• Sonuç bulunamadı

Measurement of B-c(2S)(+) and B-c*(2S)(+) cross section ratios in proton-proton collisions at root s=13 TeV

N/A
N/A
Protected

Academic year: 2021

Share "Measurement of B-c(2S)(+) and B-c*(2S)(+) cross section ratios in proton-proton collisions at root s=13 TeV"

Copied!
21
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Measurement of B

c

ð2SÞ

+

and B

c

ð2SÞ

+

cross section ratios

in proton-proton collisions at

p

ffiffi

s

= 13 TeV

A. M. Sirunyanet al.*

(CMS Collaboration)

(Received 19 August 2020; accepted 29 September 2020; published 16 November 2020) The ratios of the Bcð2SÞþto Bþc, Bcð2SÞþto Bþc, and Bcð2SÞþto Bcð2SÞþproduction cross sections are measured in proton-proton collisions at pffiffiffis¼ 13 TeV, using a data sample collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of143 fb−1. The three measurements are made in the Bþc meson phase space region defined by the transverse momentum pT> 15 GeV and absolute rapidityjyj < 2.4, with the excited BðÞc ð2SÞþ states reconstructed through the BðÞþc πþπ−, followed by the Bþc → J=ψπþ and J=ψ → μþμ− decays. The Bcð2SÞþ to Bcþ, Bcð2SÞþ to Bþc, and Bcð2SÞþ to Bcð2SÞþ cross section ratios, including the unknown BðÞc ð2SÞþ→ BðÞþc πþπ− branching fractions, are ð3.47  0.63ðstatÞ  0.33ðsystÞÞ%, ð4.69  0.71ðstatÞ  0.56ðsystÞÞ%, and 1.35  0.32ðstatÞ  0.09ðsystÞ, respectively. None of these ratios shows a significant dependence on the pT orjyj of the Bþc meson. The normalized dipion invariant mass distributions from the decays BðÞc ð2SÞþ→ BðÞþc πþπ− are also reported.

DOI:10.1103/PhysRevD.102.092007

I. INTRODUCTION

The production cross sections of the Bþc family of mesons, quark-antiquark bound states of two different flavors, charm and beauty, are significantly smaller than those of the charmonium and bottomonium states. The unprecedented collision energies and integrated luminos-ities of the proton-proton (pp) data samples collected at the CERN LHC allow, for the first time, detailed studies regarding the production and properties of Bþc quarkonia. The observation of the Bcð2SÞþ and Bcð2SÞþ states was recently reported by the CMS experiment[1], using a pp data sample collected atpffiffiffis¼ 13 TeV between 2015 and 2018, on the basis of well-resolved peaks in the Bþcπþπ− invariant mass distribution, with the Bþc meson recon-structed in the Bþc → J=ψπþ decay channel, and J=ψ → μþμ−. The LHCb Collaboration also reported the observation of the Bcð2SÞþ state, using a pp data sample collected at 7, 8, and 13 TeV [2]. Masses of the Bcð2SÞþ and Bcð2SÞþ states are found to be consistent with theoretical predictions [3–5]. These results stimulated new theoretical studies aimed at reaching a better

understanding of the Bþc quarkonium family, such as those reported in Refs.[6,7].

The present paper reports an analysis that complements the previous observation of the Bcð2SÞþand Bcð2SÞþstates

[1]with the measurement of the Bcð2SÞþ to Bþc, Bcð2SÞþ to Bþc, and Bcð2SÞþ to Bcð2SÞþ cross section ratios, an important step in making further progress on under-standing these two excited Bþc states. The invariant mass distributions of the pair of pions emitted in the BðÞc ð2SÞþ → BðÞþc πþπ− decays are also presented, to probe the existence of possible intermediate structure analogous to the ones observed in decays between the 2S and 1S states of charmonium and bottomonium[6,7]. Throughout this paper, BðÞþc denotes Bþc or Bþc , and BðÞc ð2SÞþ denotes Bcð2SÞþor Bcð2SÞþ. Charge-conjugate states are also implied, unless stated otherwise. The data sample of 13 TeV pp collisions used in this analysis corresponds to an integrated luminosity of 143 fb−1 and was collected by CMS between 2015 and 2018. The measurements are performed in a phase space region defined by the Bþc meson transverse momentum pT> 15 GeV and rapidity jyj < 2.4.

II. EXPERIMENTAL APPARATUS, DATA SAMPLE, AND EVENT SELECTION

The central feature of the CMS apparatus is a super-conducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

(2)

electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two end cap sections. Muons are measured in the pseudorapidity range jηj < 2.4, with detection planes made using three technologies: drift tubes, cathode strip chambers, and resistive plate chambers. Matching muons to tracks mea-sured in the silicon tracker results in a relative transverse momentum resolution, for muons with pTup to 100 GeV, of 1% in the barrel and 3% in the end caps[8]. The single-muon trigger efficiency exceeds 90% over the fullη range, and the efficiency to reconstruct and identify muons is greater than 96%. A more detailed description of the CMS detector, together with a definition of the coordinate system used and relevant kinematic variables, can be found in Ref. [9].

The event sample was collected with a two-level trigger system [10]. At level 1, custom hardware pro-cessors select events with two muons. The high-level trigger requires an opposite-sign muon pair of invariant mass in the range 2.9–3.3 GeV, a dimuon vertex fit χ2 probability larger than 10%, a distance of closest approach between the two muons smaller than 0.5 cm, and a distance between the dimuon vertex and the beam axis, Lxy, larger than 3 times its uncertainty. Both muons must have pT> 4 GeV and jηj < 2.5. In addition ⃗pT must be aligned with the dimuon transverse decay displacement vector ⃗Lxy by requiring cosθ > 0.9, where cosθ ¼ ⃗Lxy· ⃗pT=ðLxypTÞ. The trigger also requires a third track in the event, compatible with being produced at the dimuon vertex (normalized χ2< 10), and having pT> 1.2 GeV, jηj < 2.5, and a significance on the track impact parameter of at least 2. The off-line reconstruction requires two opposite-sign muons matching those that triggered the detector readout, with some requirements being stricter than at the trigger level, such as jηj < 2.4 and cosθ > 0.98. The muon candidates must pass high-purity track quality requirements[11], and fulfill the soft-muon identification requirements [8], which imply, in particular, that there are more than five hits in the silicon tracker, with at least one in the pixel layers. The two muons must also be close to each other in angular space:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΔηÞ2þ ðΔϕÞ2 p

< 1.2, where Δη and Δϕ are the differences in pseudorapidity and azimuthal angle, respectively, between their momenta.

III. MEASUREMENT OF THE CROSS SECTION RATIOS

A. Introduction

The ratios of the BðÞc ð2SÞþ to Bþc and Bcð2SÞþ to Bcð2SÞþ cross sections, Rþ, Rþ, and Rþ=Rþ, respec-tively, reported in this paper are derived from the ratios of the measured yields, corrected by the detection efficiencies,ϵ: Rþ≡σðBcð2SÞ þÞ σðBþ cÞ BðBcð2SÞþ→ Bþcπþπ−Þ ¼NðBcð2SÞþÞ NðBþcÞ ϵðBþ cÞ ϵðBcð2SÞþÞ ; Rþ≡σðB  cð2SÞþÞ σðBþ cÞ BðB cð2SÞþ → Bþc πþπ−Þ ¼NðBcð2SÞþÞ NðBþcÞ ϵðBþ cÞ ϵðB cð2SÞþÞ ; Rþ=Rþ¼σðB  cð2SÞþÞ σðBcð2SÞþÞ BðB cð2SÞþ→ Bþc πþπ−Þ BðBcð2SÞþ → Bþcπþπ−Þ ¼NðBcð2SÞþÞ NðBcð2SÞþÞ ϵðBcð2SÞþÞ ϵðB cð2SÞþÞ : ð1Þ

TheB parameters are the unknown branching fractions of the BðÞc ð2SÞþ → BðÞþc πþπ− decays. The Bþc meson is assumed to decay to the Bþc ground state and a low-energy photon with a branching fraction of 100%, where the photon is not reconstructed.

B. Measurement of the Bc+ yield

The Bþc → J=ψπþ candidates are reconstructed through a kinematic vertex fit, combining the dimuon with another track. The dimuon invariant mass is constrained to the world-average J=ψ mass[12]and the other track assumed to be a pion must fulfilljηj < 2.4 and pT> 3.5 GeV. The primary vertex (PV) associated with the Bþc candidate is selected among all the reconstructed vertices[13]as the one with the smallest angle between the reconstructed Bþc momentum and the vector joining the PV with the Bþc decay vertex. To avoid biases, this PV is then refitted without the tracks associated with the muons and the pion. The Bþc candidates are required to have pT> 15 GeV, jyj < 2.4, a kinematic vertex fit χ2 probability larger than 10%, and a decay length (distance between the J=ψπþ vertex and the PV) larger than 100 μm. If several Bþc candidates are found in the same event, which happens in 1.6% of the events, only the one with the highest pTis kept. Simulation studies show that this choice identifies the correct candidate with 99% probability. These selection criteria were defined through studies of simulated signal samples and measured sideband events[1].

Figure 1 shows the invariant mass distribution of the reconstructed and selected Bþc → J=ψπþcandidates, where the Bþc signal is clearly seen as a prominent peak[1]. The result of an unbinned maximum-likelihood fit is also shown, together with the signal and background contribu-tions. The underlying background is modeled as the sum of three terms: (a) uncorrelated J=ψ-track combinations (combinatorial background) parametrized by a first-order polynomial, (b) partially reconstructed Bþc → J=ψπþX decays, only relevant for invariant mass values below 6.2 GeV and parametrized by a generalized ARGUS

(3)

function [14] convolved with a Gaussian resolution, and (c) a small contribution from Bþc → J=ψKþdecays, with a shape fixed from simulation studies (described later) and a normalization fixed by the Bþc → J=ψπþ yield, scaled by the ratio of the corresponding branching fractions[15]and reconstruction efficiencies. The Bþc signal peak is modeled by a double-Gaussian function,

wGðμ; σ1Þ þ ð1 − wÞGðμ; σ2Þ; ð2Þ where Gðμ; σÞ represents a Gaussian function with mean μ and standard deviationσ, and w is the relative fraction of the narrower Gaussian in the fit. The single mean μ corresponds to the average reconstructed Bþc mass. The fit gives w ¼ 47%, σ1¼ 21 MeV, and σ2¼ 42 MeV, the very different Gaussian widths reflecting the fact that the Bþc mass resolution depends on rapidity degrading from the barrel to the end cap regions. The Bþc mass resolution [1] agrees with expectations from simulation studies, of approximately 34 MeV.

The fitted Bþc mass is MðBþcÞ ¼ 6271.1  0.5 MeV and the Bþc signal yield is 7629  225 events, where the uncertainties are statistical only. The measured invariant mass distribution is well reproduced by the sum of the fitted contributions reflected in the χ2 between the binned distribution and the fit function of 35 for 30 degrees of freedom.

C. Measurement of the Bcð2SÞ+ and Bcð2SÞ+ yields The Bcð2SÞþ and Bcð2SÞþ candidates are also recon-structed through vertex kinematic fits, combining a Bþc candidate with two opposite-sign, high-purity tracks assumed to be pions. The selected Bþc candidates must

have invariant mass in the 6.2–6.355 GeV range, where the low-mass edge is selected so as to avoid the background caused by partially reconstructed decays (represented by the gray area below 6.2 GeV in Fig.1). The lifetimes of the Bcð2SÞþ and Bcð2SÞþ are assumed to be negligible with respect to the measurement resolution, so that the produc-tion and decay vertices essentially coincide. Therefore, the daughter pions are among the tracks used in the refitted PV. Furthermore, one of the pions must have pT> 0.8 GeV and the other pT> 0.6 GeV. The Bþcπþπ−candidates must have jyj < 2.4 and a vertex kinematic fit χ2 probability larger than 10%. As before, if several Bþcπþπ−candidates are found in the same event, only the one with the highest pT is kept.

Figure 2 shows the MðBþcπþπ−Þ − MðBþcÞ þ mBþc

dis-tribution, where MðBþcπþπ−Þ and MðBþcÞ are the recon-structed invariant masses of the Bþcπþπ− and Bþc candidates, respectively, and mBþc is the world-average

Bþc mass[12]. This variable is used in the analysis because it is measured with a better resolution than MðBþcπþπ−Þ, given that some of the measurement uncertainties cancel in the difference. The measured distribution is fitted to a superposition of two signal peaks using the same para-metrization as in Eq. (2), plus a third-order Chebyshev polynomial modeling the nonpeaking, combinatorial back-ground. Two background contributions arising from Bþc → J=ψKþdecays are also considered, with shapes identical to those of the signal peaks, ignoring a negligible shift (less than 1 MeV) to lower mass values, and normalizations fixed by the ratio of the Bþc → J=ψKþ to Bþc → J=ψπþ signal yields.

Given the small number of events in the two signal peaks, the w and σ2double-Gaussian parameters are fixed to values determined in simulation studies: w ¼ 92% and

6.0 6.1 6.2 6.3 6.4 6.5 ) (GeV) + (J/ M 500 1000 1500 2000 Events / 15 MeV Data Fit result signal + J/ + c B + K J/ + c B + X + J/ + c B Comb. backg. = 13 TeV s -1 L = 143 fb CMS

FIG. 1. Invariant mass distribution of the Bþc → J=ψπþ can-didates, after applying all event selection criteria[1]. The fitted contributions are shown by the stacked distributions, the solid line representing their sum. The vertical dashed lines indicate the mass window used to select the Bþc candidates for the BðÞc ð2SÞþ reconstruction. 6.7 6.8 6.9 7.0 7.1 (GeV) + c B m ) + + c (B M ) + + c (B M 0 10 20 30 40 50 60 Events / 10 MeV Data Fit result Signal + ) + K (J/ + c B Comb. backg. (13 TeV) -1 143 fb CMS

FIG. 2. Invariant mass distribution of the BðÞc ð2SÞþ→ BðÞþc πþπ− candidates [1]. The Bcð2SÞþ corresponds to the lower-mass peak, the Bcð2SÞþ to the higher. The fitted contri-butions are shown by the stacked districontri-butions, the solid line representing their sum.

(4)

σ2¼ 3.1σ1 for the lower-mass peak, and w ¼ 86% and σ2¼ 2.8σ1 for the higher-mass peak. The two reso-nances are well resolved, with a mass difference of 28.9  1.5 MeV, where the uncertainty is statistical only. The widths of the peaks are consistent with the measure-ment resolution evaluated through simulation studies, which is approximately σ ¼ 6 MeV [1]. The unbinned extended maximum-likelihood fit gives 67  10 and 52  9 events for the lower- and higher-mass peaks, respectively. The quality of the fit can be quantified through the χ2 per degrees of freedom ratio,41=35.

As explained in Ref.[1], the Bcð2SÞþpeak is seen in the Bþcπþπ−invariant mass distribution at a mass value lower than that of the Bcð2SÞþpeak. The reason is that, contrary to what happens to the Bcð2SÞþ, which decays directly to Bþcπþπ−, the Bcð2SÞþ meson decays to Bþc πþπ− where the photon emitted in the subsequent Bþc → Bþcγ decay has too low energy to be reconstructed. Therefore, the Bcð2SÞþ peak is seen in the Bþcπþπ− mass spectrum at the mass MðBcð2SÞþÞ − ΔM, where ΔM ≡ ½MðBþc Þ − MðBþcÞ− ½MðB

cð2SÞþÞ − MðBcð2SÞþÞ. Since MðBþc Þ − MðBþcÞ is expected to be larger than MðBcð2SÞþÞ−MðBcð2SÞþÞ, the Bcð2SÞþ state corresponds to the lower-mass peak[3–5].

D. Reconstruction efficiencies

With respect to the observation analysis reported in Ref. [1], the main challenge in the determination of the BðÞc ð2SÞþto Bþc cross section ratios is the evaluation of the corresponding (relative) detection efficiencies. Since the trigger requires J=ψ → μþμ− from the Bþc → J=ψπþ decay, the trigger efficiencies for the Bþc and Bþcπþπ− candidates are essentially the same and cancel in the cross section ratios. So only the reconstruction efficiencies need to be evaluated, which is done using simulated event samples. All three mesons [Bþc, Bcð2SÞþ, and Bcð2SÞþ] are generated using the BCVEGPY 2.2 [16] Monte Carlo event generator. The events are then passed toPYTHIA8.230

[17]to simulate the hadronization process. The decays are performed by the EvtGen 1.6.0 package [18] and the quantum electrodynamic final-state radiation is modeled with PHOTOS 3.61 [19]. The simulated events are then processed through a detailed simulation of the CMS detector, based on the GEANT4 package [20], using the same trigger and reconstruction algorithms used to collect and process the data. The simulated events include multiple pp interactions in the same or nearby beam crossings (pileup), with a distribution matching the one observed in the data. Monte Carlo samples were extensively validated using control regions in the data.

The Bcð2SÞþand Bcð2SÞþ efficiencies are computed as NrecðB ðÞ c ð2SÞþÞ=NgenðB ðÞ c ð2SÞþÞ, where NgenðB ðÞ c ð2SÞþÞ are the numbers of BðÞc ð2SÞþ events generated in the BðÞþc πþπ− channel, in the phase space region of the analysis, pTðBþcÞ > 15 GeV and jyðBþcÞj < 2.4, and

NrecðBðÞc ð2SÞþÞ are the numbers of events that survive all the reconstruction steps and event selection criteria. The Bþc efficiency is computed in a completely analogous way, except that it uses Bþc events generated in the Bþc → J=ψπþ decay channel. These evaluations are independently made for the 2016, 2017, and 2018 running periods. The events collected in 2015, corresponding to 2% of the total sample, are treated the same as the 2016 sample for the purpose of efficiency determination. It was checked that the 2016 Monte Carlo simulation describes the 2015 data well enough so that no residual systematic uncertainty is required. The final efficiencies are obtained as weighted averages, using the integrated luminosities as weights:2.8 þ 36.1, 42.1, and 61.6 fb−1, respectively, for the 2015 þ 2016, 2017, and 2018 periods [21–24]. The results are ϵðBþcÞ ¼ 1.31%, ϵðBcð2SÞþÞ ¼ 0.26%, and ϵðBcð2SÞþÞ ¼ 0.24%. The Bcð2SÞþ and Bcð2SÞþ reconstruction efficiencies are very similar, the slightly smaller Bcð2SÞþ value reflecting the (missed) low-energy photon, which implies a small reduc-tion of the Bþcπþπ−phase space.

Table I lists the efficiency ratios relevant for the determination of the cross section ratios. The first uncer-tainty (“Stat.”) shown reflects the finite size of the three simulated samples. The second (“Spread”) reflects the standard deviation of the computed values around their average and is used to conservatively cover potential residual mismatches between the running conditions and the settings used in simulation. For example, it could be that the simulated samples do not accurately reproduce the time evolution of the instantaneous luminosity within each data-taking period, which would create differences in the mea-sured and simulated pileup distributions. The last column (“Pions”) reflects the uncertainty in the reconstruction efficiency[25]of the two pions emitted in the BðÞc ð2SÞþ → BðÞþc πþπ−decays. This uncertainty is relevant for the Rþ and Rþ ratios, but cancels in the Rþ=Rþ ratio.

E. Determination of the cross section ratios Correcting the yield ratios by the corresponding effi-ciency ratios leads to the following Bcð2SÞþto Bþc, Bcð2SÞþ to Bþc, and Bcð2SÞþto Bcð2SÞþcross section ratios, always including the BðÞc ð2SÞþ→BðÞþc πþπ− branching fractions, and always for pTðBþcÞ > 15 GeV and jyðBþcÞj < 2.4:

TABLE I. Ratios of the reconstruction efficiencies relevant for the determination of the Rþ, Rþ, and Rþ=Rþ cross section ratios. The central values are followed by the several uncertainties presented in the text.

Central Stat. Spread Pions

ϵðBcð2SÞþÞ=ϵðBþcÞ 0.196 1.1% 1.8% 4.2%

ϵðB

cð2SÞþÞ=ϵðBþcÞ 0.187 1.0% 1.6% 4.2%

ϵðB

(5)

Rþ ¼ ð3.47  0.63Þ%; Rþ¼ ð4.69  0.71Þ%; and

Rþ=Rþ ¼ 1.35  0.32: ð3Þ

The quoted uncertainties are statistical only. The fact that the BðÞc ð2SÞþ events are a subset of the Bþc events has a negligible effect (less than 1%) on the uncertainties. The correlation between Bcð2SÞþ and Bcð2SÞþ yields, used in the double cross section ratio, is taken into account using an alternative fit to the MðBþcπþπ−Þ − MðBþcÞ þ mBþc

dis-tribution, which directly provides the ratio of these yields. It is worth noting again that these ratios include branching fractions [shown in Eq.(1)] that have not yet been measured.

F. Dependence on the B+

c kinematics

In order to probe if these cross section ratios show a dependence on the kinematics of the Bþc meson, the analysis is redone after splitting the events into three Bþc meson pTbins and (independently) into threejyj bins. The bin edges are chosen so as to have similar uncertainties in the three bins: 15, 22.5, 30, and 60 GeV for pT, and 0, 0.4, 0.8, and 2.4 for jyj. The amount of events with pT> 60 GeV corresponds to 3.4% of the total sample and they are excluded from these kinematical distributions.

As shown in Fig.3, none of the measured ratios shows significant variations with the pTorjyj of the Bþc meson, within the probed kinematical regions. The markers are shown at the average Bþc pT or jyj values of the events contributing to each bin. The horizontal displacements between the markers seen in the top panels reflect the differences between the Bcð2SÞþ and Bcð2SÞþ kinematic distributions.

Reporting the cross section ratios as a function of the Bþc kinematics and in a phase space domain defined by the Bþc is the choice that best reflects the data analysis procedure and that cancels to the largest extent the systematic uncertainties related to the Bþc detection. Given the rela-tively small mass difference between the mother BðÞc ð2SÞþ and the daughter Bþc states, the ratio of laboratory momen-tum to mass remains practically unchanged in the decays, on average, so that the following kinematical relations hold to a very good approximation: yM¼ yd and pTM¼ ðM=mÞpd

T, where yM, pMT, and M (respectively yd, pdT, and m) are the rapidity, pT, and mass of the mother (respectively daughter)[26].

G. Systematic uncertainties

Several sources of systematic effects that could poten-tially affect the measurement of the cross section ratios have been considered. For each of those effects, the analysis has been redone using an alternative option and the resulting cross section ratios are compared to those obtained in the baseline analysis. The observed difference

between the two results is taken as the systematic uncer-tainty associated with that specific effect.

Naturally, no uncertainties are considered in factors that affect identically the numerator and denominator values that provide the cross section ratios, such as the efficiency of the J=ψ trigger used to collect the event sample or the efficiency of the event selections that determine the total

2 4 6 8 10 (%) R + R + R 20 30 40 50 60 ) (GeV) + c (B T p 1 2 + R / + R (13 TeV) -1 143 fb CMS 2 4 6 8 10 (%) R + R + R 0.0 0.5 1.0 1.5 2.0 ) + c |(B y 1 2 + R / + R (13 TeV) -1 143 fb CMS

FIG. 3. The Rþ and Rþ (upper), and Rþ=Rþ (lower) cross section ratios, including the BðÞc ð2SÞþ→ BðÞþc πþπ−branching fractions, as functions of the Bþc pT (left) andjyj (right). The horizontal bars show the bin widths. The markers are shown at the average Bþc pTorjyj values of the events contributing to each bin, in the background-subtracted distributions, and the vertical bars represent the statistical uncertainties only. The systematic un-certainties are essentially independent of the Bþc kinematics.

(6)

number of Bþc → J=ψπþcandidates contributing to Fig.1. But even if the integral of the measured J=ψπþ invariant mass distribution does not change, it is possible to vary the extracted Bþc yield by changing the functions used in the fit to describe the shapes of the signal and background contributions, given that such variations might change the assignment of some events from the Bþc yield to the background yield, or vice versa. The importance of this effect is evaluated by independently varying the signal and background models used in the fit.

The background model is varied by using an exponential function, instead of a first-order polynomial, to describe the uncorrelated J=ψπþ pairs. The varied scenario for the Bþc signal line shape consisted in replacing the double-Gaussian function by a Student’s t function [27]. Since these two variations only change the fitted Bþc yield, having no effect on the number of Bþc → J=ψπþ candidates used in the search for the BðÞc ð2SÞþ excited states, the corre-sponding (relative) systematic uncertainties, 4.3% for the signal model and 3.5% for the background model, are identical for the Rþ and Rþ ratios, and cancel in the Rþ=Rþ double ratio.

The measurement of the Bcð2SÞþand Bcð2SÞþ yields is also affected by the choices made to model the shapes of the signal peaks and the underlying combinatorial back-ground seen in Fig.2. The effect of the signal modeling is evaluated with two independent approaches. First, the default double-Gaussian function having a common mean and fixing the relative widths and amplitudes from fits to the simulated distributions is replaced by a single-Gaussian function. The number of free parameters for each signal peak remains at three, but this simpler model is unable to describe the non-Gaussian tails of the peaks. Second, the signal yields are evaluated with a simple procedure that avoids fitting the mass region of the two signal peaks, thereby being insensi-tive to specific signal shape models. It starts by fitting the signal-free mass sidebands with the background function and then integrating that function within the two signal regions to evaluate the background yields under the peaks, which are then subtracted from the total number of events in those two regions. To evaluate the impact of the background model, these alternative fits have been made with the third-order Chebyshev polynomial used in the baseline analysis and also with the function δλexpðνδÞ, where δ ≡ MðBþ

cπþπ−Þ − q0, andλ, ν, and q0are free parameters. Comparing the cross section ratios obtained using the alternative fits with those of the baseline fit leads to fit modeling systematic uncertainties of 5.9%, 2.9%, and 2.9%, respectively for the Rþ, Rþ, and Rþ=Rþ ratios.

The fit of the Bþcπþπ− invariant mass distribution also includes two small contributions representing the cases where the Bþc meson decays through the Bþc → J=ψKþ channel rather than through the Bþc → J=ψπþ channel assumed in the reconstruction. In the baseline analysis, these terms are modeled using the same shapes as the

BðÞc ð2SÞþ signal shapes and yields fixed to the yields of those resonances, scaled by the ratio of the two branching fractions,0.079  0.008[15], and by the ratio of the two reconstruction efficiencies, 1.06  0.01, in the signal region defined above. To evaluate the influence of these terms on the measured cross section ratios, the analysis is redone varying those two scale factors by their uncertain-ties. The results are insensitive to those variations, so no systematic uncertainty is assigned to this source.

When searching for BðÞc ð2SÞþ candidates, the baseline analysis starts from an event sample composed of Bþc → J=ψπþ events with invariant mass in the 6.2–6.355 GeV range. In order to probe if a potential residual contribution of the partially reconstructed Bþc decays could have a significant effect on the determination of the cross section ratios, the analysis is repeated with the lowest allowed invariant mass value changed from 6.2 to 6.1 GeV. The results remain essentially identical, the variations being smaller than their statistical uncertainties evaluated taking into account that one event sample is a subset of the other, so that the results are fully correlated. Therefore, no systematic uncertainty is assigned to this potential effect. The uncertainties affecting the ratios of reconstruc-tion efficiencies already presented in Table I translate directly into corresponding systematic uncertainties in the cross section ratios. In the evaluation of the BðÞc ð2SÞþ reconstruction efficiencies, it is assumed that the two pions emitted in the Bþcπþπ− decay have no kinematical corre-lations between them, besides the constraint of being decay products of the same mother particle. To evaluate the sensitivity of the measured cross section ratios to this assumption, the reconstruction efficiencies are recomputed under two other scenarios. These assume that the πþπ− kinematic distributions (a) reflect the existence of an intermediate resonance, or (b) are dependent on the (differ-ent) spins of the Bcð2SÞþ and Bcð2SÞþ states. The first scenario is simulated by independently reweighting the generated BðÞc ð2SÞþ event samples, which previously reflected a simple phase space model, so that theirπþπ− invariant mass distributions (“decay kinematics”) match that in the data (presented in Sec. IV). The second scenario follows an analogous procedure using the helicity angle distribution (“helicity angle”), where the helicity angle is the angle between the directions of theπþand Bþc in the dipion rest frame. The differences between the resulting ratios of reconstruction efficiencies and those obtained in the baseline scenario are considered as systematic uncertainties: 1.5%, 6.9%, and 4.2% for the decay kinematics, and 1.0%, 6.0%, and 3.5% for the helicity angle, respectively, for the Rþ, Rþ, and Rþ=Rþ ratios.

Several studies have been performed to verify the stability of the results with respect to the selection criteria, including the threshold values used to select the daughter particles. The variations in the reported ratios were smaller

(7)

than the respective uncertainties computed accounting for the correlation induced by the overlap of the baseline and varied event samples, so that no corresponding systematic uncertainty has been considered.

All the values mentioned above are listed in Table II, which also shows the total systematic uncertainties com-puted as the sum in quadrature of the individual terms.

IV. INVARIANT MASS DISTRIBUTION OF THE DIPION SYSTEM

As a complement to the measurement of the cross section ratios, it is also interesting to measure the invariant mass distributions of the dipions emitted in the Bþcπþπ−decays of the two BðÞc ð2SÞþ states. In particular, comparing these distributions to those seen in the analogous ψð2SÞ → J=ψπþπ− and ϒð2SÞ → ϒð1SÞπþπ− decays should pro-vide relevant information to characterize the excited Bþc states and their production processes[6,7].

Figure 4 compares the invariant mass distributions normalized to unity, of the dipions emitted in the Bcð2SÞþ (closed red circles) and Bcð2SÞþ (open blue squares) decays between themselves and with the two corresponding simulated phase space distributions (lines). The BðÞc ð2SÞþ data distributions are derived from the Bþcπþπ− invariant mass distribution shown in Fig. 2. The contribution of the background events under the peaks is subtracted using the shape of the measured same-sign dipion invariant mass spectrum and normalizing the sum of the Bþcπþπþand Bþcπ−π−events to the Bþcπþπ−spectrum in the invariant mass sideband regions. The dipion invariant mass distributions have also been obtained using the sPlot technique[28]to subtract the background, which resulted in distributions consistent with those reported in Fig.4.

Simulation studies show no dependence of the reconstruction efficiencies on the πþπ− invariant mass, so no correction is applied to these normalized distribu-tions, where only the shapes are informative. For the same reason, systematic uncertainties that affect the distributions globally are not relevant, as they have no impact on the shapes and are canceled by the normalizations.

The dipion mass-dependent systematic uncertainties have been evaluated by comparing, bin by bin, the baseline distributions with those obtained in alternative analyses, where variations are made, as mentioned above, on the models used to fit the signal and background components of the Bþcπþπ− mass distribution and on the small con-tributions from the Bþc → J=ψKþ and partially recon-structed Bþc decays.

As seen in Fig. 4, the BðÞc ð2SÞþ dipion invariant mass distributions are compatible with each other within the uncertainties, and have shapes different from the rather flat distributions predicted from the phase space simulations.

V. SUMMARY

The ratios of the Bcð2SÞþ to Bþc, Bcð2SÞþ to Bþc, and Bcð2SÞþ to Bcð2SÞþ production cross sections, Rþ, Rþ, and Rþ=Rþ, respectively, have been measured in proton-proton collisions atpffiffiffis¼ 13 TeV. The dataset used in the analysis corresponds to an integrated luminosity of 143 fb−1 collected by the CMS experiment at the LHC between 2015 and 2018.

The BðÞc ð2SÞþmesons have been reconstructed through the decays BðÞc ð2SÞþ → BðÞþc πþπ−, followed by the Bþc → J=ψπþ and J=ψ → μþμ−. The measured cross section ratios, including the (unknown) BðÞc ð2SÞþ → BðÞþc πþπ− branching fractions, are

Rþ¼ ð3.47  0.63ðstatÞ  0.33ðsystÞÞ%; Rþ¼ ð4.69  0.71ðstatÞ  0.56ðsystÞÞ%; and Rþ=Rþ¼ 1.35  0.32ðstatÞ  0.09ðsystÞ: ð4Þ

TABLE II. Relative systematic uncertainties (in %) in the cross section ratios, including the BðÞc ð2SÞþ→ BðÞþc πþπ− branching fractions, corresponding to the sources described in the text. The total uncertainty is the sum in quadrature of the individual terms. Rþ Rþ Rþ=Rþ

J=ψπþfit model 5.5 5.5   

Bþcπþπ− fit model 5.9 2.9 2.9

Efficiencies: statistical uncertainty 1.1 1.0 1.4

Efficiencies: spread among years 1.8 1.6 0.9

Efficiencies: pion tracking 4.2 4.2   

Decay kinematics 1.5 6.9 4.2 Helicity angle 1.0 6.0 3.5 Total 9.5 12.0 6.4 300 400 500 600 ) (MeV) + ( M 0 0.2 0.4

Normalized mass distribution

data + (2S) c B data + (2S) * c B phase space + (2S) c B phase space + (2S) * c B (13 TeV) -1 143 fb CMS

FIG. 4. The dipion invariant mass distributions from BðÞc ð2SÞþ→ BðÞþc πþπ− decays in data, normalized to unity. The inner and outer tick marks designate the statistical and total uncertainties, respectively. The lines show the corresponding predictions from phase space simulations.

(8)

No significant dependences on the transverse momentum pTor rapidityjyj of the Bþc mesons have been observed for any of these three ratios. The normalized dipion invariant mass distributions for the BðÞc ð2SÞþ → BðÞþc πþπ− decays have also been reported. These results obtained in the phase space region defined by Bþc meson pT> 15 GeV andjyj < 2.4 may provide new important input to improve the theoretical understanding of the nature of the ¯bc heavy-quarkonium states and their production processes.

ACKNOWLEDGMENTS

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, PUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie Curie program and the European Research Council and Horizon 2020 Grant, Contracts No. 675440, No. 752730, and No. 765710 (European Union); the Leventis

Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation `a la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F. R. S.-FNRS and FWO (Belgium) under the “Excellence of Science— EOS”—be.h Project No. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy—EXC 2121 “Quantum Universe”—No. 390833306; the Lendület (“Momentum”) Program and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFIA Research Grants No. 123842, No. 123959, No. 124845, No. 124850, No. 125105, No. 128713, No. 128786, and No. 129058 (Hungary); the Council of Science and Industrial Research, India; the Bilateral Scientific and Technological Cooperation Program between Italy and Mexico 2018-2020 (Project No. MX18MO11 and additional MAECI Project No. PGR 00783/2019); the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), Contracts Harmonia No. 2014/14/M/ ST2/00428, Opus No. 2014/13/B/ST2/02543, No. 2014/ 15/B/ST2/03998, and No. 2015/19/B/ST2/02861, Sonata-bis No. 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Higher Education, Project No. 02.a03.21.0005 (Russia); the Programa Estatal de Fomento de la Investigación Científica y T´ecnica de Excelencia María de Maeztu, Grant No. MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, Contract No. C-1845; the Weston Havens Foundation (USA).

(9)

[1] CMS Collaboration, Observation of Two Excited Bþc States and Measurement of the Bffiffiffi cð2SÞþMass in pp Collisions at

s

p ¼ 13 TeV,

Phys. Rev. Lett. 122, 132001 (2019). [2] LHCb Collaboration, Observation of an Excited Bþc State,

Phys. Rev. Lett. 122, 232001 (2019).

[3] E. B. Gregory, C. T. H. Davies, E. Follana, E. Gamiz, I. D. Kendall, G. P. Lepage, H. Na, J. Shigemitsu, and K. Y. Wong, A Prediction of the BcMass in Full Lattice QCD,

Phys. Rev. Lett. 104, 022001 (2010).

[4] R. J. Dowdall, C. T. H. Davies, T. C. Hammant, and R. R. Horgan, Precise heavy-light meson masses and hyperfine splittings from lattice QCD including charm quarks in the sea,Phys. Rev. D 86, 094510 (2012).

[5] N. Mathur, M. Padmanath, and S. Mondal, Precise Pre-dictions of Charmed-Bottom Hadrons from Lattice QCD,

Phys. Rev. Lett. 121, 202002 (2018).

[6] E. J. Eichten and C. Quigg, Mesons with beauty and charm: New horizons in spectroscopy,Phys. Rev. D 99, 054025 (2019).

[7] A. V. Berezhnoy, I. N. Belov, A. K. Likhoded, and A. V. Luchinsky, Bþc excitations at LHC experiments,Mod. Phys.

Lett. A 34, 1950331 (2019).

[8] CMS Collaboration, Performance of the CMS muon de-tector and muon reconstruction with proton-proton colli-sions atpffiffiffis¼ 13 TeV,J. Instrum. 13, P06015 (2018). [9] CMS Collaboration, The CMS experiment at the CERN

LHC,J. Instrum. 3, S08004 (2008).

[10] CMS Collaboration, The CMS trigger system, J. Instrum. 12, P01020 (2017).

[11] CMS Collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker,

J. Instrum. 9, P10009 (2014).

[12] M. Tanabashi et al. (Particle Data Group), Review of particle physics,Phys. Rev. D 98, 030001 (2018). [13] R. Frühwirth, W. Waltenberger, and P. Vanlaer, Adaptive

vertex fitting,J. Phys. G 34, N343 (2007).

[14] H. Albrecht et al. (ARGUS Collaboration), Search for hadronic b → u decays,Phys. Lett. B 241, 278 (1990).

[15] LHCb Collaboration, Measurement of the ratio of branching fractions BðBþc → J=ψKþÞ=BðBþc → J=ψπþÞ, J. High Energy Phys. 09 (2016) 153.

[16] C.-H. Chang, X.-Y. Wang, and X.-G. Wu,BCVEGPY2.2: A newly upgraded version for hadronic production of the meson Bc and its excited states,Comput. Phys. Commun.

197, 335 (2015).

[17] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191, 159 (2015).

[18] D. Lange, The EvtGen particle decay simulation package,

Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).

[19] N. Davidson, T. Przedzinski, and Z. Was,PHOTOSinterface in C++: Technical and physics documentation, Comput. Phys. Commun. 199, 86 (2016).

[20] S. Agostinelli et al. (GEANT4 Collaboration),GEANT4—A simulation toolkit,Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[21] CMS Collaboration, Report No. CMS-PAS-LUM-15-001, 2017,https://cds.cern.ch/record/2138682.

[22] CMS Collaboration, Report No. CMS-PAS-LUM-17-001, 2017,https://cds.cern.ch/record/2257069.

[23] CMS Collaboration, Report No. CMS-PAS-LUM-17-004, 2018,https://cds.cern.ch/record/2621960.

[24] CMS Collaboration, Report No. CMS-PAS-LUM-18-002, 2019,https://cds.cern.ch/record/2676164.

[25] CMS Collaboration, Report No. CMS-DP-2018-050, 2018,

https://cds.cern.ch/record/2634940.

[26] P. Faccioli, C. Lourenço, M. Araújo, V. Knünz, I. Krätschmer, and J. Seixas, Quarkonium production at the LHC: A data-driven analysis of remarkably simple exper-imental patterns,Phys. Lett. B 773, 476 (2017).

[27] S. Jackman, Bayesian Analysis for the Social Sciences (John Wiley & Sons, New York, 2009).

[28] M. Pivk and F. R. Le Diberder, SPlot: A statistical tool to unfold data distributions, Nucl. Instrum. Methods Phys. Res., Sect. A 555, 356 (2005).

A. M. Sirunyan,1,aA. Tumasyan,1W. Adam,2F. Ambrogi,2T. Bergauer,2M. Dragicevic,2J. Erö,2A. Escalante Del Valle,2 R. Frühwirth,2,bM. Jeitler,2,bN. Krammer,2 L. Lechner,2 D. Liko,2 T. Madlener,2I. Mikulec,2 F. M. Pitters,2 N. Rad,2 J. Schieck,2,bR. Schöfbeck,2 M. Spanring,2 S. Templ,2W. Waltenberger,2 C.-E. Wulz,2,b M. Zarucki,2V. Chekhovsky,3 A. Litomin,3V. Makarenko,3J. Suarez Gonzalez,3M. R. Darwish,4,cE. A. De Wolf,4D. Di Croce,4X. Janssen,4T. Kello,4,d

A. Lelek,4 M. Pieters,4 H. Rejeb Sfar,4H. Van Haevermaet,4 P. Van Mechelen,4 S. Van Putte,4 N. Van Remortel,4 F. Blekman,5E. S. Bols,5S. S. Chhibra,5 J. D’Hondt,5 J. De Clercq,5D. Lontkovskyi,5 S. Lowette,5 I. Marchesini,5

S. Moortgat,5 A. Morton,5Q. Python,5S. Tavernier,5W. Van Doninck,5 P. Van Mulders,5 D. Beghin,6B. Bilin,6 B. Clerbaux,6 G. De Lentdecker,6 B. Dorney,6 L. Favart,6 A. Grebenyuk,6 A. K. Kalsi,6 I. Makarenko,6L. Moureaux,6 L. P´etr´e,6A. Popov,6N. Postiau,6E. Starling,6L. Thomas,6C. Vander Velde,6P. Vanlaer,6D. Vannerom,6L. Wezenbeek,6 T. Cornelis,7D. Dobur,7M. Gruchala,7I. Khvastunov,7,eM. Niedziela,7C. Roskas,7K. Skovpen,7M. Tytgat,7W. Verbeke,7

B. Vermassen,7 M. Vit,7G. Bruno,8 F. Bury,8 C. Caputo,8 P. David,8 C. Delaere,8 M. Delcourt,8I. S. Donertas,8 A. Giammanco,8 V. Lemaitre,8K. Mondal,8 J. Prisciandaro,8A. Taliercio,8 M. Teklishyn,8 P. Vischia,8 S. Wuyckens,8 J. Zobec,8G. A. Alves,9G. Correia Silva,9C. Hensel,9A. Moraes,9W. L. Aldá Júnior,10E. Belchior Batista Das Chagas,10

(10)

D. De Jesus Damiao,10S. Fonseca De Souza,10J. Martins,10,h D. Matos Figueiredo,10M. Medina Jaime,10,i M. Melo De Almeida,10C. Mora Herrera,10 L. Mundim,10H. Nogima,10 P. Rebello Teles,10 L. J. Sanchez Rosas,10

A. Santoro,10S. M. Silva Do Amaral,10A. Sznajder,10 M. Thiel,10E. J. Tonelli Manganote,10,f

F. Torres Da Silva De Araujo,10A. Vilela Pereira,10C. A. Bernardes,11aL. Calligaris,11aT. R. Fernandez Perez Tomei,11a E. M. Gregores,11a,11b D. S. Lemos,11aP. G. Mercadante,11a,11b S. F. Novaes,11a Sandra S. Padula,11aA. Aleksandrov,12 G. Antchev,12I. Atanasov,12R. Hadjiiska,12P. Iaydjiev,12M. Misheva,12M. Rodozov,12M. Shopova,12G. Sultanov,12

M. Bonchev,13A. Dimitrov,13T. Ivanov,13L. Litov,13B. Pavlov,13P. Petkov,13A. Petrov,13W. Fang,14,dQ. Guo,14 H. Wang,14L. Yuan,14M. Ahmad,15Z. Hu,15Y. Wang,15E. Chapon,16G. M. Chen,16,jH. S. Chen,16,jM. Chen,16 A. Kapoor,16D. Leggat,16H. Liao,16Z. Liu,16R. Sharma,16 A. Spiezia,16J. Tao,16J. Thomas-wilsker,16J. Wang,16 H. Zhang,16S. Zhang,16,jJ. Zhao,16A. Agapitos,17Y. Ban,17C. Chen,17A. Levin,17Q. Li,17M. Lu,17X. Lyu,17Y. Mao,17

S. J. Qian,17D. Wang,17Q. Wang,17J. Xiao,17 Z. You,18X. Gao,19,d M. Xiao,20C. Avila,21A. Cabrera,21C. Florez,21 J. Fraga,21A. Sarkar,21M. A. Segura Delgado,21J. Jaramillo,22J. Mejia Guisao,22 F. Ramirez,22M. Rodriguez,22 J. D. Ruiz Alvarez,22C. A. Salazar González,22N. Vanegas Arbelaez,22D. Giljanovic,23N. Godinovic,23D. Lelas,23

I. Puljak,23T. Sculac,23Z. Antunovic,24M. Kovac,24V. Brigljevic,25D. Ferencek,25D. Majumder,25M. Roguljic,25 A. Starodumov,25,kT. Susa,25M. W. Ather,26A. Attikis,26E. Erodotou,26A. Ioannou,26G. Kole,26M. Kolosova,26 S. Konstantinou,26G. Mavromanolakis,26J. Mousa,26 C. Nicolaou,26F. Ptochos,26P. A. Razis,26 H. Rykaczewski,26 H. Saka,26D. Tsiakkouri,26M. Finger,27,lM. Finger Jr.,27,lA. Kveton,27J. Tomsa,27E. Ayala,28E. Carrera Jarrin,29

H. Abdalla,30,mS. Elgammal,30,nA. Mohamed,30,oA. Lotfy,31M. A. Mahmoud,31S. Bhowmik,32

A. Carvalho Antunes De Oliveira,32R. K. Dewanjee,32K. Ehataht,32M. Kadastik,32M. Raidal,32C. Veelken,32P. Eerola,33 L. Forthomme,33H. Kirschenmann,33K. Osterberg,33M. Voutilainen,33E. Brücken,34F. Garcia,34J. Havukainen,34

V. Karimäki,34M. S. Kim,34R. Kinnunen,34T. Lamp´en,34K. Lassila-Perini,34S. Laurila,34 S. Lehti,34 T. Lind´en,34 H. Siikonen,34E. Tuominen,34J. Tuominiemi,34P. Luukka,35T. Tuuva,35C. Amendola,36M. Besancon,36F. Couderc,36 M. Dejardin,36D. Denegri,36J. L. Faure,36F. Ferri,36S. Ganjour,36A. Givernaud,36P. Gras,36G. Hamel de Monchenault,36 P. Jarry,36B. Lenzi,36E. Locci,36J. Malcles,36J. Rander,36A. Rosowsky,36M. Ö. Sahin,36A. Savoy-Navarro,36,pM. Titov,36 G. B. Yu,36S. Ahuja,37F. Beaudette,37M. Bonanomi,37A. Buchot Perraguin,37P. Busson,37C. Charlot,37O. Davignon,37

B. Diab,37G. Falmagne,37R. Granier de Cassagnac,37A. Hakimi,37 I. Kucher,37A. Lobanov,37 C. Martin Perez,37 M. Nguyen,37C. Ochando,37P. Paganini,37J. Rembser,37R. Salerno,37J. B. Sauvan,37Y. Sirois,37A. Zabi,37A. Zghiche,37 J.-L. Agram,38,qJ. Andrea,38D. Bloch,38G. Bourgatte,38J.-M. Brom,38E. C. Chabert,38C. Collard,38J.-C. Fontaine,38,q D. Gel´e,38U. Goerlach,38C. Grimault,38A.-C. Le Bihan,38P. Van Hove,38E. Asilar,39 S. Beauceron,39C. Bernet,39 G. Boudoul,39C. Camen,39A. Carle,39N. Chanon,39D. Contardo,39P. Depasse,39H. El Mamouni,39J. Fay,39S. Gascon,39

M. Gouzevitch,39B. Ille,39Sa. Jain,39I. B. Laktineh,39H. Lattaud,39A. Lesauvage,39M. Lethuillier,39L. Mirabito,39 L. Torterotot,39 G. Touquet,39M. Vander Donckt,39S. Viret,39 D. Lomidze,40Z. Tsamalaidze,40,lL. Feld,41K. Klein,41 M. Lipinski,41D. Meuser,41A. Pauls,41M. Preuten,41M. P. Rauch,41J. Schulz,41M. Teroerde,41D. Eliseev,42M. Erdmann,42 P. Fackeldey,42B. Fischer,42S. Ghosh,42T. Hebbeker,42K. Hoepfner,42H. Keller,42L. Mastrolorenzo,42M. Merschmeyer,42 A. Meyer,42P. Millet,42G. Mocellin,42S. Mondal,42S. Mukherjee,42D. Noll,42A. Novak,42T. Pook,42A. Pozdnyakov,42 T. Quast,42M. Radziej,42Y. Rath,42H. Reithler,42J. Roemer,42A. Schmidt,42S. C. Schuler,42A. Sharma,42S. Wiedenbeck,42 S. Zaleski,42C. Dziwok,43G. Flügge,43 W. Haj Ahmad,43,r O. Hlushchenko,43T. Kress,43A. Nowack,43C. Pistone,43

O. Pooth,43 D. Roy,43 H. Sert,43A. Stahl,43,sT. Ziemons,43H. Aarup Petersen,44M. Aldaya Martin,44P. Asmuss,44 I. Babounikau,44S. Baxter,44O. Behnke,44 A. Bermúdez Martínez,44A. A. Bin Anuar,44 K. Borras,44,tV. Botta,44

D. Brunner,44A. Campbell,44 A. Cardini,44P. Connor,44S. Consuegra Rodríguez,44V. Danilov,44 A. De Wit,44 M. M. Defranchis,44L. Didukh,44D. Domínguez Damiani,44G. Eckerlin,44D. Eckstein,44T. Eichhorn,44 L. I. Estevez Banos,44E. Gallo,44,u A. Geiser,44A. Giraldi,44A. Grohsjean,44M. Guthoff,44A. Harb,44A. Jafari,44,v

N. Z. Jomhari,44H. Jung,44 A. Kasem,44,tM. Kasemann,44H. Kaveh,44C. Kleinwort,44J. Knolle,44D. Krücker,44 W. Lange,44T. Lenz,44J. Lidrych,44K. Lipka,44W. Lohmann,44,wR. Mankel,44I.-A. Melzer-Pellmann,44J. Metwally,44 A. B. Meyer,44M. Meyer,44M. Missiroli,44 J. Mnich,44A. Mussgiller,44V. Myronenko,44Y. Otarid,44D. P´erez Adán,44

S. K. Pflitsch,44D. Pitzl,44A. Raspereza,44 A. Saggio,44A. Saibel,44M. Savitskyi,44V. Scheurer,44P. Schütze,44 C. Schwanenberger,44A. Singh,44R. E. Sosa Ricardo,44N. Tonon,44O. Turkot,44A. Vagnerini,44M. Van De Klundert,44 R. Walsh,44D. Walter,44Y. Wen,44K. Wichmann,44C. Wissing,44S. Wuchterl,44O. Zenaiev,44R. Zlebcik,44R. Aggleton,45 S. Bein,45L. Benato,45A. Benecke,45 K. De Leo,45T. Dreyer,45 A. Ebrahimi,45M. Eich,45F. Feindt,45A. Fröhlich,45

(11)

C. Garbers,45 E. Garutti,45 P. Gunnellini,45J. Haller,45A. Hinzmann,45A. Karavdina,45G. Kasieczka,45R. Klanner,45 R. Kogler,45V. Kutzner,45J. Lange,45T. Lange,45A. Malara,45C. E. N. Niemeyer,45A. Nigamova,45K. J. Pena Rodriguez,45

O. Rieger,45P. Schleper,45S. Schumann,45J. Schwandt,45D. Schwarz,45J. Sonneveld,45H. Stadie,45G. Steinbrück,45 B. Vormwald,45I. Zoi,45M. Baselga,46S. Baur,46J. Bechtel,46T. Berger,46E. Butz,46R. Caspart,46T. Chwalek,46 W. De Boer,46A. Dierlamm,46A. Droll,46 K. El Morabit,46N. Faltermann,46K. Flöh,46 M. Giffels,46 A. Gottmann,46 F. Hartmann,46,sC. Heidecker,46U. Husemann,46M. A. Iqbal,46I. Katkov,46,xP. Keicher,46R. Koppenhöfer,46S. Maier,46

M. Metzler,46S. Mitra,46D. Müller,46Th. Müller,46M. Musich,46G. Quast,46K. Rabbertz,46J. Rauser,46 D. Savoiu,46 D. Schäfer,46M. Schnepf,46 M. Schröder,46D. Seith,46I. Shvetsov,46H. J. Simonis,46R. Ulrich,46 M. Wassmer,46 M. Weber,46R. Wolf,46S. Wozniewski,46G. Anagnostou,47P. Asenov,47G. Daskalakis,47T. Geralis,47A. Kyriakis,47 D. Loukas,47G. Paspalaki,47A. Stakia,47M. Diamantopoulou,48D. Karasavvas,48G. Karathanasis,48P. Kontaxakis,48

C. K. Koraka,48A. Manousakis-katsikakis,48A. Panagiotou,48I. Papavergou,48N. Saoulidou,48K. Theofilatos,48 K. Vellidis,48E. Vourliotis,48G. Bakas,49K. Kousouris,49I. Papakrivopoulos,49G. Tsipolitis,49A. Zacharopoulou,49 I. Evangelou,50C. Foudas,50P. Gianneios,50P. Katsoulis,50P. Kokkas,50S. Mallios,50K. Manitara,50N. Manthos,50 I. Papadopoulos,50J. Strologas,50M. Bartók,51,yR. Chudasama,51M. Csanad,51M. M. A. Gadallah,51,z S. Lökös,51,aa P. Major,51K. Mandal,51A. Mehta,51G. Pasztor,51O. Surányi,51G. I. Veres,51G. Bencze,52C. Hajdu,52D. Horvath,52,bb

F. Sikler,52V. Veszpremi,52G. Vesztergombi,52,a,aaS. Czellar,53J. Karancsi,53,y J. Molnar,53 Z. Szillasi,53D. Teyssier,53 P. Raics,54Z. L. Trocsanyi,54B. Ujvari,54T. Csorgo,55F. Nemes,55 T. Novak,55S. Choudhury,56 J. R. Komaragiri,56

D. Kumar,56 L. Panwar,56P. C. Tiwari,56S. Bahinipati,57,ccD. Dash,57C. Kar,57P. Mal,57 T. Mishra,57

V. K. Muraleedharan Nair Bindhu,57A. Nayak,57,dd D. K. Sahoo,57,ccN. Sur,57S. K. Swain,57 S. Bansal,58S. B. Beri,58 V. Bhatnagar,58S. Chauhan,58N. Dhingra,58,ee R. Gupta,58A. Kaur,58S. Kaur,58P. Kumari,58M. Lohan,58M. Meena,58

K. Sandeep,58S. Sharma,58J. B. Singh,58A. K. Virdi,58A. Ahmed,59A. Bhardwaj,59 B. C. Choudhary,59R. B. Garg,59 M. Gola,59S. Keshri,59A. Kumar,59M. Naimuddin,59 P. Priyanka,59K. Ranjan,59A. Shah,59 M. Bharti,60,ff R. Bhattacharya,60S. Bhattacharya,60D. Bhowmik,60S. Dutta,60S. Ghosh,60B. Gomber,60,ggM. Maity,60,hhS. Nandan,60

P. Palit,60A. Purohit,60P. K. Rout,60G. Saha,60S. Sarkar,60M. Sharan,60B. Singh,60,ff S. Thakur,60,ff P. K. Behera,61 S. C. Behera,61P. Kalbhor,61A. Muhammad,61 R. Pradhan,61 P. R. Pujahari,61A. Sharma,61A. K. Sikdar,61D. Dutta,62

V. Kumar,62K. Naskar,62,ii P. K. Netrakanti,62L. M. Pant,62 P. Shukla,62 T. Aziz,63M. A. Bhat,63S. Dugad,63 R. Kumar Verma,63G. B. Mohanty,63U. Sarkar,63 S. Banerjee,64S. Bhattacharya,64S. Chatterjee,64M. Guchait,64 S. Karmakar,64S. Kumar,64G. Majumder,64K. Mazumdar,64S. Mukherjee,64D. Roy,64N. Sahoo,64S. Dube,65B. Kansal,65 K. Kothekar,65S. Pandey,65A. Rane,65A. Rastogi,65S. Sharma,65H. Bakhshiansohi,66,jjS. Chenarani,67,kkS. M. Etesami,67

M. Khakzad,67 M. Mohammadi Najafabadi,67M. Felcini,68M. Grunewald,68M. Abbrescia,69a,69b R. Aly,69a,69b,ll C. Aruta,69a,69b A. Colaleo,69a D. Creanza,69a,69c N. De Filippis,69a,69cM. De Palma,69a,69b A. Di Florio,69a,69b A. Di Pilato,69a,69bW. Elmetenawee,69a,69b L. Fiore,69a A. Gelmi,69a,69bM. Gul,69aG. Iaselli,69a,69c M. Ince,69a,69b S. Lezki,69a,69bG. Maggi,69a,69cM. Maggi,69aI. Margjeka,69a,69b V. Mastrapasqua,69a,69bJ. A. Merlin,69a S. My,69a,69b S. Nuzzo,69a,69bA. Pompili,69a,69b G. Pugliese,69a,69cA. Ranieri,69a G. Selvaggi,69a,69bL. Silvestris,69a F. M. Simone,69a,69b

R. Venditti,69aP. Verwilligen,69a G. Abbiendi,70a C. Battilana,70a,70bD. Bonacorsi,70a,70bL. Borgonovi,70a,70b S. Braibant-Giacomelli,70a,70b R. Campanini,70a,70b P. Capiluppi,70a,70bA. Castro,70a,70b F. R. Cavallo,70a C. Ciocca,70a M. Cuffiani,70a,70bG. M. Dallavalle,70aT. Diotalevi,70a,70bF. Fabbri,70aA. Fanfani,70a,70bE. Fontanesi,70a,70bP. Giacomelli,70a

L. Giommi,70a,70b C. Grandi,70aL. Guiducci,70a,70b F. Iemmi,70a,70b S. Lo Meo,70a,mm S. Marcellini,70aG. Masetti,70a F. L. Navarria,70a,70b A. Perrotta,70a F. Primavera,70a,70b T. Rovelli,70a,70bG. P. Siroli,70a,70b N. Tosi,70a S. Albergo,71a,71b,nn

S. Costa,71a,71b A. Di Mattia,71a R. Potenza,71a,71b A. Tricomi,71a,71b,nnC. Tuve,71a,71b G. Barbagli,72a A. Cassese,72a R. Ceccarelli,72a,72bV. Ciulli,72a,72b C. Civinini,72aR. D’Alessandro,72a,72bF. Fiori,72a E. Focardi,72a,72bG. Latino,72a,72b P. Lenzi,72a,72bM. Lizzo,72a,72bM. Meschini,72aS. Paoletti,72aR. Seidita,72a,72bG. Sguazzoni,72aL. Viliani,72aL. Benussi,73

S. Bianco,73D. Piccolo,73M. Bozzo,74a,74b F. Ferro,74a R. Mulargia,74a,74bE. Robutti,74a S. Tosi,74a,74b A. Benaglia,75a A. Beschi,75a,75bF. Brivio,75a,75bF. Cetorelli,75a,75bV. Ciriolo,75a,75b,sF. De Guio,75a,75b M. E. Dinardo,75a,75bP. Dini,75a

S. Gennai,75aA. Ghezzi,75a,75bP. Govoni,75a,75bL. Guzzi,75a,75bM. Malberti,75a S. Malvezzi,75aD. Menasce,75a F. Monti,75a,75b L. Moroni,75a M. Paganoni,75a,75b D. Pedrini,75a S. Ragazzi,75a,75b T. Tabarelli de Fatis,75a,75b D. Valsecchi,75a,75b,sD. Zuolo,75a,75bS. Buontempo,76a N. Cavallo,76a,76c A. De Iorio,76a,76bF. Fabozzi,76a,76c F. Fienga,76a

A. O. M. Iorio,76a,76bL. Lista,76a,76bS. Meola,76a,76d,sP. Paolucci,76a,s B. Rossi,76a C. Sciacca,76a,76b E. Voevodina,76a,76b P. Azzi,77aN. Bacchetta,77a D. Bisello,77a,77bA. Boletti,77a,77b A. Bragagnolo,77a,77bR. Carlin,77a,77b P. Checchia,77a

(12)

P. De Castro Manzano,77a T. Dorigo,77aF. Gasparini,77a,77bU. Gasparini,77a,77b S. Y. Hoh,77a,77bL. Layer,77a,oo M. Margoni,77a,77bA. T. Meneguzzo,77a,77bM. Presilla,77a,77bP. Ronchese,77a,77b R. Rossin,77a,77b F. Simonetto,77a,77b

G. Strong,77a A. Tiko,77a M. Tosi,77a,77b H. YARAR,77a,77bM. Zanetti,77a,77b P. Zotto,77a,77bA. Zucchetta,77a,77b G. Zumerle,77a,77bC. Aime‘,78a,78bA. Braghieri,78aS. Calzaferri,78a,78bD. Fiorina,78a,78bP. Montagna,78a,78bS. P. Ratti,78a,78b

V. Re,78a M. Ressegotti,78a,78bC. Riccardi,78a,78bP. Salvini,78aI. Vai,78aP. Vitulo,78a,78bM. Biasini,79a,79bG. M. Bilei,79a D. Ciangottini,79a,79bL. Fanò,79a,79bP. Lariccia,79a,79b G. Mantovani,79a,79bV. Mariani,79a,79bM. Menichelli,79a F. Moscatelli,79a A. Piccinelli,79a,79bA. Rossi,79a,79bA. Santocchia,79a,79b D. Spiga,79a T. Tedeschi,79a,79b K. Androsov,80a

P. Azzurri,80a G. Bagliesi,80a V. Bertacchi,80a,80c L. Bianchini,80a T. Boccali,80a R. Castaldi,80a M. A. Ciocci,80a,80b R. Dell’Orso,80aM. R. Di Domenico,80a,80bS. Donato,80aL. Giannini,80a,80cA. Giassi,80aM. T. Grippo,80aF. Ligabue,80a,80c

E. Manca,80a,80c G. Mandorli,80a,80cA. Messineo,80a,80bF. Palla,80a G. Ramirez-Sanchez,80a,80c A. Rizzi,80a,80b G. Rolandi,80a,80cS. Roy Chowdhury,80a,80cA. Scribano,80aN. Shafiei,80a,80bP. Spagnolo,80aR. Tenchini,80aG. Tonelli,80a,80b

N. Turini,80a A. Venturi,80aP. G. Verdini,80a F. Cavallari,81a M. Cipriani,81a,81bD. Del Re,81a,81b E. Di Marco,81a M. Diemoz,81a E. Longo,81a,81b P. Meridiani,81a G. Organtini,81a,81b F. Pandolfi,81a R. Paramatti,81a,81bC. Quaranta,81a,81b

S. Rahatlou,81a,81bC. Rovelli,81a F. Santanastasio,81a,81bL. Soffi,81a,81bR. Tramontano,81a,81bN. Amapane,82a,82b R. Arcidiacono,82a,82c S. Argiro,82a,82bM. Arneodo,82a,82c N. Bartosik,82a R. Bellan,82a,82b A. Bellora,82a,82b C. Biino,82a

A. Cappati,82a,82bN. Cartiglia,82a S. Cometti,82a M. Costa,82a,82b R. Covarelli,82a,82bN. Demaria,82a B. Kiani,82a,82b F. Legger,82a C. Mariotti,82a S. Maselli,82a E. Migliore,82a,82bV. Monaco,82a,82b E. Monteil,82a,82bM. Monteno,82a M. M. Obertino,82a,82bG. Ortona,82a L. Pacher,82a,82b N. Pastrone,82aM. Pelliccioni,82a G. L. Pinna Angioni,82a,82b

M. Ruspa,82a,82c R. Salvatico,82a,82bF. Siviero,82a,82bV. Sola,82aA. Solano,82a,82bD. Soldi,82a,82bA. Staiano,82a D. Trocino,82a,82bS. Belforte,83aV. Candelise,83a,83bM. Casarsa,83aF. Cossutti,83a A. Da Rold,83a,83bG. Della Ricca,83a,83b F. Vazzoler,83a,83bS. Dogra,84C. Huh,84B. Kim,84D. H. Kim,84G. N. Kim,84J. Lee,84S. W. Lee,84C. S. Moon,84Y. D. Oh,84 S. I. Pak,84B. C. Radburn-Smith,84S. Sekmen,84Y. C. Yang,84H. Kim,85D. H. Moon,85B. Francois,86T. J. Kim,86J. Park,86 S. Cho,87S. Choi,87Y. Go,87S. Ha,87B. Hong,87K. Lee,87K. S. Lee,87J. Lim,87J. Park,87S. K. Park,87J. Yoo,87J. Goh,88 A. Gurtu,88H. S. Kim,89Y. Kim,89J. Almond,90J. H. Bhyun,90J. Choi,90S. Jeon,90J. Kim,90J. S. Kim,90S. Ko,90 H. Kwon,90H. Lee,90K. Lee,90S. Lee,90K. Nam,90B. H. Oh,90M. Oh,90S. B. Oh,90H. Seo,90U.K. Yang,90I. Yoon,90 D. Jeon,91J. H. Kim,91B. Ko,91J. S. H. Lee,91I. C. Park,91Y. Roh,91D. Song,91I. J. Watson,91H. D. Yoo,92Y. Choi,93 C. Hwang,93Y. Jeong,93H. Lee,93Y. Lee,93I. Yu,93V. Veckalns,94,ppA. Juodagalvis,95A. Rinkevicius,95G. Tamulaitis,95 W. A. T. Wan Abdullah,96M. N. Yusli,96Z. Zolkapli,96J. F. Benitez,97A. Castaneda Hernandez,97J. A. Murillo Quijada,97 L. Valencia Palomo,97H. Castilla-Valdez,98E. De La Cruz-Burelo,98I. Heredia-De La Cruz,98,qq R. Lopez-Fernandez,98 C. A. Mondragon Herrera,98D. A. Perez Navarro,98A. Sanchez-Hernandez,98S. Carrillo Moreno,99C. Oropeza Barrera,99 M. Ramirez-Garcia,99F. Vazquez Valencia,99J. Eysermans,100I. Pedraza,100H. A. Salazar Ibarguen,100C. Uribe Estrada,100 A. Morelos Pineda,101J. Mijuskovic,102,e N. Raicevic,102D. Krofcheck,103S. Bheesette,104P. H. Butler,104A. Ahmad,105 M. I. Asghar,105M. I. M. Awan,105H. R. Hoorani,105W. A. Khan,105M. A. Shah,105M. Shoaib,105M. Waqas,105V. Avati,106 L. Grzanka,106M. Malawski,106H. Bialkowska,107M. Bluj,107B. Boimska,107T. Frueboes,107M. Górski,107M. Kazana,107

M. Szleper,107P. Traczyk,107 P. Zalewski,107K. Bunkowski,108 A. Byszuk,108,rrK. Doroba,108A. Kalinowski,108 M. Konecki,108 J. Krolikowski,108M. Olszewski,108M. Walczak,108M. Araujo,109P. Bargassa,109D. Bastos,109 P. Faccioli,109M. Gallinaro,109 J. Hollar,109N. Leonardo,109T. Niknejad,109J. Seixas,109K. Shchelina,109O. Toldaiev,109 J. Varela,109S. Afanasiev,110P. Bunin,110M. Gavrilenko,110I. Golutvin,110I. Gorbunov,110A. Kamenev,110V. Karjavine,110 A. Lanev,110A. Malakhov,110V. Matveev,110,ss,ttP. Moisenz,110V. Palichik,110V. Perelygin,110M. Savina,110D. Seitova,110 V. Shalaev,110 S. Shmatov,110 S. Shulha,110 V. Smirnov,110O. Teryaev,110N. Voytishin,110 A. Zarubin,110I. Zhizhin,110 G. Gavrilov,111V. Golovtcov,111Y. Ivanov,111V. Kim,111,uuE. Kuznetsova,111,vvV. Murzin,111V. Oreshkin,111I. Smirnov,111 D. Sosnov,111V. Sulimov,111L. Uvarov,111S. Volkov,111A. Vorobyev,111Yu. Andreev,112A. Dermenev,112S. Gninenko,112

N. Golubev,112A. Karneyeu,112 M. Kirsanov,112N. Krasnikov,112A. Pashenkov,112G. Pivovarov,112D. Tlisov,112,a A. Toropin,112V. Epshteyn,113V. Gavrilov,113 N. Lychkovskaya,113 A. Nikitenko,113,wwV. Popov,113 G. Safronov,113 A. Spiridonov,113A. Stepennov,113M. Toms,113E. Vlasov,113A. Zhokin,113T. Aushev,114R. Chistov,115,xxM. Danilov,115,yy

A. Oskin,115 P. Parygin,115 S. Polikarpov,115,yy V. Andreev,116 M. Azarkin,116I. Dremin,116 M. Kirakosyan,116 A. Terkulov,116A. Belyaev,117E. Boos,117M. Dubinin,117,zzL. Dudko,117A. Ershov,117A. Gribushin,117V. Klyukhin,117

O. Kodolova,117 I. Lokhtin,117S. Obraztsov,117 S. Petrushanko,117V. Savrin,117 A. Snigirev,117V. Blinov,118,aaa T. Dimova,118,aaaL. Kardapoltsev,118,aaaI. Ovtin,118,aaaY. Skovpen,118,aaaI. Azhgirey,119 I. Bayshev,119V. Kachanov,119

(13)

A. Kalinin,119 D. Konstantinov,119V. Petrov,119R. Ryutin,119 A. Sobol,119 S. Troshin,119N. Tyurin,119 A. Uzunian,119 A. Volkov,119 A. Babaev,120A. Iuzhakov,120 V. Okhotnikov,120L. Sukhikh,120 V. Borchsh,121V. Ivanchenko,121 E. Tcherniaev,121 P. Adzic,122,bbbP. Cirkovic,122 M. Dordevic,122P. Milenovic,122J. Milosevic,122M. Aguilar-Benitez,123

J. Alcaraz Maestre,123 A. Álvarez Fernández,123I. Bachiller,123M. Barrio Luna,123Cristina F. Bedoya,123 J. A. Brochero Cifuentes,123C. A. Carrillo Montoya,123M. Cepeda,123 M. Cerrada,123 N. Colino,123B. De La Cruz,123

A. Delgado Peris,123 J. P. Fernández Ramos,123J. Flix,123M. C. Fouz,123 A. García Alonso,123 O. Gonzalez Lopez,123 S. Goy Lopez,123 J. M. Hernandez,123M. I. Josa,123 J. León Holgado,123D. Moran,123Á. Navarro Tobar,123 A. P´erez-Calero Yzquierdo,123 J. Puerta Pelayo,123 I. Redondo,123 L. Romero,123S. Sánchez Navas,123 M. S. Soares,123

A. Triossi,123L. Urda Gómez,123C. Willmott,123 C. Albajar,124J. F. de Trocóniz,124 R. Reyes-Almanza,124 B. Alvarez Gonzalez,125J. Cuevas,125C. Erice,125J. Fernandez Menendez,125S. Folgueras,125I. Gonzalez Caballero,125 E. Palencia Cortezon,125C. Ramón Álvarez,125J. Ripoll Sau,125V. Rodríguez Bouza,125S. Sanchez Cruz,125A. Trapote,125 I. J. Cabrillo,126A. Calderon,126B. Chazin Quero,126J. Duarte Campderros,126M. Fernandez,126P. J. Fernández Manteca,126 G. Gomez,126 C. Martinez Rivero,126 P. Martinez Ruiz del Arbol,126 F. Matorras,126J. Piedra Gomez,126C. Prieels,126 F. Ricci-Tam,126T. Rodrigo,126A. Ruiz-Jimeno,126 L. Scodellaro,126I. Vila,126J. M. Vizan Garcia,126 MK Jayananda,127

B. Kailasapathy,127,cccD. U. J. Sonnadara,127DDC Wickramarathna,127W. G. D. Dharmaratna,128 K. Liyanage,128 N. Perera,128N. Wickramage,128T. K. Aarrestad,129 D. Abbaneo,129B. Akgun,129E. Auffray,129 G. Auzinger,129 J. Baechler,129 P. Baillon,129A. H. Ball,129 D. Barney,129 J. Bendavid,129N. Beni,129M. Bianco,129A. Bocci,129 P. Bortignon,129E. Bossini,129E. Brondolin,129 T. Camporesi,129 G. Cerminara,129L. Cristella,129 D. d’Enterria,129 A. Dabrowski,129N. Daci,129 V. Daponte,129 A. David,129 A. De Roeck,129M. Deile,129 R. Di Maria,129M. Dobson,129 M. Dünser,129N. Dupont,129 A. Elliott-Peisert,129N. Emriskova,129 F. Fallavollita,129,ddd D. Fasanella,129S. Fiorendi,129 G. Franzoni,129J. Fulcher,129W. Funk,129S. Giani,129D. Gigi,129K. Gill,129F. Glege,129L. Gouskos,129M. Guilbaud,129

D. Gulhan,129 M. Haranko,129J. Hegeman,129 Y. Iiyama,129V. Innocente,129T. James,129 P. Janot,129J. Kaspar,129 J. Kieseler,129M. Komm,129N. Kratochwil,129C. Lange,129 P. Lecoq,129K. Long,129 C. Lourenço,129 L. Malgeri,129 M. Mannelli,129A. Massironi,129F. Meijers,129S. Mersi,129E. Meschi,129F. Moortgat,129M. Mulders,129J. Ngadiuba,129

J. Niedziela,129S. Orfanelli,129 L. Orsini,129 F. Pantaleo,129,sL. Pape,129 E. Perez,129M. Peruzzi,129 A. Petrilli,129 G. Petrucciani,129A. Pfeiffer,129M. Pierini,129D. Rabady,129A. Racz,129 M. Rieger,129M. Rovere,129 H. Sakulin,129 J. Salfeld-Nebgen,129S. Scarfi,129C. Schäfer,129 C. Schwick,129M. Selvaggi,129A. Sharma,129P. Silva,129W. Snoeys,129

P. Sphicas,129,eeeJ. Steggemann,129 S. Summers,129V. R. Tavolaro,129 D. Treille,129A. Tsirou,129G. P. Van Onsem,129 A. Vartak,129 M. Verzetti,129 K. A. Wozniak,129W. D. Zeuner,129L. Caminada,130,fff W. Erdmann,130 R. Horisberger,130 Q. Ingram,130H. C. Kaestli,130D. Kotlinski,130U. Langenegger,130T. Rohe,130M. Backhaus,131P. Berger,131A. Calandri,131

N. Chernyavskaya,131 A. De Cosa,131 G. Dissertori,131M. Dittmar,131 M. Doneg`a,131 C. Dorfer,131 T. Gadek,131 T. A. Gómez Espinosa,131C. Grab,131D. Hits,131W. Lustermann,131A.-M. Lyon,131R. A. Manzoni,131M. T. Meinhard,131 F. Micheli,131F. Nessi-Tedaldi,131 F. Pauss,131V. Perovic,131 G. Perrin,131 L. Perrozzi,131 S. Pigazzini,131 M. G. Ratti,131 M. Reichmann,131C. Reissel,131T. Reitenspiess,131B. Ristic,131D. Ruini,131D. A. Sanz Becerra,131M. Schönenberger,131 V. Stampf,131M. L. Vesterbacka Olsson,131 R. Wallny,131 D. H. Zhu,131C. Amsler,132,gggC. Botta,132D. Brzhechko,132

M. F. Canelli,132R. Del Burgo,132J. K. Heikkilä,132M. Huwiler,132A. Jofrehei,132B. Kilminster,132S. Leontsinis,132 A. Macchiolo,132P. Meiring,132 V. M. Mikuni,132U. Molinatti,132I. Neutelings,132G. Rauco,132 A. Reimers,132 P. Robmann,132K. Schweiger,132 Y. Takahashi,132 S. Wertz,132 C. Adloff,133,hhhC. M. Kuo,133 W. Lin,133 A. Roy,133 T. Sarkar,133,hhS. S. Yu,133L. Ceard,134P. Chang,134 Y. Chao,134K. F. Chen,134 P. H. Chen,134 W.-S. Hou,134Y. y. Li,134

R.-S. Lu,134 E. Paganis,134A. Psallidas,134 A. Steen,134E. Yazgan,134 B. Asavapibhop,135C. Asawatangtrakuldee,135 N. Srimanobhas,135F. Boran,136S. Damarseckin,136,iiiZ. S. Demiroglu,136F. Dolek,136C. Dozen,136,jjjI. Dumanoglu,136,kkk E. Eskut,136G. Gokbulut,136Y. Guler,136E. Gurpinar Guler,136,lllI. Hos,136,mmmC. Isik,136E. E. Kangal,136,nnnO. Kara,136 A. Kayis Topaksu,136U. Kiminsu,136G. Onengut,136K. Ozdemir,136,oooA. Polatoz,136 A. E. Simsek,136B. Tali,136,ppp U. G. Tok,136S. Turkcapar,136I. S. Zorbakir,136 C. Zorbilmez,136 B. Isildak,137,qqqG. Karapinar,137,rrr K. Ocalan,137,sss

M. Yalvac,137,ttt I. O. Atakisi,138 E. Gülmez,138M. Kaya,138,uuuO. Kaya,138,vvvÖ. Özçelik,138 S. Tekten,138,www E. A. Yetkin,138,xxxA. Cakir,139K. Cankocak,139,kkkY. Komurcu,139 S. Sen,139,yyy F. Aydogmus Sen,140S. Cerci,140,ppp

B. Kaynak,140 S. Ozkorucuklu,140 D. Sunar Cerci,140,pppB. Grynyov,141 L. Levchuk,142E. Bhal,143S. Bologna,143 J. J. Brooke,143E. Clement,143D. Cussans,143H. Flacher,143J. Goldstein,143G. P. Heath,143H. F. Heath,143L. Kreczko,143

(14)

K. W. Bell,144A. Belyaev,144,zzzC. Brew,144R. M. Brown,144D. J. A. Cockerill,144K. V. Ellis,144K. Harder,144S. Harper,144 J. Linacre,144K. Manolopoulos,144 D. M. Newbold,144 E. Olaiya,144D. Petyt,144 T. Reis,144T. Schuh,144

C. H. Shepherd-Themistocleous,144A. Thea,144I. R. Tomalin,144T. Williams,144 R. Bainbridge,145 P. Bloch,145 S. Bonomally,145J. Borg,145S. Breeze,145 O. Buchmuller,145A. Bundock,145 V. Cepaitis,145 G. S. Chahal,145,aaaa D. Colling,145P. Dauncey,145G. Davies,145M. Della Negra,145G. Fedi,145G. Hall,145G. Iles,145J. Langford,145L. Lyons,145

A.-M. Magnan,145S. Malik,145 A. Martelli,145 V. Milosevic,145 J. Nash,145,bbbb V. Palladino,145M. Pesaresi,145 D. M. Raymond,145 A. Richards,145A. Rose,145 E. Scott,145 C. Seez,145A. Shtipliyski,145M. Stoye,145A. Tapper,145

K. Uchida,145T. Virdee,145,s N. Wardle,145S. N. Webb,145D. Winterbottom,145A. G. Zecchinelli,145 J. E. Cole,146 P. R. Hobson,146A. Khan,146P. Kyberd,146C. K. Mackay,146I. D. Reid,146L. Teodorescu,146S. Zahid,146A. Brinkerhoff,147

K. Call,147B. Caraway,147 J. Dittmann,147K. Hatakeyama,147A. R. Kanuganti,147 C. Madrid,147 B. McMaster,147 N. Pastika,147 S. Sawant,147C. Smith,147 J. Wilson,147R. Bartek,148 A. Dominguez,148 R. Uniyal,148

A. M. Vargas Hernandez,148A. Buccilli,149O. Charaf,149S. I. Cooper,149S. V. Gleyzer,149C. Henderson,149P. Rumerio,149 C. West,149 A. Akpinar,150 A. Albert,150D. Arcaro,150 C. Cosby,150Z. Demiragli,150D. Gastler,150C. Richardson,150 J. Rohlf,150 K. Salyer,150 D. Sperka,150D. Spitzbart,150I. Suarez,150 S. Yuan,150D. Zou,150 G. Benelli,151 B. Burkle,151 X. Coubez,151,tD. Cutts,151Y. t. Duh,151M. Hadley,151 U. Heintz,151J. M. Hogan,151,ccccK. H. M. Kwok,151 E. Laird,151 G. Landsberg,151K. T. Lau,151J. Lee,151 M. Narain,151S. Sagir,151,ddddR. Syarif,151E. Usai,151W. Y. Wong,151D. Yu,151 W. Zhang,151R. Band,152C. Brainerd,152R. Breedon,152M. Calderon De La Barca Sanchez,152M. Chertok,152J. Conway,152 R. Conway,152P. T. Cox,152R. Erbacher,152C. Flores,152G. Funk,152F. Jensen,152W. Ko,152,aO. Kukral,152R. Lander,152

M. Mulhearn,152D. Pellett,152 J. Pilot,152 M. Shi,152D. Taylor,152K. Tos,152 M. Tripathi,152 Y. Yao,152 F. Zhang,152 M. Bachtis,153R. Cousins,153A. Dasgupta,153A. Florent,153D. Hamilton,153J. Hauser,153 M. Ignatenko,153 T. Lam,153

N. Mccoll,153W. A. Nash,153S. Regnard,153D. Saltzberg,153 C. Schnaible,153 B. Stone,153V. Valuev,153 K. Burt,154 Y. Chen,154R. Clare,154J. W. Gary,154 S. M. A. Ghiasi Shirazi,154G. Hanson,154G. Karapostoli,154 O. R. Long,154 N. Manganelli,154M. Olmedo Negrete,154 M. I. Paneva,154 W. Si,154 S. Wimpenny,154Y. Zhang,154J. G. Branson,155 P. Chang,155S. Cittolin,155S. Cooperstein,155N. Deelen,155M. Derdzinski,155J. Duarte,155 R. Gerosa,155D. Gilbert,155

B. Hashemi,155 V. Krutelyov,155J. Letts,155 M. Masciovecchio,155 S. May,155 S. Padhi,155 M. Pieri,155 V. Sharma,155 M. Tadel,155F. Würthwein,155 A. Yagil,155N. Amin,156 C. Campagnari,156M. Citron,156 A. Dorsett,156V. Dutta,156 J. Incandela,156B. Marsh,156H. Mei,156A. Ovcharova,156H. Qu,156M. Quinnan,156J. Richman,156U. Sarica,156D. Stuart,156

S. Wang,156D. Anderson,157A. Bornheim,157 O. Cerri,157 I. Dutta,157J. M. Lawhorn,157N. Lu,157J. Mao,157 H. B. Newman,157 T. Q. Nguyen,157J. Pata,157 M. Spiropulu,157 J. R. Vlimant,157S. Xie,157Z. Zhang,157R. Y. Zhu,157 J. Alison,158M. B. Andrews,158T. Ferguson,158T. Mudholkar,158M. Paulini,158M. Sun,158I. Vorobiev,158J. P. Cumalat,159 W. T. Ford,159E. MacDonald,159T. Mulholland,159R. Patel,159A. Perloff,159K. Stenson,159K. A. Ulmer,159S. R. Wagner,159 J. Alexander,160Y. Cheng,160J. Chu,160D. J. Cranshaw,160A. Datta,160A. Frankenthal,160K. Mcdermott,160J. Monroy,160 J. R. Patterson,160D. Quach,160A. Ryd,160W. Sun,160S. M. Tan,160 Z. Tao,160J. Thom,160P. Wittich,160M. Zientek,160

S. Abdullin,161M. Albrow,161M. Alyari,161 G. Apollinari,161 A. Apresyan,161 A. Apyan,161 S. Banerjee,161 L. A. T. Bauerdick,161A. Beretvas,161D. Berry,161J. Berryhill,161P. C. Bhat,161K. Burkett,161J. N. Butler,161A. Canepa,161

G. B. Cerati,161 H. W. K. Cheung,161 F. Chlebana,161M. Cremonesi,161V. D. Elvira,161 J. Freeman,161 Z. Gecse,161 E. Gottschalk,161L. Gray,161D. Green,161S. Grünendahl,161O. Gutsche,161R. M. Harris,161S. Hasegawa,161R. Heller,161

T. C. Herwig,161J. Hirschauer,161B. Jayatilaka,161 S. Jindariani,161 M. Johnson,161 U. Joshi,161P. Klabbers,161 T. Klijnsma,161 B. Klima,161 M. J. Kortelainen,161S. Lammel,161 D. Lincoln,161R. Lipton,161M. Liu,161T. Liu,161

J. Lykken,161 K. Maeshima,161 D. Mason,161P. McBride,161 P. Merkel,161S. Mrenna,161S. Nahn,161 V. O’Dell,161 V. Papadimitriou,161 K. Pedro,161C. Pena,161,zz O. Prokofyev,161 F. Ravera,161 A. Reinsvold Hall,161L. Ristori,161 B. Schneider,161E. Sexton-Kennedy,161N. Smith,161A. Soha,161W. J. Spalding,161L. Spiegel,161S. Stoynev,161J. Strait,161

L. Taylor,161S. Tkaczyk,161N. V. Tran,161 L. Uplegger,161E. W. Vaandering,161H. A. Weber,161A. Woodard,161 D. Acosta,162P. Avery,162D. Bourilkov,162L. Cadamuro,162V. Cherepanov,162F. Errico,162R. D. Field,162D. Guerrero,162

B. M. Joshi,162 M. Kim,162J. Konigsberg,162A. Korytov,162 K. H. Lo,162 K. Matchev,162N. Menendez,162 G. Mitselmakher,162D. Rosenzweig,162K. Shi,162J. Wang,162S. Wang,162X. Zuo,162T. Adams,163A. Askew,163D. Diaz,163

R. Habibullah,163 S. Hagopian,163V. Hagopian,163K. F. Johnson,163R. Khurana,163T. Kolberg,163 G. Martinez,163 H. Prosper,163 C. Schiber,163 R. Yohay,163J. Zhang,163M. M. Baarmand,164 S. Butalla,164T. Elkafrawy,164,eeee M. Hohlmann,164D. Noonan,164M. Rahmani,164M. Saunders,164 F. Yumiceva,164M. R. Adams,165 L. Apanasevich,165

Şekil

Figure 1 shows the invariant mass distribution of the reconstructed and selected B þ c → J=ψπ þ candidates, where the B þ c signal is clearly seen as a prominent peak [1]
FIG. 1. Invariant mass distribution of the B þ c → J=ψπ þ can- can-didates, after applying all event selection criteria [1]
Table I lists the efficiency ratios relevant for the determination of the cross section ratios
FIG. 3. The R þ and R þ (upper), and R þ =R þ (lower) cross section ratios, including the B ðÞc ð2SÞ þ → B ðÞþc π þ π − branching fractions, as functions of the B þ c p T (left) and jyj (right)
+2

Referanslar

Benzer Belgeler

The means with standard deviations (vertical line) of Zn, Cu, Pb and Cd concentrations (µg/g wet wt.) in the dorsal muscle tissues, gonad and liver of Psetta maxima from

Araştırma sonucunda, zayıf örgütsel destek algısının örgütsel sinizm ve işten ayrılma niyetini arttırdığı, işten ayrılma niyetinin artmasında algılanan

According to the analysis of the results, the regression model confirms the analogous findings reported by other authors, growth in economic activity tends to lead to a decrease

Araştırma konusuyla ilgili olarak eğitim tarihini, Âmin Alayı geleneğini ve sübyan mekteplerini içeren araştırmalar, Falaka gibi bazı edebi eserler, Jean

The aim of our study is to reveal if firms disposed to set up barriers to entry in two-sided markets. The questionnaire is applied to managers and firm owners of shops in

In approaching nationalist discourse on both public and commercial channels, we want to limit our argument by focusing on four main points: (1) the function of

Muhasebe bilgi sistemi etkin bir yönetim aracı olduğu için, kaliteli bilgi üretmek ve sistemin geleceği ile ilgili doğru kararları verebilmek için çok

(2018) ‘Computational investigation of the velocity and temperature fields in corrugated heat exchanger channels using RANS based turbulence models with experimental