@uom.ac.mu(M.F.Mahomoodally).

https://doi.org/10.1016/j.jpba.2018.11.040

(2)

1. Introduction

ThegenusPaeonia(Paeoniaceae)consistsof36acceptedspecies

recordedinThePlantList(http://www.theplantlist.org/).Thegenus

isdividedintothreesections:(1)PaeoniaL.(whichisdistributed

fromSpainandNorth Africaeastwards toChinaandJapan), (2)

MoutonDC. (Eastern Asia)and (3) Onaepia Lindl.(North

Amer-ica).Paeoniaisrepresentedbyninespecieswithninesubspecies

inEurope.InTurkey,thewildPaeoniaspeciesarerepresentedby

eighttaxa[1].Membersofthisgenusareknownfortheirdiverse

colorofflowers,flowertype,andplantheight.Theexuberantcolor

oftheflowersjustifiestheimportanceofPaeoniaspp.asornamental

plantswhiletheknownwound-healingpropertiesofrootssupport

itsuseasherbalmedicine[2].

Paeoniaspp.havealonghistoryofuseastraditional

medici-nalplants.Paeoniaofficinalis and P.mascula werementioned in

“AbouttheAntidotes”belongingtothefirstand largestsection

“ElementAlpha”ofNikolaosMyrepsos’Dynameron, amedieval

medicalmanuscript [3]. TherootofP.officinalis isusedtocure

nervediseasesinJordan[4].InPakistan,P.emodiisadministered

forthetreatmentofrheumatism[5],urinaryproblems,nervous

diseases,colic,headache,asabloodpurifier[6],andtotreat

gen-eralbody weakness [7]. A great number of studieshas proved

thebiological effects ofthe membersof Paeonia genus,

includ-ingthe anti-proliferative activityof P. lactiflora[8], anti-cancer

activityofP.moutan[9],andnephroprotectiveeffectofP.emodi

[10]. With respecttoone of thespecies includedin this work,

thedecoctionoftheaerialpartofP.masculasubsp.arietina(syn.

P.arietina)wasreportedforuseinthemanagementofdiabetes

in the traditional folk medicine in Ovacık (Tunceli) in Turkey

[11], as well as in East Anatolia [12]. In other regions across

Turkey,rootinfusionsareusedassedative,laxative,andfor

treat-mentofepilepticseizureand trecough[13]. Paeoniaspeciesare

knowntobearich sourceof monoterpenespossessinga

‘cage-like’pinane skeleton [14]. Furthermore, othermonoterpenoids,

flavonoids,polyphenols(includingpaeonolandgallicacid

deriva-tives),steroids,andtriterpenoidswerepreviouslydescribedinthis

genus[15].

DespitetheimportanceinTurkishtraditionalmedicine,there

isalackofinformationonthephytoconstituentsofP.arietinaG.

Anderson(previouslyknownasP.masculasubsp.arietina)andP.

kesrounansisThiébaut(previouslyknownasP.turcica).Onlyone

study[16]investigatedthecompositionoftheessentialoilandthe

antioxidantactivity(DPPHand nitricoxidescavenging)ofthese

species,thereforewefocusedonthenon-volatilecompoundsand

theevaluationoftheirbiologicalproperties.Theobjectivesofthe

presentstudyweretoelucidatethephytochemicalcompositionof

P.arietinaandP.kesrounansisbyNMR(1and2D)and

LC-DAD-ESI-MS,andtoassesstheantioxidantandenzymeinhibitoryproperties

ofdifferentextractsfromthosespecies,namelymethanol(MeOH),

ethyl acetate (EA) and water. These extracts were tested for

antioxidantactivityusingDPPH,ABTS,FRAP,CUPRAC,

phospho-molybdenumandmetalchelatingassays.Furtherassaysevaluated

theinhibitorypotentialeffect againstkey enzymesofpotential

clinicalrelevance(cholinesterases,tyrosinase,␣-amylaseand

␣-glucosidase).

2. Materialandmethods

2.1. Plantmaterialandextraction

Theplant sampleswere obtainedfrom a field study in July

of2016:P.arietinaG.Anderson(Tunceli-Pertek,Pınarlarvillage,

1450m),voucherspecimenno.MARE-12500,andP.kesrounansis

J.Thiébaut (Denizli-Acıpayam,Bozda˘g, 1400m), voucher

speci-menno.MARE-17253.Itsbotanicalconfirmationwasdonebya

botanist(Prof.ErtanTuzlaci,MarmaraUniversity,Departmentof

Pharmacology).One plantsample for each Paeonia species was

keptasvoucherspecimenandwasdepositedinMarmara

Univer-sity,FacultyofPharmacy’sHerbarium.Tengramsofplantmaterials

(dried-powderedaerialpartsorroots)weremaceratedin200mlof

ethylacetate(EA)andmethanol(MeOH)atroomtemperaturefor

24h.Theextractswerethenfilteredandconcentratedat40◦C.The

waterextractwaspreparedusinganinfusionasfollows:5gplant

materialwaskeptin100mlboiledwaterfor20min.Theobtained

extractwaslyophilizedandkeptina refrigerator(at4◦C)until

furtheranalysis.

2.2. Totalphenolicandflavonoidcontent

The total phenolic content (TPC) wasdetermined using the

Folin-Ciocalteumethodandflavonoidscontent(TFC)bytheAlCl3

method.Theresultsobtainedwere expressedasequivalents of

standardcompounds(gallicacid(mgGAE/gsample)forTPC)and

rutin(mgRE/gsample)forTFC),respectively)[17].

2.3. Determinationofantioxidantandenzymeinhibitoryeffects

Antioxidantpropertiesofextractswerescreenedbychemical

assaysincludingantiradicalmethods(ABTSandDPPH),reductive

power(CUPRACandFRAP),phosphomolybdenum,andchelating

effect.Theresultswereexpressedasstandardcompounds

equiv-alents (mgTE/g sample and mg EDTAE/gsample). Allmethods

aredescribed in ourpreviouspaper[17]. Theinhibitory effects

of Paeonia extracts wereinvestigated onkey enzymes, namely

cholinesterase (associatedwithneurological disordersincluding

Alzheimer’sdisease),tyrosinase(linked withskindisorders),

␣-amylaseand␣-glucosidase(bothrelatedwithdiabetesmellitus).

Theexperimentalprotocolswerereportedinourpreviouspaper

[17]. Results were expressed as content of standard inhibitors

in samples.Standard inhibitors for cholinesterases were

galan-thamine(mgGALAE/gsample),kojicacidfortyrosinase(mgKAE/g

sample),and acarbose for ␣-amylase and ␣-glucosidase (mmol

ACAE/gsample).

2.4. NMRanalysis

1D-and2D-NMRspectrawereobtainedonaBrukerAvance

III400Ultrashield spectrometerwithsuperconducting 400MHz

magnetsystem.NMRspectrawereacquiredinMeOD-d4

(Sigma-Aldrich)withTMSasaninternalstandard.Durian®4.95mmNMR

tubes(DurianGroup)wereused.Chemicalshiftsareexpressedinı

valuesinppm.1H-NMRandHSQC-DEPT,HMBC,COSYexperiments

wereacquiredusingstandardBrukersequencesmeasuringp1and

d1foreachacquiredsample.

2.5. HPLC-DAD-MSanalysis

Quantitativeanalysisofphenolicderivativeswasobtainedby

LC-DAD-ESI-MSn. The measurements were performed using an

Agilent1260chromatograph(SantaClara,CA,USA)equippedwith

1260diodearraydetector(DAD)andVarianMS-500iontrapmass

spectrometer.Sample separationwasachievedusinganAgilent

EclipseXDBC-18(3.0×150mm,particlesize3.5␮m)asstationary

phase.Themobilephasewaswater(0.1%formicacid)(A)and

ace-tonitrile(B).Theelutiongradientstarted90:10(A:B)upto0:100

(A:B)at30min,with5minofre-equilibrationtime;flowratewas

0.5ml/minandinjectionvolumewas10␮L.Attheendofthe

col-umn,aTsplitterseparatedtheflowratetoDADandMS.TheDAD

detectorwasusedtoquantifyflavonoidsandgalloylderivatives.

Rutin(SigmaAldrich,St.Louis,MO, USA)andgallicacid(Sigma

(3)

S.Sutetal./JournalofPharmaceuticalandBiomedicalAnalysis165(2019)1–11 3

Fig.1.1H-NMRspectraofthetestedmethanolextracts(1-P.kesrounansisaerialpart;2-P.arietinaaerialpart;3-P.kesrounansisroot;4-P.arietinaroot).

andflavonolderivativesweremonitoredat280nmand 350nm

andUV–vis spectrawereacquiredin therangeof 200–650nm.

MSspectrawererecordedintherangeofm/z50–2000,usingESI

ionsourceoperatinginnegativeionmode.Turbodatadependent

scanning(TDDS)instrumentfunctionwasusedtoacquiredmass

fragmentationpathwaysofthemainionicspecies.Identificationof

compoundswasobtainedbasedonfragmentationspectraaswell

asthecomparisonwiththeliteratureandreferencecompounds,

whenavailable.Themethodofcalibrationcurvewasusedforthe

quantificationofphenolicconstituents:rutinwasusedasexternal

standard for flavonoid quantification, gallic acid was used for

galloylderivatives.Calibrationcurveswereasfollowsy=52.95x

+2.88(R2=0.996)forrutin;y=38.387x+202.53(R2=0.996)for

gallicacid.

2.6. Statisticalanalysis

All tests were carried out in triplicates and findings are

expressed as mean value±SD. SPSS v. 17.0 was employed for

statisticalanalysis.One-wayANOVAwasdonetodetermineany

differencesbetweenthetestedsamplesfollowedbyTukey’stest.

p<0.05wereassignedtobestatisticallysignificant.Theprincipal

component(PCA),clusterandPearsonlinearcorrelationwasused

toevaluatetheassociationbetweentotalbioactivecomponentsand

thefindingsofbiologicalactivity.

3. Resultsanddiscussion

3.1. PhytochemicalfingerprintingofPaeoniaextracts

Phytochemicalcompositionofaerialpartsandrootswas

stud-iedbyNMRandLC-DAD-ESI-MSapproaches.Themethanolextract

wasusedbecauseoftheabilityofthissolventtosolubilizeboth

lipophilic and hydrophilic constituents. 1H-NMR as well as 2D

experiments, namely HSQC-DEPT, HMBC, and COSY were

con-ductedtoidentifytheprincipalconstituentsofthePaeoniaextracts.

1H-NMRoftherootandaerialpartsofP.kesrounansisandP.

ari-etinarevealedthatpartsofthespectraarealmostsuperimposable,

asvisibleforexampleintheregionbetweenı8.5-5.80ppm,

sug-gestingsimilarqualitativecompositionofphenolicconstituents,

andintheregionı3.0–4.2ppmsupportingtheideaofsimilarityin

sugarmoieties.Differenceswereobservedinthespectralregionı

5.6-4.2ppm,whichshowedsignalsascribabletoanomericprotons,

sp2olefinicsignals,ordeshieldedCH

2Ogroups.Furtherdifferences

wereobservedin theregionı2.8-0.5ppm,indicating the

pres-enceofdiversealiphaticcompoundsororganicacidsinthesetwo

extracts.Consideringthegeneralaspectsofanalysisofthesetwo

extracts,largesimilaritywasobservedinspectra,supportinga

sim-ilarcomposition.Exemplificativeprotonspectraofthefourextracts

arereportedinFig.1.

NMRtechniquesallowedustheobservationofdifferenttypes

ofconstituentsintheextracts,anddataobtainedbytheacquisition

of1H-NMR,HSQC-DEPT,andHMBCrevealedthepresenceofsome

ofthetypicalphytoconstituentspresent inPaeoniaspecies[18].

1H-NMR,HSQC-DEPTandHMBCspectraarereportedinFigs.2–5.

Someofthemostintensivesignalsarerelatedtothepresenceof

sugarmoietiesduetotypicalprotonshiftsat␦3.0–4.5ppm.

Fur-thermore,peakssupportingthepresenceofphenolicconstituents

werealsodetected,asdescribedabove.Signalsascribableto

aro-matic acid derivatives couldbe observed in the regionfrom

7.47to8.00ppmasdoubletsordoubletsofdoublets.Moreover,

estersofgallicacidwithsugarsweredetectedduetothepresence

ofsingletsat␦6.89–7.12ppm(relatedtothepositions2 ´and6 ´of

galloylmoiety)[19] andduetothepresenceofsignalsassigned

tosugarpartsasthedoubletat␦6.23, relatedtotheanomeric

protonof glucose/hexose,or thedoubletsand doubletsof

dou-bletsobservedat␦5.5and6.0ppm.HSQC-DEPTdataconfirmed

theassignmentsallowingtheassignmentofnon-quaternary

posi-tionofconstituents,andlaterdiagnosticHMBCcorrelationswere

observedfromtheH-2orH-3signalsofhexoseunitswith

car-bonsat␦164.0–165.5, confirmingthepresenceof esterlinkage

(Table1).Thepresenceofmonoterpenicglycosidicderivatives,like

paeoniflorine[20],couldbesupportedbythediagnosticsignals␦

1.3to5.4ppm,ascribabletothemonoterpenicunit,e.g.signalof

themethylgroupat␦1.39ppm(H-10),signalsoftheCH2groups

forH-2andH-5,asingletat␦5.43ppm(H-9),andsignalsofthree

quaternarycarbonsat␦86.2,87.5and75.4ppmrelatedtoC-1,

C-6andC-7,respectively(Fig.4).ThiswasconfirmedbyHSQC-DEPT

andHMBCanddiagnosticsignalsaresummarizedinTable1.Signals

supportingthepresenceofglycoside,namelythecrowdedregion␦

3–4.5ppmaswellasdoubletsorsingletsassignedtoanomeric

pro-tonpositionsweredetected.Significantamountofsaccharosewas

detectedduetothepresenceofitsanomericsignalat␦5.38ppm.

(4)

Fig.2.Exemplificative1H-NMRofthemethanolextractofPaeoniawiththemainassignedpeaks.

Fig.3. ExemplificativeHSQCspectrumofthemethanolicPaeoniaextractwithsomeoftheidentifiedpositionofcompounds.

HMBC,asthemethylgroupcorrelatedwiththecarbonsignalatC-5

oftheglycoside.

Otherconstituentspresentinloweramountswereflavonoids,

inparticularkaempferolandquercetinglycosides.Twodoublets

at␦8.01and6.87ppm(J=7.0Hz)wereascribedtopositions

H-2´,6 ´and3´,5 ´ofkaempferolandthesignals␦7.05,6.96,6.89ppm

wereassigned to positions 2´, 3 ´and6 ´of thering Bof quercetin

[20]. Signalsrelated topositions6 and8offlavonoids couldbe

detectedassinglets␦ 6.4–6.7ppm suggestingtheposition7 as

implicatedinglycosidicbond.HSQC-DEPT,HMBCandCOSYdata

allowedustoconfirmtheassignmentsofthesediagnosticpositions

[20].

The most significant NMR assignments of the compounds

presentinthePaeoniaextractsaresummarizedinFigs.2–4[18,19].

NMRanalysisrevealedthepresenceofaromaticacidderivatives,

gallic acidesters,monoterpene glycosides, as wellas flavonoid

glycosides.Averysimilarfingerprintwasobservedforthe

differ-entmethanolicextractsofrootsandaerialpartsofbothanalyzed

species.

Tofurtherstudythecompositionoftheextracts,

LC-DAD-ESI-MS analysis was performed. Detected peaks were assigned to

compoundsonthebasis ofthecomparisonofUVspectrumand

MSfragmentationpatterns,aswellasbycomparingtheobtained

datawiththoseacquiredintheNMRexperiments.Froma

qual-itativepointofview,theLC-DAD-ESI-MSanalysisconfirmedthe

constituentsidentifiedbyNMR.Quercetinandkaempferol

glyco-sidesandgalloylglucosederivativeswereidentifiedonthebasis

(5)

S.Sutetal./JournalofPharmaceuticalandBiomedicalAnalysis165(2019)1–11 5

Fig.4. EnlargedareaoftheHSQC-DEPTspectrumofPaeoniaextractshowingtheassignmentsofthemonoterpenoidderivativeofpaeoniflorinetype.

Fig.5. ExemplificativeHMBCspectrum.

withthatreportedinliterature[21].Quantitativeanalysiswas

per-formedusingrutinasreferencecompoundforflavonoids,andgallic

acidforthe gallicacidderivatives ofsaccharides and

monoter-penes,respectively.Themaincomponentsidentifiedaredepicted

inFig.6.AnalysisofP.arietinaaerialpartsextractshowedthat

themostabundantflavonoidinallofthesampleswas

quercetin-glucosyl-rhamnoside.Thehexagalloylglucoseappearedtobethe

mostabundantgalloylderivativeinalloftheextracts.Fivedifferent

peaksascribabletogalloylpaeonidinweredetectedsuggestingthe

possibilityoffivedifferentesterificationsofgallicacidonhexose

moietyaswellasonpaeonidinfreehydroxylgroup.Theoverviewof

dataagainshowedaverysimilarqualitativecompositionofthefour

samplesanalyzed.Fromaquantitativepointofview,P.

kesrounan-sisandP.arietinaaerialpartswerebothricherinflavonoidsandin

galloylderivativescomparedtotheroots(Table2and3,

respec-tively).

3.2. Totalamountofphenolicsandflavonoids

Thedifferent extractsofP.arietinaand P.kesrounansis were

investigated for their total phenolic content (TPC) and total

flavonoidcontent(TFC)andresultsarepresentedinFig.7.

TheaerialpartextractsofP.arietinahadhigherTPCandTFC

valuescomparedtotherootextracts.Themethanolextractofthe

aerialpartsshowedthehighestTPC(164.10mgGAE/gextract)and

TFC(34.18mgRE/gextract)amongthethreesolvent.Similarly,for

rootpartswefoundthatTPCwasgreatestinthemethanolicone

(85.31mgGAE/gextract)whereastheaqueousrootextract

con-tainedthehighestamountofflavonoids(2.10mgRE/gextract).The

lowestTPCandTFCwereobservedintheaqueousandethylacetate

extractoftheroot,respectively.Asimilarobservationwasnotedfor

P.kesrounansiswherebytheaerialpartsshowedgreaterTPCand

(6)

Table1

1Hand13CNMRdiagnosticpositionsforthephytoconstituentsinthemethanolextractsofP.arietinaandP.kesrounansis.

Compounds ␦H(JinHz) ␦CHSQC-DEPT ␦CHMBC

p-OH-benzoicacidmoiety 8.05d,7.48d,(J=7.7,7.6)(H-2´,6´) 128.8,127.5 166,5,133.0,128.8

Aromaticacidsignals 7.48d,(J=7.7)7.65m,7.63m,7.60m,7.52m,7.50m,

7.47m(H-2´,6´)7.61m

128.8,133.2 166.7

Flavonolmoieties,glycosidesof quercetinandkaempferol

8.01(H-2´,6´),6.87(H-3´,5´)(J=7.0)kaempferol 7.05,6.96,6.89(2´,3´and6 ´ofringB)quercetin 6.4-6.7(signalsofH-6,H-8)

5.13d(H-1”)anomericprotonofglucose 1.38(CH3of rhamnose) 108.9,109.4,109.6 96.6-98.7 18.0 140,0163,0

Galloylesterderivatives 7.12brs(galloyl)(H-2´,6´)

6.89,6.94,6.97

6.23d(anomericofsugar)(J=8.2)

5.9m(C3ofglucose)5.6m(C2ofglucose)-deshielded becauseoffurthergalloylsubstitution

4.11sand4.05s(C4andC5ofglucose) 4.74(C6glucose) 108.9 113.9,114.0,114.1 83.2 68.6 77.6and74.5 60.0 134.4,162.3 164,4 165,0 164,4 165,3

Paeoniflorintypecompound 1.39s(CH3,H-10)

1.32(CH2,H-2) 5.43s(H-9) 2.62(H-4) 2.49(CH2,H-5) 7.60t(J=7.6) 17.7 29.0 91.4 43.2 23.2 132.9 86.2(q)C-1 87.5(q)C-6 75.4(q)C-7 106.9,75.4 106.9,75.4 75.4 125.0

Sucrose 5.38d(3.8)anomericproton

3CH2groups3.64,3.73,3.76

91.9 60.6-62.6

13.1,17.3,106.5

Table2

HPLC-DAD-MSqualitativeandquantitativeanalysisofflavonoidsinthemethanolextractsofP.arietinaandP.kesrounansis.

Rt(min) Identification M-H Fragments P.kesrounansis

Aerialparts(mg/g) P.arietina Aerialparts(mg/g) P.kesrounansis Roots(mg/g) P.arietina Roots(mg/g) 12.1 Quercetin-3,7-di-O-glucoside 625 463301 0.39 0.42 0.09 0.06 14.3 Kaemperol-3,7-di-O-glucoside 609 447285 0.40 0.26 0.01 0.04 15.2 Quercetin-hexoside 463 301 1.78 0.70 0.31 0.37 19.7 Quercetin-glucosyl-rhamnoside 609 447463301 3.58 8.50 0.34 0.61 19.1 Quercetin-galloyl-hexoside 615 463301 1.24 0.94 0.05 0.13 18.9 Kaempferol-3-Oglucoside-7-O-ramnoside 593 447463301 3.07 5.57 0.10 0.55 20.0 Rutin 609 301 0.61 0.01 0.02 0.04 Totalamount 11.07 16.4 0.92 1.8

*Dataaremeanofthreedifferentmeasurements.DVSTareintherangeof5%.Rt:Retentiontime.

Fig.6. Generalstructuresofthemainphytoconstituentsidentifiedinthetested methanolextractsofthestudiedPaeoniaspp.extracts.

aerialparts,higherTPCandTFCwereobservedforthemethanol

(172.13mgGAE/gextractand25.84mgRE/gextract,respectively).

Likewise,amongtherootextracts,TPCwashighestinthe

methano-licone(89.06mgGAE/gextract).However,theethylacetateextract

oftherootshowedthehighestTFC(3.33mgRE/gextract)compared

toitscounterpartsolventsextracts.

Apreviousinvestigationby Orhanetal. [16] foundthatthe

ethanolrootextractofthreesubspeciesofP.mascula(western

Ana-tolianP.mascula(L)Mill.,P.mascula(L.)Mill.subsp.arasicola,andP.

mascula(L.)Mill.subsp.bodurii)showedhigherTPC(14.9,14.1,and

14.3mgGAE/100mgextract,respectively)thanP.turcica(7.6mg

GAE/100mgextract)whileP.mascula(easternAnatoliansample)

showedlowerTPC(5.3mgGAE/100mgextract).

3.3. Antioxidantactivity

Severalassaysevaluatingtheantioxidantactivity(DPPH,ABTS,

FRAP,CUPRAC,phosphomolybdenumand metalchelating)were

performedtoobtainacomprehensiveinvitroassessmentofthe

antioxidantpotentialof thetwo testedspecies (see Fig.7).We

usedseveralinvitromethodstostudytheantioxidantproperties

ofextracts.Forexample,DPPHassayisperformedinorganic

sol-vent,whileABTSisperformedinbufferedaqueousphase.FRAPand

CUPRACusetwodifferentmetalionstoassessreducingantioxidant

power.Theothertwo testsinvolved thereduction of

phospho-molybdicacidtophosphomolybdenum,andthemetalchelating

(7)

S.Sutetal./JournalofPharmaceuticalandBiomedicalAnalysis165(2019)1–11 7

Table3

HPLC-DAD-MSqualitativeandquantitativeanalysisofgalloylderivativesinthemethanolextractsofP.arietinaandP.kesrounansis.

Rt(min) Compound m/z[M-H]− Fragments Contentofcompoundinmg/g

P.kesrounansis Aerialparts P.arietina Aerialparts P.kesrounansis Roots P.arietina Roots 1.6 Galloylsucrose 493 331,313,179 2.28 3.08 2.59 1.77 3.11 Galloylsucrose 493 331,313,179 3.61 4.02 2.38 1.92 1.5 Glucogalloyl 331 271,221,170 0.55 0.94 0.70 0.52 3.1 Glucogalloyl 331 271,221,170 0.71 0.95 0.70 0.45 10.3 Trigalloylglucose 635 617,465,313,170 0.21 0.86 0.28 0.10 14.0 Trigalloylglucose 635 617,465,313,170 0.10 0.83 0.58 0.29 16.4 Trigalloylglucose 635 617,465,313,170 0.57 0.17 0.15 0.03 15.8 Tetragalloylglucose 787 635,617,465,313 0.64 1.39 0.53 0.38 16.9 Tetragalloylglucose 787 635,617,465,313 0.39 0.64 0.34 0.24 18.9 Tetragalloylglucose 787 635,617,465,313 1.15 3.78 2.09 1.22 19.4 Tetragalloylglucose 787 635617,465,313 2.73 4.86 2.08 1.18 19.9 Galloylpaeoniflorin 631 479,313,169 1.14 2.02 2.07 1.70 21.7 Galloyl-paeoniflorin 631 479,313,169 3.75 0.53 0.73 0.72 22.3 Galloyl-paeoniflorin 631 479,313,169 1.16 0.12 0.15 0.14 22.6 Galloyl-paeoniflorin 631 479,313,169 0.84 0.01 0.03 0.06 23 Galloyl-paeoniflorin 631 479,313,169 2.48 0.11 0.02 0.06 22.7 Pentagalloyl-benzylglucose 891 739,587,569,525,417,170 0.41 0.12 0.03 0.04 23.4 Pentagalloyl-benzylglucose 891 739,587,569,525,417,170 2.23 0.61 0.24 0.25 9 Oxypaeoniflorin 495 465,333,281 0.05 0.10 0.66 0.15 23.6 Trigalloyl-benzylglucose 739 587,569,525,417,170 1.33 0.39 0.20 0.13 18.8 Hexagalloylglucose 1091 939,769,617 24.46 29.96 11.64 13.38 20.3 Paeoniflorin 479 449,327,165,121 3.61 0.18 0.05 0.18 Total 54.43 55.67 28.24 24.9

*Dataaremeanofthreedifferentmeasurements.DVSTareintherangeof5%.Rt:Retentiontime.

Fig.7.Totalphenolic(TPC),totalflavonoid(TFC)andantioxidantpropertiesoftestedPaeoniaextracts(EA:Ethylacetate;MeOH:Methanol;GAE:Gallicacidequivalent;RE: Rutinequivalent:TE:Troloxequivalent;EDTAE:EDTAequivalent).Differentlettersindicateasignificantdifferencebetweentheextracts(p<0.05).

(8)

Fig.8. Statisticalevaluations(A&B:DistributionofPaeoniaextractsonthefactorialplanandrepresentationofbiologicalactivitiesonthecorrelationcirclebasedonPCA; C:DendrogramfrombiologicalactivitiesofPaeoniaextracts;D:Correlationcoefficientsbetweentotalbioactivecompoundsandbiologicalactivities(PearsonCorrelation Coefficient(R),p<0.05);EA:Ethylacetate;MeOH:Methanol;AP:Aerialparts;R:Root;TPC:Totalphenoliccontent;TFC:Totalflavonoidcontent).

intheFentonreactiontoproducetoxicfreeradicals.Thepresent

findingsrevealedthatamongtheP.arietinaextracts,the

methano-licaerialpartshowedthehighestDPPH(544.72mgTE/gextract)

andABTS(659.53mgTE/gextract)scavengingactivities.A

simi-larresultwasobservedforP.kesrounansiswherebythemethanol

extractofitsaerialpartsexertedthehighestDPPH(540.23mgTE/g

extract)andABTS(631.83mgTE/gextract)scavengingeffects.

The reducing power, in terms of ferricand cupricreducing

effects,wasdeterminedasshowninFig.7.Amongthethreeextracts

ofP.kesrounansis,themethanolicaerialpartdisplayedthestrongest

reducingeffectinbothassays(CUPRAC:775.09mgTE/gextract;

FRAP:409.12mgTE/gextract).Similarly,themethanolicextract

oftheaerialpartsofP.arietinahadthehighestreducingeffects

(CUPRAC:753.93mgTE/gextract;FRAP:392.96mgTE/gextract)

amongtherespectiveextracts.

Ascanbeobserved,themethanolicextractoftheaerialpartsof

bothplantsshowedthegreatestscavengingandreducingactivities,

whichcouldbecorrelatedtotheamountofbioactivecompoundsin

theextract.Indeed,thegreatestlevelsofphenoliccompoundsand

flavonoidswereobservedinthemethanolicextractoftheaerial

parts,andinfact,anumberofstudiesfoundthatthetotalphenolic

andflavonoidcontentarepositivelycorrelatedwithDPPHandABTS

scavenging,andFRAPandCUPRACreducingactivity[22].Touching

Paeoniaspp.,astudyconductedbyOrhanetal.[16]reportedthat

thecrudeethanolicrootextractsofP.turcica(syn.P.kesrounansis)

anddifferentsubspeciesofP.mascula(syn.P.arietina),includingP.

mascula(westernAnatoliansample),P.mascula(easternAnatolian

sample),andP.masculasubsp.arasicoladisplayedDPPHandnitric

oxidescavengingactivity,whileP.masculasubsp.boduriididnot

showanyDPPHscavengingeffect.

Furthermore,we investigatedthe antioxidantactivity ofthe

extractsbasedonthephosphomolybdenumandmetalchelating

assays.Inthephosphomolybdenum method,Mo(VI)is reduced

toMo(V)bytheantioxidantcompoundsandagreenphosphate

Mo(V)complexisformed.Chelationoftransitionmetalsisalso

importantsincethesemetalscatalyzeFentonreactionwhichplays

amajorroleinoxidativestressinvivo.AmongtheextractsofP.

kesrounansis,themethanolextractoftheaerialpartsshowedthe

greatestactivity(3.46mmolTE/gextractand 33.85mgEDTAE/g

extract in thephosphomolybdenum and metal chelatingassay,

respectively).Thisisalsoinagreementwiththelevelofphenolic

compoundsin theextract. Indeed,a previousstudyby

Sownd-hararajanandKang[23]alsoobservedthatplantextractshowing

highlevelofTPCandTFCdisplayshighactivityinthe

phospho-molybdenumandmetalchelatingassays.ConsideringP.arietina,

thehighestactivityinthephosphomolybdenumassaywasexerted

bytheethyl acetateextract oftheaerialparts (3.78mmolTE/g

extract)whiletheaqueousextractoftheaerialpartsshowed

high-estmetalchelatingeffect(30.57mg EDTAE/gextract).Although

thesetwoextractsweremosteffectiveinthesetwoantioxidant

assays,theydidnotdisplaythehighestTPCandTFC,hence

indicat-ingthepresenceofothercompoundsmodulatingtheirobserved

activities.

3.3.1. Enzymeinhibitoryactivity

Manydrugtherapiesarebasedontheinhibitionoftheactivity

ofoveractiveenzyme(s)toslow-downtheprogressionofdiseases

andtoalleviatetheassociatedsymptoms.Inthepresentstudy,the

enzymeinhibitoryactivityofP.arietinaandP.kesrounansisextracts

againstcholinesterases(AChEand BChE),tyrosinase,␣-amylase,

and␣-glucosidaseweretestedandresultsarepresentedinFig.9.

Cholinesteraseinhibitorsarethemajorclassofdrugswhichare

currentlyutilizedforthesymptomatictreatmentofAlzheimer’s

disease.Cholinesterasesarethemaintargetsofvariousreversible,

irreversibleorpseudo-irreversibleinhibitors,someofwhichmay

cause side effects such as diarrhoea, nausea, vomiting,muscle

cramps,lowbloodpressure,insomnia,fatigue,andlossofappetite

[24].Naturalcompoundsorplantextractsaspossiblesourcesof

therapeuticsforAlzheimer’sdiseasearethereforeintensively

stud-ied.Paeoniaspp.areusedintraditionalmedicineasneuroprotective

[4,6],thereforeweevaluatedPaeoniaextractsaspossibleinhibitors

(9)

S.Sutetal./JournalofPharmaceuticalandBiomedicalAnalysis165(2019)1–11 9

Fig.9.EnzymeinhibitoryeffectsoftestedPaeoniaextracts(EA:Ethylacetate;MeOH:Methanol;GALAE:Galatamineequivalent;KAE:Kojicacidequivalent:ACAE:Acarbose equivalent).Differentlettersindicateasignificantdifferencebetweentheextracts(p<0.05).

P.arietina, theethyl acetate extract of theaerial partsshowed

thehighestAChE (4.95mg GALAE/gextract)and BChE(5.73mg

GALAE/gextract)inhibitionfollowedbytheethylacetateextract

oftheroot(4.45and5.05mgGALAE/gextract,respectively).For

P.kesrounansis,themethanolextractoftheaerialpartsandroot

werethemosteffectiveAChE(4.68mgGALAE/gextract)andBChE

(5.98mgGALAE/gextract)inhibitors,respectively.Nosignificant

AChEandBChEinhibitionwasexertedbytheaqueousextractof

therootandaerialpartsofP.kesrounansis,respectively.

Intestinal␣-glucosidaseisakeyenzymeincarbohydrate

diges-tion.It issecreted intheepitheliumof thesmall intestine.The

majorsourceof blood glucose isrepresented bydietary

carbo-hydratesincludingstarch,whichishydrolyzedby␣-glucosidases

andpancreatic␣-amylase,andthenabsorbedbythesmall

intes-tine.Consequently,␣-glucosidaseand␣-amylaseinhibitorshave

beenrecognizedasatherapeutictargetforthecontrolof

postpran-dialhyperglycemia,which istheearliestmetabolicabnormality

thatoccurs intype 2diabetesmellitus[17]. Wefoundthatthe

ethylacetateextractofP.arietinaaerialparts(1.39mmolACAE/g

extract)hadthestrongest␣-amylaseinhibitoryeffectfollowedby

therootone(1.09mmolACAE/gextract).Bothextractsalso

dis-playedthegreatest␣-glucosidaseinhibitioncomparedtotheother

extracts(root ethylacetateextract:10.33mmolACAE/gextract;

aerialpartsethylacetateextract:10.30mmolACAE/gextract).A

similarpatternwasobservedforP.kesrounansis-themost

effec-tive␣-amylaseinhibitorwastheethylacetateextractoftheaerial

parts(1.26mmolACAE/gextract)followedbytherootethylacetate

extract (1.22mmol ACAE/g extract).Likewise, theethyl acetate

extract of the aerial parts displayed the highest ␣-glucosidase

inhibitoryactivity(10.28mmolACAE/gextract).

Itistobenotedthatalthoughtheethylacetateextractsshowed

highenzymeinhibitoryactivitiesagainstAChE,BChE,␣-amylase,

and␣-glucosidase,theycontainedloweramountofphenolicsand

flavonoidcomparedtothemethanolcounterpart.Thenon-direct

correlationbetweenphenolicamountandactivitymightberelated

tospecificactivityofsomecompoundsresponsiblefortheobserved

effectsortosynergisticeffectsofthedifferentcomponentsofthe

wholeextract[25].Itisalsoimportanttonotethatprevious

stud-ies[26]havealsoobservedthehighestAChE,BChE,␣-amylase,and

␣-glucosidaseinhibitoryactivityofethylacetateextractsofplants

comparedtotheirmethanolicandwaterextracts,whichmay

indi-catethatthecompoundsmodulatingtheseeffectmightbemore

solubleinethylacetate.Nonetheless,furtherstudiesareneededto

confirmthishypothesis.

Furthermore,thepresentfindingsrevealedthatbothP.arietina

andP.kesrounansisextractsinhibitedtyrosinase(Fig.9).

Tyrosi-nase, theratelimiting enzymeof the melanogenic pathway,is

a key enzyme in melanin synthesis and it is major

therapeu-tictargettoalleviatecutaneoushyperpigmentation[26].Among

(10)

aerialparts (145.43mgKAE/g extract) followed bythat of root

(143.66mgKAE/gextract)displayedthehighesttyrosinase

inhi-bition.Similarly, the most effective tyrosinase inhibitor among

the extracts of P. kesrounansis was the methanolic extract of

theaerialparts(148.34mgKAE/g extract)followed bytheroot

methanolicextract (141.05mg KAE/g extract).The high

tyrosi-naseinhibitory effectof themethanolicextractsof both plants

is likely due to their highest level of phenolic and flavonoid

as found in the present study. Previous investigations [27,28]

showed that plant extracts possessing high level of TPC and

TFCalsodisplayedhighanti-tyrosinaseactivity.Withregardsto

otherPaeoniaspecies,apreviousstudyprovedtheanti-tyrosinase

activity of the methanolic extract of the aerial parts of Greek

P.masculassp.hellenica,displayinganIC50valueof135.2␮g/ml

[29]. In addition, three isolated compounds from the

flow-ers of P. lactiflora; 1,2,3,6-tetra-O-galloyl-ˇ-D-glucopyranoside,

1,2,3,4,6-penta-O-galloyl-ˇ-D-glucopyranoside and kaempferol

3-O-(6-O-galloyl)-ˇ-D-glucopyranoside, were found to inhibit

tyrosinasewithIC50valuesrangingfrom0.23to0.35␮g/ml,with

greater effectiveness compared to kojic acid (IC50=6.4␮g/ml)

[30].

3.3.2. Statisticalevaluation

Principal component (PCA), cluster and correlation analysis

wereperformedtounderstandpossiblerelationsbetweenPaeonia

extracts,componentsandcorrespondingbioactivities.Allresults

aredepictedinFig.8.PCAbuilttwoprincipalcomponents,which

explained82.82% oftotal variability(Fig.8A).ThevariablesTPC,

TFC,DPPH, ABTS, CUPRACand FRAP contribute strongly tothe

formationofaxis1(51.34%),whilethevariablesincluding

tyrosi-nase,amylases,BChEandAChEarestronglycorrelatedtoaxis2

(31.48%).Clearly,astrongcorrelationwasobservedbetweentotal

bioactivecompoundsand antioxidant assays.For example,

cor-relationcoefficientvaluesweremorethan0.9betweenTPCand

DPPH,ABTS,FRAPandCUPRAC.However,anegativecorrelation

wasfoundfor␣-glucosidaseinhibition(Fig.8D).Also,wecould

notethatthemethanolextractsfromtheaerialpartsofthe

Paeo-niaspeciesexhibitedthestrongestantioxidantcapacityamongthe

analyzedextracts(Fig.8B).Likewise,thelowestantioxidantactivity

wasobservedintheaqueousrootextractsofbothspecies.Extracts

fromcorrespondingplantpartsofeachspecieswereclosetoeach

otherandallextractsclusteredasfourgroupsbasedonbiological

activityresults(Fig.8C).

4. Conclusion

Thepresentinvestigationshowedthatthephytochemical

com-position of P. arietina and P. kesrounansis are similar and are

characterizedbygalloylestersandflavonoidglycosides.

Further-more, the extracts showedsignificant antioxidant and enzyme

inhibitoryactivities.Themethanolicextractoftheaerialpartsof

both plantsshowed thehighest antioxidantactivity inmost of

theassays(DPPH,ABTS,CUPRAC,andFRAP)andstrongest

inhi-bitionoftyrosinase.Theethylacetateextractoftheaerialparts

ofbothplantswerethemosteffective␣-amylaseinhibitors.The

rootmethanolicextractofP.kesrounansisshowedthehighestBChE

inhibitionwhiletherootethylacetateextractofP.arietinaexerted

thestrongestinhibitionagainst␣-glucosidase.Thepresent

find-ingsofferpreliminarydataforthevalorizationofPaeoniaspecies

as sources of bioactive constituents with potential use in the

management of severalchronic diseases.Further investigations

shouldbeperformedtoassesstheobservedbioactivitiesbyinvivo

modelsapplyingboththepharmacodynamicandpharmacokinetic

approachandalsotoestablishtheirsafetyprofilethroughtoxicity

studies.

Conflictofinterest

Wewishtoconfirmthattherearenoknownconflictsofinterest

associatedwiththispublicationandtherehasbeennosignificant

financialsupportforthisworkthatcouldhaveinfluencedits

out-come.

Authorcontributions

SS,SD,MG,KS:ChemicalAnalysis;GZ:Biologicalactivity

anal-ysis;GB,AD,MZH:Collectionandidentificationoftheseplantand

GZ,MZA,FM,MFM,SS,SD,KˇS:Dataanalysisandwriting.

Acknowledgement

This workwas supported by the IGA UVPSBrno (grant no.

310/2016/FaF)

References

[1]N.Özhatay,M.Page,M.Sinnott,Plate390.Paeoniaturcica,Curtis’sBot.Mag. 17(2)(2000)92–98.

[2]L.Ji,Q.Wang,J.A.T.daSilva,X.N.Yu,ThegeneticdiversityofPaeoniaL,Sci. Hort.143(2012)62–74.

[3]E.Valiakos,M.Marselos,N.Sakellaridis,T.Constantinidis,H.Skaltsa, Ethnopharmacologicalapproachtotheherbalmedicinesofthe“Antidotes”in NikolaosMyrepsos’Dynameron,J.Ethnopharmacol.163(2015)68–82.

[4]E.Lev,Z.Amar,Ethnopharmacologicalsurveyoftraditionaldrugssoldinthe KingdomofJordan,J.Ethnopharmacol.82(2-3)(2002)131–145.

[5]K.Malik,M.Ahmad,G.Zhang,N.Rashid,M.Zafar,S.Sultana,S.N.Shah, Traditionalplantbasedmedicinesusedtotreatmusculoskeletaldisordersin NorthernPakistan,Eur.J.Integr.Med.19(2018)17–64.

[6]S.Kayani,M.Ahmad,S.Sultana,Z.K.Shinwari,M.Zafar,G.Yaseen,M.Hussain, T.Bibi,EthnobotanyofmedicinalplantsamongthecommunitiesofAlpine andSub-AlpineregionsofPakistan,J.Ethnopharmacol.164(2015)186–202.

[7]H.Sher,R.W.Bussmann,R.Hart,H.J.deBoer,Traditionaluseofmedicinal plantsamongKalasha,IsmaeliandSunnigroupsinChitralDistrict,Khyber Pakhtunkhwaprovince,Pakistan,J.Ethnopharmacol.188(2016)57–69.

[8]Q.Fu,T.Yu,H.-M.Yuan,Y.Song,L.Zou,PaeonidaninsF–H:Threenewdimeric monoterpeneglycosidesfromPaeonialactifloraandtheiranti-inflammatory activity,Phytochem.Lett.13(2015)386–389.

[9]C.Li,K.Yazawa,S.Kondo,Y.Mukudai,D.Sato,Y.Kurihara,T.Kamatani,S. Shintani,TherootbarkofPaeoniamoutanisapotentialanticanceragentin humanoralsquamouscellcarcinomacells,AnticancerRes.32(7)(2012) 2625–2630.

[10]L.Kishore,N.Kaur,R.Singh,NephroprotectiveeffectofPaeoniaemodivia inhibitionofadvancedglycationendproductsandoxidativestressin streptozotocin–nicotinamideinduceddiabeticnephropathy,J.FoodDrug Anal.25(3)(2017)576–588.

[11]E.Tuzlacı,A.Do˘gan,Turkishfolkmedicinalplants,IX:Ovacık(Tunceli), MarmaraPharmaceut.J.14(3)(2010)136–143.

[12]E.Altundag,M.Ozturk,Ethnomedicinalstudiesontheplantresourcesofeast Anatolia,Turkey,ProcediaSoc.Behav.Sci.19(2011)756–777.

[13]S.Akbulut,M.M.Bayramoglu,Thetradeanduseofsomemedicaland aromaticherbsinTurkey,Stud.Ethno-Med.7(2)(2013)67–77.

[14]B.A.Zargar,M.H.Masoodi,B.A.Khan,S.Akbar,PaeoniaemodiRoyle: ethnomedicinaluses,phytochemistryandpharmacology,Phytochem.Lett.6 (2)(2013)261–266.

[15]P.Picerno,T.Mencherini,F.Sansone,P.DelGaudio,I.Granata,A.Porta,R.P. Aquino,ScreeningofapolarextractofPaeoniarockii:compositionand antioxidantandantifungalactivities,J.Ethnopharmacol.138(3)(2011) 705–712.

[16]I.Orhan,B.Demirci,I.Omar,H.Siddiqui,E.Kaya,M.I.Choudhary,G. Ecevit-Genc¸,N.Özhatay,B.S¸ener,K.H.C.Bas¸er,Essentialoilcompositionsand antioxidantpropertiesoftherootsoftwelveAnatolianPaeoniataxawith specialreferencetochromosomecounts,Pharm.Biol.48(1)(2010)10–16.

[17]S.Uysal,G.Zengin,M.Locatelli,M.B.Bahadori,A.Mocan,G.Bellagamba,E.De Luca,A.Mollica,A.Aktumsek,Cytotoxicandenzymeinhibitorypotentialof twoPotentillaspecies(P.speciosaL.andP.reptansWilld.)andtheirchemical composition,Front.Pharmacol.8(2017)290.

[18]R.Li,J.-F.Zhang,Y.-Z.Wu,Y.-C.Li,G.-Y.Xia,L.-Y.Wang,B.-L.Qiu,M.Ma,S.Lin, Structuresandbiologicalevaluationofmonoterpenoidglycosidesfromthe rootsofPaeonialactiflora,J.Nat.Prod.81(2018)1252–1259.

[19]V.U.Ahmad,M.Zubair,M.AtharAbbasi,M.AbidRashid,N.Rasool,S.Nahar Khan,M.IqbalChoudhary,F.Kousar,Structuredeterminationofbioactive galloylderivativesbyNMRspectroscopy,Magn.Reson.Chem.43(6)(2005) 486–488.

[20]M.Blunder,A.Orthaber,R.Bauer,F.Bucar,O.Kunert,Efficientidentificationof flavones,flavanonesandtheirglycosidesinroutineanalysisviaoff-line

(11)

S.Sutetal./JournalofPharmaceuticalandBiomedicalAnalysis165(2019)1–11 11

combinationofsensitiveNMRandHPLCexperiments,FoodChem.218(2017) 600–609.

[21]C.He,B.Peng,Y.Dan,Y.Peng,P.Xiao,Chemicaltaxonomyoftreepeony speciesfromChinabasedonrootcortexmetabolicfingerprinting, Phytochemistry107(2014)69–79.

[22]C.A.Can-Cauich,E.Sauri-Duch,D.Betancur-Ancona,L.Chel-Guerrero,G.A. González-Aguilar,L.F.Cuevas-Glory,E.Pérez-Pacheco,V.M.Moo-Huchin, Tropicalfruitpeelpowdersasfunctionalingredients:evaluationoftheir bioactivecompoundsandantioxidantactivity,J.Funct.Food.37(2017) 501–506.

[23]K.Sowndhararajan,S.C.Kang,Freeradicalscavengingactivityfromdifferent extractsofleavesofBauhiniavahliiWight&Arn,Saudi,J.Biol.Sci.20(4) (2013)319–325.

[24]M.Mehta,A.Adem,M.Sabbagh,Newacetylcholinesteraseinhibitorsfor Alzheimer’sdisease,J.AlzheimersDis.(2012)(2012)8.

[25]K.Sonam,S.Guleria,Synergisticantioxidantactivityofnaturalproducts,Ann. Pharmacol.Pharmaceut.2(16)(2017)1086,Article.

[26]G.Zengin,G.Bulut,A.Mollica,M.Z.Haznedaroglu,A.Dogan,A.Aktumsek, BioactivitiesofAchilleaphrygiaandBupleurumcroceumbasedonthe

compositionofphenoliccompounds:invitroandinsilicoapproaches,Food Chem.Toxicol.107(2017)597–608.

[27]N.Wahab,Phenoliccontent,anti-agingandcytotoxicityactivitiesofcocoa beanextractforapotentialuseincosmeceuticals,in:4thWorldCongresson MedicinalPlantsandNaturalProductsResearchAugust08-09,2018Osaka, JapanTheme:NewFrontiersinTransformingFutureofMedicinalPlants,2018.

[28]N.Zamani,M.Gazali,I.Batubara,Thestudyoftyrosinaseandantioxidant activityofXylocarpusgranatumKoenigseedkernelextracttowardevidence basedindigenousknowledgefromTogeanArchipelago,Indonesia,J.Marine Sci.Res.Dev.5(3)(2015)1.

[29]E.Chaita,G.Lambrinidis,C.Cheimonidi,A.Agalou,D.Beis,I.Trougakos,E. Mikros,A.-L.Skaltsounis,N.Aligiannis,Anti-MelanogenicpropertiesofGreek plants.AnoveldepigmentingagentfromMorusalbawood,Molecules22(4) (2017)514.

[30]A.A.Magid,M.Schmitt,P.-C.Prin,L.Pasquier,L.Voutquenne-Nazabadioko,In vitrotyrosinaseinhibitoryandantioxidantactivitiesofextractsand constituentsofPaeonialactifloraPall.flowers,Nat.Prod.J.7(3)(2017) 237–245.

Şekil

Fig. 1. 1 H-NMR spectra of the tested methanol extracts (1- P. kesrounansis aerial part; 2- P
Fig. 3. Exemplificative HSQC spectrum of the methanolic Paeonia extract with some of the identified position of compounds.
Fig. 4. Enlarged area of the HSQC-DEPT spectrum of Paeonia extract showing the assignments of the monoterpenoid derivative of paeoniflorine type.
Fig. 6. General structures of the main phytoconstituents identified in the tested methanol extracts of the studied Paeonia spp
+4

Referanslar

Benzer Belgeler

Çinili Köşkün 1297 (1880) senesi ramazanın­ da o vakit Maarif Nezareti Makamını işgal eden Miinif paşanın bir nutkiyle Müze olarak resmen açılış töreni

[r]

Eğlence mekânları, hizmet sektörü içerisinde yer alan ve günümüzde ekonomik hayat içerisinde oldukça büyük bir yeri dolduran mekânlardır. Bu mekânlarda

Memleketimizin kalkınması ve Batı Medeniyeti seviyesine ulaşması için ananın aydın ve kültürlü olması gerekeceği, kadını aydın ve kültürlü olmayan

Bakırköy Tıp Dergisi Cilt 11, Sayı 3’de “Can General Anesthesia Trigger The Activation of Latent Measles Infection?” başlıklı olgu sunumu yazar tarafından sistemden

GaN epitaxial layers on such thermally treated basal plane ZnO with Zn and O polarity have been grown by molecular beam epitaxy, and two-dimensional growth mode was achieved

Bacillus subtilis bakterisinin genel görünümü (URL-6, 2018) ... mascula kök ekstraktlarının çalışılan bakteriler üzerinde oluşturdukları inhibisyon zon çapları: a-b)

Effect of six weeks aerobic training upon blood trace metals levels any relation between the blood zinc or copper levels and..