• Sonuç bulunamadı

View of Selected Extensions on Eneström-kakeya Theorem

N/A
N/A
Protected

Academic year: 2021

Share "View of Selected Extensions on Eneström-kakeya Theorem"

Copied!
7
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Turkish Journal of Computer and Mathematics Education Vol.12 No.2 (2021), 2823-2829

Research Article

2823

Selected Extensions on Eneström-kakeya Theorem

R. K. Pavan Kumar. Pannala

1

1Department of Mathematics, ChandigrahUniversity, Gharuan-Mohali, Punjab -140413, India.

kamesh9.iit@gmail.com

Article History: Received: 11 January 2021; Accepted: 27 February 2021; Published online: 5 April 2021

Abstract: The theorem of Eneström-Kakeya is important within the hypothesis of dissemination of zeros ofpolynomials. In

the literature, it can be found so many extensions on Eneström-Kakeya theorem by giving various relations between the coefficients of polynomial like increasing, decreasing, irregular order etc.This paper mainly deals with some extensions on the Abdul Aziz and B AZargar theorembygiving some relaxations to the hypothesis that the coefficients are real, positive and alternative coefficients must be in increasing order.

Key words:Eneström-Kakeya theorem, location of zeros of polynomials, bounds for zeros, coefficients of polynomials,

irregular coefficients of polynomials.

1. Introduction and statement of results

Eneström-kakeya Theorem [7]: Given the real polynomial 𝑓(𝑧) = ∑𝑛𝑘=0𝑎𝑘𝑧𝑘.

If 𝑎0≥ 𝑎1≥ 𝑎2≥ ⋯ ≥ 𝑎𝑛−1≥ 𝑎𝑛> 0 then 𝑓(𝑧) ≠ 0 for|𝑧| < 1.

The literature includes extensions, generalizations and refinements of Eneström-Kakeya theorem ([1-6]). Theorem-A: If 𝑝(𝑧) = ∑𝑛𝑘=0𝑎𝑘𝑧𝑘 is a polynomialwith 𝑎𝑛≠ 0, such that

𝑎𝑛≥ 𝑎𝑛−2≥ ⋯ ≥ 𝑎1 𝑜𝑟 𝑎0> 0

𝑎𝑛−1≥ 𝑎𝑛−3≥ ⋯ ≥ 𝑎0 𝑜𝑟 𝑎1> 0} (𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑎𝑠 𝑛 𝑖𝑠 𝑜𝑑𝑑 𝑜𝑟 𝑒𝑣𝑒𝑛) then all the zeros of 𝑝(𝑧) lie in the

disc |𝑧 +𝑎𝑛−1

𝑎𝑛 | ≤ 1 +

𝑎𝑛−1

𝑎𝑛 .

Theorem-A is given by Abdul Aziz and B.A.Zargar[1].

The hypothesis of the theorem-A is relaxed and obtained several extensions which are enumerated as follows.

2. Main results

Theorem-1: If𝑝(𝑧) = ∑𝑛𝑘=0𝑎𝑘𝑧𝑘 is a polynomial of degree 𝑛 with complex coefficients such that

|𝑎𝑛| ≥ |𝑎𝑛−2| ≥ ⋯ ≥ |𝑎1| 𝑜𝑟 |𝑎0|

|𝑎𝑛−1| ≥ |𝑎𝑛−3| ≥ ⋯ ≥ |𝑎0| 𝑜𝑟 |𝑎1|

} (𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑎𝑠 𝑛 𝑖𝑠 𝑜𝑑𝑑 𝑜𝑟 𝑒𝑣𝑒𝑛) and |𝑎𝑟𝑔. 𝑎𝑘− 𝛽| ≤ 𝛼 ≤ 𝜋

2 for some

real 𝛽, for 𝑘 = 0(1)𝑛 then the bound to the location of zeros of𝑝(𝑧) is|𝑧 +𝑎𝑛−1

𝑎𝑛 | ≤

[{(𝑐𝑜𝑠𝛼+𝑠𝑖𝑛𝛼)(|𝑎𝑛|+|𝑎𝑛−1|)−{(𝑐𝑜𝑠𝛼+𝑠𝑖𝑛𝛼−1)(|𝑎1|+|𝑎0|)}+2𝑠𝑖𝑛𝛼 ∑𝑛−2𝑘=0|𝑎𝑘|}]

|𝑎𝑛|

Following extensions can be obtained with an assumption that the real parts of the coefficients are non-negative and satisfy the hypothesis of the theorem-A.

Theorem-2:If 𝑝(𝑧) = ∑𝑛𝑘=0𝑎𝑘𝑧𝑘with 𝑎𝑛≠ 0 such that

𝛼𝑛≥ 𝛼𝑛−2≥ ⋯ ≥ 𝛼1 𝑜𝑟 𝛼0≥ 0

𝛼𝑛−1≥ 𝛼𝑛−3≥ ⋯ ≥ 𝛼0 𝑜𝑟 𝛼1≥ 0} (𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑎𝑠 𝑛 𝑖𝑠 𝑜𝑑𝑑 𝑜𝑟 𝑒𝑣𝑒𝑛) and 𝛼𝑛> 0 where 𝑎𝑗= 𝛼𝑗+ 𝑖 𝛽𝑗, 𝑗 =

0(1)𝑛 then a bound for zeros of 𝑝(𝑧) is|𝑧| ≤ 1 +2𝛼𝑛−1

𝛼𝑛 +

2

𝛼𝑛∑ |𝛽𝑘|

𝑛

𝑘=0 .

Theorem-3:If 𝑝(𝑧) = ∑𝑛𝑘=0𝑎𝑘𝑧𝑘with 𝑎𝑛≠ 0 such that

𝛼𝑛≥ 𝛼𝑛−2≥ ⋯ ≥ 𝛼1 𝑜𝑟 𝛼0≥ 0

𝛼𝑛−1≥ 𝛼𝑛−3≥ ⋯ ≥ 𝛼0 𝑜𝑟 𝛼1≥ 0} (𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑎𝑠 𝑛 𝑖𝑠 𝑜𝑑𝑑 𝑜𝑟 𝑒𝑣𝑒𝑛) and 𝛼𝑛> 0where 𝑎𝑗 = 𝛼𝑗+ 𝑖 𝛽𝑗, 𝑗 =

0(1)𝑛 then a sharp bound for the zeros of 𝑝(𝑧)is𝑅∗≤ |𝑧| ≤ 𝑅

(2)

2824

𝑅 = 1 +2𝛼𝑛−1 𝛼𝑛 + 2 𝛼𝑛∑ |𝛽𝑘| 𝑛 𝑘=0 and 𝑅∗= |𝑎0| 𝑅𝑛{2𝛼𝑛𝑅+(𝑅−1)|𝛽𝑛|−(𝛼0+|𝛽0|)}.

One can observe that the theorem-3 is animprovement of the theorem-2.

An extension can be obtained by including the increasing sequences between imaginary coefficients and further drop the restriction that the coefficients are non-negativein the hypothesis of the theorem-3.

Theorem-4:If 𝑝(𝑧) = ∑𝑛𝑘=0𝑎𝑘𝑧𝑘with 𝑎𝑛≠ 0such that

𝛼𝑛≥ 𝛼𝑛−2≥ ⋯ ≥ 𝛼1 𝑜𝑟 𝛼0

𝛼𝑛−1≥ 𝛼𝑛−3≥ ⋯ ≥ 𝛼0 𝑜𝑟 𝛼1

𝛽𝑛≥ 𝛽𝑛−2≥ ⋯ ≥ 𝛽1 𝑜𝑟 𝛽0

𝛽𝑛−1≥ 𝛽𝑛−3≥ ⋯ ≥ 𝛽0 𝑜𝑟 𝛽1

} (𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑎𝑠 𝑛 𝑖𝑠 𝑜𝑑𝑑 𝑜𝑟 𝑒𝑣𝑒𝑛) and 𝛼𝑛> 0 where

𝑎𝑗 = 𝛼𝑗+ 𝑖 𝛽𝑗, 𝑗 = 0(1)𝑛 then all the zeros of 𝑝(𝑧) lie in the annular ring 𝑅2≤ |𝑧| ≤ 𝑅1

where 𝑅1= |𝑎𝑛−1| 2 ( 1 𝛼𝑛 − 1 𝑀) + { |𝑎𝑛−1|2 4 ( 1 𝛼𝑛 − 1 𝑀) 2 +𝑀 𝛼𝑛 } 1 2 𝑅2= −𝑅12|𝑎1|(𝑀1− |𝑎0|) + {𝑅14|𝑎1|2(𝑀1− |𝑎0|)2+ 4 |𝑎0|𝑅12𝑀13} 1 2 2𝑀12 and 𝑀 ≡ 𝛼𝑛+ 𝛼𝑛−1+ 𝛽𝑛+ 𝛽𝑛−1+ (|𝛼0| − 𝛼0) + (|𝛼1| − 𝛼1) + (|𝛽0| − 𝛽0) + (|𝛽1| − 𝛽1) + |𝛼𝑛−1| + |𝛽𝑛−1| 𝑀1= 𝑅1𝑛+1[(|𝛼𝑛| + |𝛽𝑛|)𝑅1+ 𝑀 − |𝛼0| − |𝛽0|]

An extension can be obtained by including both increasing and decreasing sequences between alternative coefficients in the hypothesis of the theorem-4.

Theorem-5:If 𝑝(𝑧) = ∑𝑛𝑘=0𝑎𝑘𝑧𝑘with 𝑎𝑛≠ 0 such that

𝛼𝑛≥ 𝛼𝑛−2≥ ⋯ ≥ 𝛼1 𝑜𝑟 𝛼0

𝛼𝑛−1≤ 𝛼𝑛−3≤ ⋯ ≤ 𝛼0 𝑜𝑟 𝛼1

𝛽𝑛≥ 𝛽𝑛−2≥ ⋯ ≥ 𝛽1 𝑜𝑟 𝛽0

𝛽𝑛−1≤ 𝛽𝑛−3≤ ⋯ ≤ 𝛽0 𝑜𝑟 𝛽1

} (𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑎𝑠 𝑛 𝑖𝑠 𝑜𝑑𝑑 𝑜𝑟 𝑒𝑣𝑒𝑛) and 𝛼𝑛> 0 where

𝑎𝑗 = 𝛼𝑗+ 𝑖 𝛽𝑗, 𝑗 = 0(1)𝑛 then all the zeros of 𝑝(𝑧) lie in the disc |𝑧| ≤ 𝑀2 𝛼𝑛 where 𝑀2= { 𝛼𝑛+ (|𝛼0| + |𝛽0| + 𝛼0+ 𝛽0) + (|𝛼1| + |𝛽1| − 𝛼1) + (|𝛼𝑛−1| + |𝛽𝑛−1| − 𝛼𝑛−1− 𝛽𝑛−1) + (𝛽𝑛− 𝛽1) 𝑜𝑟 𝛼𝑛+ (|𝛼0| + |𝛽0| − 𝛼0) + (|𝛼1| + |𝛽1| + 𝛼1+ 𝛽1) + (|𝛼𝑛−1| + |𝛽𝑛−1| − 𝛼𝑛−1− 𝛽𝑛−1) + (𝛽𝑛− 𝛽0)

accordning as n is odd or even

3. Lemmas

For proving the main results, the following lemmas have used. Lemma 1 owes itself to Govil and Rahman [3].

Lemma 1: If |𝑎𝑟𝑔. 𝑎𝑘− 𝛽| ≤ 𝛼 ≤ 𝜋

2, |𝑎𝑟𝑔. 𝑎𝑘−1− 𝛽| ≤ 𝛼 and |𝑎𝑘| ≥ |𝑎𝑘−1| then

|𝑎𝑘− 𝑎𝑘−1| ≤ {(|𝑎𝑘| − |𝑎𝑘−1|)𝑐𝑜𝑠𝛼 + (|𝑎𝑘| + |𝑎𝑘−1|)𝑠𝑖𝑛𝛼}

One can observe that the extension of Schwarz‘s lemma is the following lemma 2.

Lemma 2: If ℎ(𝑧) is analytic on and inside the unit circle, |ℎ(𝑧)| ≤ 𝐻 on |𝑧| = 1, 𝑓(0) = 𝑎 where |𝑎| < 𝐻 then |ℎ(𝑧)| ≤ 𝐻𝐻|𝑧|+|𝑎|

|𝑎||𝑧|+𝐻 for |𝑧| < 1.

Lemma 3: If ℎ(𝑧) is analytic in |𝑧| < 𝑟, |ℎ(𝑧)| ≤ 𝐻 on |𝑧| = 𝑟, ℎ(0) = 𝑎 where |𝑎| < 𝐻 then

|ℎ(𝑧)| ≤ 𝐻𝐻|𝑧|+|𝑎|𝑟|𝑎||𝑧|+𝐻𝑟 for |𝑧| ≤ 𝑟.

Lemma 3 can be proved from lemma 2 easily.

(3)

2825

Lemma 4: If ℎ (𝑧) is analytic in |𝑧| ≤ 1, ℎ(0) = 𝑐 where |𝑐| < 1, ℎ′(0) = 𝑑, |ℎ(𝑧)| ≤ 1 on |𝑧| = 1 then for |𝑧| ≤ 1, |ℎ(𝑧)| ≤(1−|𝑐|)|𝑧|2+|𝑑||𝑧|+|𝑐|(1−|𝑐|)

|𝑐|(1−|𝑐|)|𝑧|2+|𝑑||𝑧|+(1−|𝑐|).

Lemma 5: If ℎ(𝑧) is analytic in |𝑧| ≤ 𝑟, ℎ(0) = 0, ℎ′(0) = 𝑏 and |ℎ(𝑧)| ≤ 𝐻 for |𝑧| = 𝑟 then for |𝑧| ≤ 𝑟,

|ℎ(𝑧)| ≤𝐻|𝑧|

𝑟2

𝐻|𝑧|+𝑟2 |𝑏| 𝐻+|𝑧||𝑏|

Lemma 5 can be proved from lemma 4 easily.

4. Main results proofs Theorem-1 proof: Let𝑔(𝑧) = (1 − 𝑧2)𝑝(𝑧) = −𝑎𝑛𝑧𝑛+2− 𝑎𝑛−1𝑧𝑛+1+ ∑(𝑎𝑘+2 − 𝑎𝑘)𝑧𝑘+2 𝑛−2 𝑘=0 + 𝑎1𝑧 + 𝑎0 |𝑔(𝑧)| ≥ |𝑧|𝑛+1|𝑎 𝑛𝑧 + 𝑎𝑛−1| − |∑(𝑎𝑘+2 − 𝑎𝑘)𝑧𝑘+2 𝑛−2 𝑘=0 + 𝑎1𝑧 + 𝑎0| For |𝑧| > 1, |𝑔(𝑧)| ≥ |𝑧|𝑛+1|𝑎 𝑛𝑧 + 𝑎𝑛−1| − |𝑧|𝑛{∑|(𝑎𝑘+2 − 𝑎𝑘)| + |𝑎1| + |𝑎0| 𝑛−2 𝑘=0 } Using Lemma-1 we obtain

|𝑔(𝑧)| ≥ |𝑧|𝑛+1|𝑎 𝑛𝑧 + 𝑎𝑛−1| − |𝑧|𝑛[{∑𝑛−2𝑘=0(|𝑎𝑘+2| − |𝑎𝑘|)𝑐𝑜𝑠𝛼} + {∑𝑘=0𝑛−2(|𝑎𝑘+2| + |𝑎𝑘|)𝑠𝑖𝑛𝛼} + |𝑎1|+|𝑎0|] = |𝑧|𝑛+1|𝑎 𝑛𝑧 + 𝑎𝑛−1| − |𝑧|𝑛[{(𝑐𝑜𝑠𝛼 + 𝑠𝑖𝑛𝛼)(|𝑎 𝑛| + |𝑎𝑛−1|)} + 2𝑠𝑖𝑛𝛼 ∑|𝑎𝑘| 𝑛−2 𝑘=0 − {(𝑐𝑜𝑠𝛼 + 𝑠𝑖𝑛𝛼 − 1)(|𝑎1| + |𝑎0|)}] |𝑔(𝑧)| > 0 if |𝑧 + (𝑎𝑛−1 𝑎𝑛 )| > [{(𝑐𝑜𝑠𝛼+𝑠𝑖𝑛𝛼)(|𝑎𝑛|+|𝑎𝑛−1|)}+2𝑠𝑖𝑛𝛼 ∑𝑛−2𝑘=0|𝑎𝑘|−{(𝑐𝑜𝑠𝛼+𝑠𝑖𝑛𝛼−1)(|𝑎1|+|𝑎0|)}] |𝑎𝑛| ≡ 𝑀 (say) 𝑀 >|𝑎𝑛| + |𝑎𝑛−1| − |𝑎1| − |𝑎0| + |𝑎1| + |𝑎0| |𝑎𝑛| = 1 + |𝑎𝑛−1 𝑎𝑛 | ≥ 1 Let 1 ≤ 𝑀 < 𝑅 Where 𝑅 = |𝑧 + (𝑎𝑛−1 𝑎𝑛 )| ≤ |𝑧| + | 𝑎𝑛−1 𝑎𝑛 | |𝑧| ≥ 𝑅 − |𝑎𝑛−1 𝑎𝑛 | ≥ 1 + 𝑅 − 𝑀 > 1 Hence 𝑔(𝑧) does not vanish for

|𝑧 + (𝑎𝑛−1 𝑎𝑛 )| >[{(𝑐𝑜𝑠𝛼 + 𝑠𝑖𝑛𝛼)(|𝑎𝑛| + |𝑎𝑛−1|)} + 2𝑠𝑖𝑛𝛼 ∑ |𝑎𝑘| 𝑛−2 𝑘=0 − {(𝑐𝑜𝑠𝛼 + 𝑠𝑖𝑛𝛼 − 1)(|𝑎1| + |𝑎0|)}] |𝑎𝑛|

Therefore, those roots of 𝑔(𝑧)for whichthe modulus is greater than one be located in |𝑧 + (𝑎𝑛−1 𝑎𝑛 )| ≤[{(𝑐𝑜𝑠𝛼 + 𝑠𝑖𝑛𝛼)(|𝑎𝑛| + |𝑎𝑛−1|)} + 2𝑠𝑖𝑛𝛼 ∑ |𝑎𝑘| 𝑛−2 𝑘=0 − {(𝑐𝑜𝑠𝛼 + 𝑠𝑖𝑛𝛼 − 1)(|𝑎1| + |𝑎0|)}] |𝑎𝑛| Theorem-2 proof: Let𝑔(𝑧) = (1 − 𝑧2)𝑝(𝑧) = −𝑎𝑛𝑧𝑛+2+ 𝑄(𝑧) where 𝑄(𝑧) = −𝑎𝑛−1𝑧𝑛+1+ ∑𝑛−2𝑘=0(𝑎𝑘+2 − 𝑎𝑘)𝑧𝑘+2+ 𝑎1𝑧 + 𝑎0 For |𝑧| = 1, |𝑄(𝑧)| ≤ |𝑎0| + |𝑎1| + |𝑎𝑛−1| + ∑|𝑎𝑘 − 𝑎𝑘−2| 𝑛 𝑘=2

(4)

2826

|𝑄(𝑧)| ≤ 𝛼0+ |𝛽0| + 𝛼1+ |𝛽1| + 𝛼𝑛−1+ |𝛽𝑛−1| + ∑(𝛼𝑘− 𝛼𝑘−2) 𝑛 𝑘=2 + ∑(|𝛽𝑘 | + |𝛽𝑘−2|) 𝑛 𝑘=2 = 𝛼𝑛+ 2𝛼𝑛−1− |𝛽𝑛| + 2 ∑|𝛽𝑘| 𝑛 𝑘=0 ≤ 𝛼𝑛+ 2𝛼𝑛−1+ 2 ∑|𝛽𝑘| 𝑛 𝑘=0 Hence also |𝑧𝑛+1𝑄 (1 𝑧)| ≤ 𝛼𝑛+ 2𝛼𝑛−1+ 2 ∑|𝛽𝑘| 𝑛 𝑘=0

For |𝑧| = 1, by the maximum modulus principle holds inside the unit circle as well. If 𝑅 > 1then1

𝑅𝑒

−𝑖𝜃be located in the unit circle for all real 𝜃,which implies

|𝑄(𝑅𝑒𝑖𝜃)| ≤ {𝛼

𝑛+ 2𝛼𝑛−1+ 2 ∑𝑛𝑘=0|𝛽𝑘|}𝑅𝑛+1 for every 𝑅 ≥ 1 and 𝜃 real.

Thus for |𝑧| = 𝑅 > 1 |𝑔(𝑅𝑒𝑖𝜃)| ≥ |𝑎 𝑛|𝑅𝑛+2− |𝑄(𝑅𝑒𝑖𝜃)| ≥ |𝑎𝑛|𝑅𝑛+2− {𝛼𝑛+ 2𝛼𝑛−1+ 2 ∑|𝛽𝑘| 𝑛 𝑘=0 } 𝑅𝑛+1 ≥ 𝛼𝑛𝑅𝑛+2− {𝛼𝑛+ 2𝛼𝑛−1+ 2 ∑|𝛽𝑘| 𝑛 𝑘=0 } 𝑅𝑛+1 |𝑔(𝑅𝑒𝑖𝜃)| > 0 if 𝑅 >{𝛼𝑛+2𝛼𝑛−1+2 ∑𝑛𝑘=0|𝛽𝑘|} 𝛼𝑛 . Theorem-3 proof: Let𝑔(𝑧) = (1 − 𝑧2)𝑝(𝑧) = 𝑎0+ 𝑓(𝑧) where 𝑓(𝑧) = −𝑎𝑛𝑧𝑛+2− 𝑎𝑛−1𝑧𝑛+1+ ∑𝑛𝑘=2(𝑎𝑘 − 𝑎𝑘−2)𝑧𝑘+ 𝑎1𝑧 Let 𝑀(𝑟) = max |𝑧|=𝑟|𝑓(𝑧)| Then 𝑀(𝑅) ≥ |𝑎0| where 𝑅 = {𝛼𝑛+2𝛼𝑛−1+2 ∑𝑛𝑘=0|𝛽𝑘|} 𝛼𝑛 Clearly, |𝑓(𝑧)| ≤ |𝑎𝑛||𝑧|𝑛+2+ |𝑎𝑛−1||𝑧|𝑛+1+ ∑𝑛𝑘=2|𝑎𝑘 − 𝑎𝑘−2| |𝑧|𝑘+ |𝑎1||𝑧| and 𝑅 ≥ 1. Hence, 𝑀(𝑅) = max |𝑧|=𝑅|𝑓(𝑧)| ≤ |𝑎𝑛|𝑅 𝑛+2+ |𝑎 𝑛−1|𝑅𝑛+1+ |𝑎1|𝑅 + ∑|𝑎𝑘 − 𝑎𝑘−2|𝑅𝑘 𝑛 𝑘=2 ≤ |𝑎𝑛|𝑅𝑛+2+ |𝑎𝑛−1|𝑅𝑛+1+ |𝑎1|𝑅 + 𝑅𝑛{∑|𝑎𝑘 − 𝑎𝑘−2|} 𝑛 𝑘=2 ≤ |𝑎𝑛|𝑅𝑛+2+ 𝑅𝑛+1{|𝑎𝑛−1| + |𝑎1| + ∑|𝑎𝑘 − 𝑎𝑘−2| 𝑛 𝑘=2 } ≤ (𝛼𝑛+ |𝛽𝑛|)𝑅𝑛+2+ 𝑅𝑛+1{𝛼𝑛+ 2𝛼𝑛−1− 𝛼0− |𝛽0|−|𝛽𝑛| + 2 ∑𝑛𝑘=0|𝛽𝑘|} = 𝑅𝑛+1{2𝛼𝑛𝑅 + (𝑅 − 1)|𝛽𝑛| − (𝛼0+ |𝛽0|)} ≡ 𝑀

Since 𝑓(0) = 0, hence for |𝑧| ≤ 𝑅 we have by Schwarz’s lemma, |𝑓(𝑧)| ≤𝑀 |𝑧| 𝑅 For |𝑧| ≤ 𝑅, |𝑔(𝑧)| ≥ |𝑎0| − |𝑧|𝑅𝑛{2𝛼𝑛𝑅 + (𝑅 − 1)|𝛽𝑛| − (𝛼0+ |𝛽0|)} |𝑔(𝑧)| > 0 if |𝑧| < |𝑎0| 𝑅𝑛{2𝛼𝑛𝑅+(𝑅−1)|𝛽𝑛|−(𝛼0+|𝛽0|)} Since 2𝛼𝑛𝑅+(𝑅−1)|𝛽𝑛|−(𝛼0+|𝛽0|) |𝑎0| > 0 Then |𝑎0| 𝑅𝑛{2𝛼 𝑛𝑅+(𝑅−1)|𝛽𝑛|−(𝛼0+|𝛽0|)}< 𝑅. Theorem-4 proof: Let𝑔(𝑧) = (1 − 𝑧2)𝑝(𝑧) = −𝑎𝑛𝑧𝑛+2+ 𝑄(𝑧) where 𝑄(𝑧) = −𝑎𝑛−1𝑧𝑛+1+ ∑𝑛𝑘=2(𝑎𝑘 − 𝑎𝑘−2)𝑧𝑘+ 𝑎1𝑧 + 𝑎0 Let 𝑇(𝑧) = 𝑧𝑛+1𝑄 (1 𝑧) = −𝑎𝑛−1+ ∑ (𝑎𝑘 − 𝑎𝑘−2)𝑧 𝑛−𝑘+1 𝑛 𝑘=2 + 𝑎1𝑧𝑛+ 𝑎0𝑧𝑛+1

(5)

2827

For |𝑧| = 1, we have |𝑇(𝑧)| ≤ |𝑎0| + |𝑎1| + |𝑎𝑛−1| + ∑|𝑎𝑘 − 𝑎𝑘−2| 𝑛 𝑘=2 ≤ 𝑀 where 𝑀 ≡ 𝛼𝑛+ 𝛼𝑛−1+ 𝛽𝑛+ 𝛽𝑛−1+ (|𝛼0| − 𝛼0) + (|𝛼1| − 𝛼1) + (|𝛽0| − 𝛽0) + (|𝛽1| − 𝛽1) + |𝛼𝑛−1| + |𝛽𝑛−1|

By the maximum modulus principle, it holds inside the unit circle as well. If 𝑅 > 1 then1

𝑅𝑒

−𝑖𝜃be located in the unit circle for all real 𝜃,which implies

|𝑄(𝑅𝑒𝑖𝜃)| ≤ 𝑀 𝑅𝑛+1 for every real 𝑅 ≥ 1 and real 𝜃. Thus for |𝑧| = 𝑅 > 1 |𝑔(𝑅𝑒𝑖𝜃)| ≥ |𝑎 𝑛|𝑅𝑛+2− |𝑄(𝑅𝑒𝑖𝜃)| ≥ 𝛼𝑛𝑅𝑛+2− 𝑀 𝑅𝑛+1 |𝑔(𝑅𝑒𝑖𝜃)| > 0 if 𝑅 > 𝑀 𝛼𝑛 = 1 + {𝛼𝑛−1+ 𝛽𝑛+ 𝛽𝑛−1+ (|𝛼0| − 𝛼0) + (|𝛼1| − 𝛼1) + (|𝛽0| − 𝛽0) + (|𝛽1| − 𝛽1) + |𝛼𝑛−1| + |𝛽𝑛−1| 𝛼𝑛 } Hence the concept of maximum modulus, |𝑇(0)| = |𝑎𝑛−1| < 𝑀

By lemma-2 on the function 𝑇(𝑧) we obtain for |𝑧| ≤ 1,

|𝑇(𝑧)| ≤ 𝑀 𝑀 |𝑧| + |𝑎𝑛−1| |𝑎𝑛−1||𝑧| + 𝑀

This implies that

|𝑧𝑛+1𝑄 (1 𝑧)| ≤ 𝑀 𝑀 |𝑧| + |𝑎𝑛−1| |𝑎𝑛−1||𝑧| + 𝑀 If 𝑅 > 1, 1 𝑅𝑒

−𝑖𝜃be located in the unit circle for all real 𝜃, which implies

|𝑄(𝑅𝑒𝑖𝜃)| ≤ 𝑀 𝑅𝑛+1𝑀 + |𝑎𝑛−1|𝑅 |𝑎𝑛−1| + 𝑀 𝑅 Thus for |𝑧| = 𝑅 > 1 |𝑔(𝑅𝑒𝑖𝜃)| ≥ |𝑎 𝑛|𝑅𝑛+2− |𝑄(𝑅𝑒𝑖𝜃)| ≥ 𝛼𝑛𝑅𝑛+2− 𝑀 𝑅𝑛+1 𝑀 + |𝑎𝑛−1|𝑅 |𝑎𝑛−1| + 𝑀 𝑅 = 𝑅 𝑛+1 𝑀𝑅 + |𝑎𝑛−1| [𝑀 𝛼𝑛𝑅2− |𝑎𝑛−1|(𝑀 − 𝛼𝑛)𝑅 − 𝑀2] > 0 if 𝑅 >|𝑎𝑛−1| 2 ( 1 𝛼𝑛− 1 𝑀) + { |𝑎𝑛−1|2 4 ( 1 𝛼𝑛− 1 𝑀) 2 + 𝑀 𝛼𝑛} 1 2 ≡ 𝑅1

Therefore 𝑔(𝑧)have all the zeros of located in |𝑧| ≤ 𝑅1 where 𝑅1> 1.

It means that all zeros of𝑝(𝑧)are located in |𝑧| ≤ 𝑅1.

Subsequently, it can be showed that no zeros of𝑝(𝑧)are located in|𝑧| < 𝑅2.

𝑔(𝑧) = 𝑎0+ 𝑓(𝑧) = 𝑎0+ 𝑎1𝑧 + ∑(𝑎𝑘 − 𝑎𝑘−2)𝑧𝑘 𝑛 𝑘=2 − 𝑎𝑛−1𝑧𝑛+1− 𝑎𝑛𝑧𝑛+2 Let 𝑀(𝑅1) = max |𝑧|=𝑅1 |𝑓(𝑧)| Since 𝑅1≥ 1, 𝑓(1) = −𝑎0 we have 𝑀(𝑅1) ≥ |𝑎0| Clearly |𝑓(𝑧)| ≤ |𝑎𝑛||𝑧|𝑛+2+ ∑𝑛𝑘=2|𝑎𝑘 − 𝑎𝑘−2||𝑧|𝑘+ |𝑎1||𝑧| + |𝑎𝑛−1||𝑧|𝑛+1 And hence 𝑀(𝑅1) ≤ |𝑎𝑛|𝑅1𝑛+2+ ∑𝑛𝑘=2|𝑎𝑘 − 𝑎𝑘−2|𝑅1𝑘+ |𝑎1|𝑅1+ |𝑎𝑛−1|𝑅1𝑛+1 ≤ |𝑎𝑛|𝑅1𝑛+2+ 𝑅1𝑛+1{|𝑎1| + |𝑎𝑛−1| + ∑|𝑎𝑘 − 𝑎𝑘−2| 𝑛 𝑘=2 } ≤ 𝑅1𝑛+1[(|𝛼𝑛| + |𝛽𝑛|)𝑅1+ 𝑀 − |𝛼0| − |𝛽0|] ≡ 𝑀1 (say) Further because 𝑓(0) = 0, 𝑓′(0) = 𝑎 1 we have by lemma-5 |𝑓(𝑧)| ≤𝑀1 |𝑧| 𝑅12 𝑀1|𝑧|+|𝑅12|𝑎1| 𝑀1+|𝑎1||𝑧| for |𝑧| ≤ 𝑅1 |𝑔(𝑧)| ≥ |𝑎0| − 𝑀1 |𝑧| 𝑅12 𝑀1|𝑧| + |𝑅12|𝑎1| 𝑀1+ |𝑎1||𝑧| = −1 𝑅12(𝑀1+ |𝑧||𝑎1|) [|𝑧|2𝑀 12+ 𝑅12|𝑎1||𝑧|(𝑀1− |𝑎0|𝑅12𝑀1] |𝑔(𝑧)| > 0 if |𝑧| <−𝑅12|𝑎1|(𝑀1−|𝑎0|)+{𝑅14|𝑎1|2(𝑀1−|𝑎0|)2+4 |𝑎0|𝑅12𝑀13} 1 2 2𝑀12 ≡ 𝑅2 (say) where 𝑅2≤ 𝑅1.

(6)

2828

Theorem-5 proof: Let𝑔(𝑧) = (1 − 𝑧2)𝑝(𝑧) = −𝑎𝑛𝑧𝑛+2+ 𝑄(𝑧) where 𝑄(𝑧) = −𝑎𝑛−1𝑧𝑛+1+ ∑𝑛𝑘=2(𝑎𝑘 − 𝑎𝑘−2)𝑧𝑘+ 𝑎1𝑧 + 𝑎0 For |𝑧| = 1 we have |𝑄(𝑧)| ≤ 𝑀2 where 𝑀2= { 𝛼𝑛+ (|𝛼0| + |𝛽0| + 𝛼0+ 𝛽0) + (|𝛼1| + |𝛽1| − 𝛼1) + (|𝛼𝑛−1| + |𝛽𝑛−1| − 𝛼𝑛−1− 𝛽𝑛−1) + (𝛽𝑛− 𝛽1) 𝑜𝑟 𝛼𝑛+ (|𝛼0| + |𝛽0| − 𝛼0) + (|𝛼1| + |𝛽1| + 𝛼1+ 𝛽1) + (|𝛼𝑛−1| + |𝛽𝑛−1| − 𝛼𝑛−1− 𝛽𝑛−1) + (𝛽𝑛− 𝛽0)

accordning as n is odd or even Hence also for |𝑧| = 1, |𝑧𝑛+1 𝑄 (1

𝑧)| ≤ 𝑀2.

By the maximum modulus principle it holds inside the unit circle as well. If 𝑅 > 1 then 1

𝑅𝑒

−𝑖𝜃be located inthe unit circle for all real 𝜃 and follows that

|𝑄(𝑅𝑒𝑖𝜃)| ≤ 𝑀

2𝑅𝑛+1 for every 𝑅 ≥ 1 and real 𝜃.

Thus for |𝑧| = 𝑅 > 1

𝑔|(𝑅𝑒𝑖𝜃)| ≥ |𝑎

𝑛|𝑅𝑛+2− |𝑄(𝑅𝑒𝑖𝜃)| ≥ 𝛼𝑛𝑅𝑛+2− 𝑀2𝑅𝑛+1

|𝑔(𝑅𝑒𝑖𝜃)| > 0 if 𝑅 >𝑀2

𝛼𝑛 where 𝑅 > 1.

If𝛼0, 𝛼1, 𝛼𝑛−1≥ 0 and 𝛽0, 𝛽1, 𝛽𝑛−1≥ 0 in theorem-5 then Corollary-5.1: If 𝑝(𝑧) = ∑𝑛𝑘=0𝑎𝑘𝑧𝑘with 𝑎𝑛≠ 0such that

𝛼𝑛≥ 𝛼𝑛−2≥ ⋯ ≥ 𝛼1 𝑜𝑟 𝛼0≥ 0

0 ≤ 𝛼𝑛−1≤ 𝛼𝑛−3≤ ⋯ ≤ 𝛼0 𝑜𝑟 𝛼1

𝛽𝑛≥ 𝛽𝑛−2≥ ⋯ ≥ 𝛽1 𝑜𝑟 𝛽0≥ 0

0 ≤ 𝛽𝑛−1≤ 𝛽𝑛−3≤ ⋯ ≤ 𝛽0 𝑜𝑟 𝛽1

} (𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑎𝑠 𝑛 𝑖𝑠 𝑜𝑑𝑑 𝑜𝑟 𝑒𝑣𝑒𝑛) and 𝛼𝑛> 0

where 𝑎𝑗= 𝛼𝑗+ 𝑖 𝛽𝑗, 𝑗 = 0(1)𝑛 then all the zeros of 𝑝(𝑧) lie in the disc

|𝑧| ≤ { 𝛼𝑛+ 𝛽𝑛+ 2(𝛼0+ 𝛽0) 𝛼𝑛 𝑜𝑟 𝛼𝑛+ 𝛽𝑛+ 2(𝛼1+ 𝛽1) 𝛼𝑛 (𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑎𝑠 𝑛 𝑖𝑠 𝑜𝑑𝑑 𝑜𝑟 𝑒𝑣𝑒𝑛)

If all the coefficients of the polynomial are real in theorem-5 then

Corollary-5.2: If 𝑝(𝑧) = ∑𝑛𝑘=0𝑎𝑘𝑧𝑘 is a polynomial of degree 𝑛 such that

𝑎𝑛≥ 𝑎𝑛−2≥ ⋯ ≥ 𝑎1 𝑜𝑟 𝑎0

𝑎𝑛−1≤ 𝑎𝑛−3≤ ⋯ ≤ 𝑎0 𝑜𝑟 𝑎1} (𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑎𝑠 𝑛 𝑖𝑠 𝑜𝑑𝑑 𝑜𝑟 𝑒𝑣𝑒𝑛) and 𝑎𝑛> 0 then all the roots of 𝑝(𝑧)

lie in the disc

|𝑧| ≤ { 1 +(|𝑎0| + 𝑎0) + (|𝑎1| − 𝑎1) + (|𝑎𝑛−1| − 𝑎𝑛−1) 𝑎𝑛 1 +(|𝑎0| − 𝑎0) + (|𝑎1| + 𝑎1) + (|𝑎𝑛−1| − 𝑎𝑛−1) 𝑎𝑛 (𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑎𝑠 𝑛 𝑖𝑠 𝑜𝑑𝑑 𝑜𝑟 𝑒𝑣𝑒𝑛)

If all the coefficients of the polynomial are real and non-negative in theorem-5 then

Corollary-5.3: If 𝑝(𝑧) = ∑𝑛𝑘=0𝑎𝑘𝑧𝑘with 𝑎𝑛≠ 0such that

𝑎𝑛≥ 𝑎𝑛−2≥ ⋯ ≥ 𝑎1 𝑜𝑟 𝑎0≥ 0

0 ≤ 𝑎𝑛−1≤ 𝑎𝑛−3≤ ⋯ ≤ 𝑎0 𝑜𝑟 𝑎1} (𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑎𝑠 𝑛 𝑖𝑠 𝑜𝑑𝑑 𝑜𝑟 𝑒𝑣𝑒𝑛) and 𝑎𝑛> 0 then all the roots of

𝑝(𝑧) lie in the disc |𝑧| ≤ { 1 +2𝑎0

𝑎𝑛

1 +2𝑎1

𝑎𝑛

(7)

2829

References

1. Aziz, A., &Zargar, B. A. (1996). Some extensions of Enestrom-Kakeya theorem. GlasnikMatematicki, 31, 239-244.

2. Dewan, K. K., &Bidkham, M. (1993). On the Eneström-Kakeya theorem. Journal of mathematical analysis and applications, 180(1), 29-36.

3. Govil, N. K., & Rahman, Q. I. (1968). On the Eneström-Kakeya theorem. Tohoku Mathematical Journal, Second Series, 20(2), 126-136.

4. Govil, N. K., Rahman, Q. I., &Schmeisser, G. (1979). On the derivative of a polynomial. Illinois Journal of Mathematics, 23(2), 319-329.

5. Gardner, R. B., &Govil, N. K. (1994): On the Location of the Zeros of a Polynomial. Journal of Approximation Theory, 78(2), 286-292.

6. Gardner, R., &Govil, N. (1997). Some generalizations of the Eneström-Kakeya theorem. Acta Mathematica Hungarica, 74(1-2), 125-134.

Referanslar

Benzer Belgeler

Theorem 1.. Curvature Properties of the Levi–Civita Connection of the Modified Riemannian Extension e g ∇,c.. In this section, we give the conditions under which the cotangent bundle

Sağlıklı günler dileği­ mizle Attilâ Ilhan’ın ayrılık gerekçesini kendi satırlarıyla okurlarımızla paylaşalım.” Ve Attilâ Ilhan’ın son satırları:

The labor market en- joys the low unemployment rates under high productivity level, however under low productivity level, due to the lack of security, ending up with very high

During the Cold War, due to its military deterrent and defense capabilities both in the context of its NATO collective security assurance, and its military power, Turkey’s

There thus appears to be no principled grounds for making any distinction between moral agents and moral patients; rather, every agent should be considered equally deserving of

Because dynamically varying the luminance of a surface elicits cortical activity in early visual areas (Haynes et al., 2004 ), we reasoned that it should be possible to test

The InSb micro-Hall probes were fabricated using high-quality epitaxial InSb thin films with a thickness of 1 m grown by MBE on semi-insulating GaAs substrate [9], [10].

Dedem tarlasına 5 elma ağa- cı, 4 vişne ağacı, 6 kayısı ağacı dikti.. Dedem tarlaya toplam kaç