• Sonuç bulunamadı

Multilevel/AES-LDPCC-CPFSK with Channel Equalization over WSSUS Multipath Environment.

N/A
N/A
Protected

Academic year: 2021

Share "Multilevel/AES-LDPCC-CPFSK with Channel Equalization over WSSUS Multipath Environment."

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

International

Journal

of

Electronics

and

Communications

(AEÜ)

j o ur na l ho m e p a g e :w w w . e l s e v i e r . d e / a e u e

Multilevel/AES-LDPCC-CPFSK

with

channel

equalization

over

WSSUS

multipath

environment

Hakan

Cam

a

,

Osman

N.

Ucan

b

,

Volkan

Ozduran

c,∗ aTurkishAirForceAcademy,34149Yesilyurt,Istanbul,Turkey

bIstanbulAydinUniversity,FacultyofEngineeringandArchitecture,DepartmentofElectricalandElectronicsEngineering,Florya,Kucukcekmece,Istanbul,Turkey cIstanbulUniversity,FacultyofEngineering,DepartmentofElectricalandElectronicsEngineering,34320Avcilar,Istanbul,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received13December2010 Accepted24March2011 Keywords:

AdvancedEncryptionStandard Lowdensityparitycheckcodes ContinuousPhaseFrequencyShiftKeying WSSUS

Channelequalization

a

b

s

t

r

a

c

t

Inthispaper,inordertoensuresecureandrobustcommunication,anewtypeofdataencryptionand errorcorrectionmechanismcalledMultilevel/AdvancedEncryptionStandard-LowDensityParityCheck Coded-ContinuousPhaseFrequencyShiftKeying(Multilevel/AES-LDPCC-CPFSK)iscarriedout.Here,we havechosenAESfordataencryption,LDPCcodesforerrorcorrectionandCPFSKformodulation.We haveevaluatederrorperformanceofthisschemeoverWide-SenseStationaryUncorrelatedScattering (WSSUS)multipathchannelswithchannelequalization.Wehavesimulated5-levelAES,2-levelLDPCfor 4CPFSKand16CPFSKoverWSSUSchannelsmodeledbyCooperationinthefieldofScience&Technology, Project#207(COST207).Wehaveconcludedthatourproposedstructurehaspromisingresultscompared toTurboCodesforallSNRvaluesinWSSUSchannels.

© 2011 Elsevier GmbH. All rights reserved.

1. Introduction

Encryptionanderrorcorrectionmechanismsarerequiredfor secureandrobustcommunication.AESalgorithmisasymmetric blockcipherprovidingsecuresensitiveinformation.128,192or 256bitsofdatablockscanbeprocessedbyAESusingkeylengths of128,196and256bits.Itisbasedonroundfunctionswhichare ByteSubstitution,RowShifting,ColumnMixingandKeyAddition [1–3].LDPCcodesarewellknownerrorcorrectioncodes,providing lowencoderanddecodercomplexity[4].Manyauthorshave inves-tigatedLDPCcodes;ZyablovandPinkster[5],Margulis[6],Tanner [7],MacKayandNeal[8],Wiberg[9].Thesestudieshavedefined thebasicprinciplesofLDPCcodes.Therealsocanbefoundmany studiesinliteraturewhichhaveexpandedtherangeofLDPCcode usagebyHaleyetal.[10],Cuietal.[11],Lubyetal.[12],Johnson [13],BingandJun[14],Abematsuetal.[15],NikandFekri[16].

Bandwidthefficiencyisoneofthemainperformancecriteria inmultipathchannels.CPFSK,aspecialkindofContinuousPhase Modulation(CPM)[17],providesagoodbandwidthefficiencyand biterrorperformance withits additionalmemoryunit. Various studieshavebeeninvestigatedaboutthedifferentaspectsofCPFSK bythefollowingauthors;Osman[18],Sakamotoetal.[19],Altay [20],ChengandLu[21].ContinuousPhaseEncoder(CPE)and Mem-oryless Mapper (MM) are two components of CPFSK. CPEis a

∗ Correspondingauthor.Tel.:+905358415755. E-mailaddress:volkan@istanbul.edu.tr(V.Ozduran).

convolutionalencoder.Itproducescodewordsequencesthatare mappedontowaveformsbyMM,whichcreatescontinuousphase signals.CPEprovidesnotonlypowerefficiencybutalsophase con-tinuity.

WSSUSisabasicmultipathchannelmodeltodescribethefading dispersivechannels.Ithastwomainparametersforcharacterizing offadingandmultipatheffects,whicharepropagationdelayand Dopplershift[8].WSSUSchannelscanbemodeledasin Coopera-tioninthefieldofScience&Technology,Project#207(COST207) withstandardprofilessuchasTypicalUrban(TU),BadUrban(BU) andHillyTerrain(HT).SinceCOST207isaseverefadingchannel, variouschannelequalizerssuchasLeastMeanSquares(LMS)and RecursiveLeastSquares(RLS)areemployed.

Inthispaper,anewjointscheme,“Multilevel/Advanced Encryp-tionStandard-LowDensityParityCheckCoded-ContinuousPhase FrequencyShiftKeying(ML/AES-LDPCC-CPFSK)”issimulatedover WSSUS multipath environment with channel equalization. The basic idea of using multilevel encryption and encoding is to partition information bits into several levels and encrypt and encode each level separately by AEScipher and LDPCencoder. Inthisapproach,“ML/AEScipher”encryptsinformationbits,then “ML/LDPCencoder”[22]encodestheseparallelbits,afterthat,the codedbitsareturnedintoserialtoparallelaccordingtothetype of modulation. CPEencodes thelast level of thesebits to pro-videphasecontinuity,then,MMmapsthecodedbitsintoM-ary CPFSKsignalsandthesesignalsaresenttochannel.CPFSK demod-ulator demodulatesthenoisysignalsatthereceiver side.Then, “Signalconstellationandprobabilitycalculationblock”processes 1434-8411/$–seefrontmatter © 2011 Elsevier GmbH. All rights reserved.

(2)

thesesignals,and oneandzeroprobabilitiesofreceivedsignals areevaluated.Ineverylevel“LDPCdecoder” decodesthese sig-nalsandinputbitsareestimatedfromthesebits.Finally,“ML/AES decryptionblock”decryptsthesebitstreams.

Organizationofthispaperis asfollows:In Section2,abrief overviewofAESalgorithmisgiven.ThenLDPCcodesandCPFSK modulationaredescribedinSections3and4,respectively. ML/AES-LDPCC-CPFSKsystemsareinvestigatedinSection5.Finally,error performanceoftheproposedschemeisdiscussedinSection6. 2. AdvancedEncryptionStandard

AES is known worldwide as Rijndael symmetric-key block cipherwhichdesignedbyJoanDaemenandVincentRijmen.The blocksizeofAESis128bits,andthekeylengthscanbe128,192or 256bits[3].Thekeysizedeterminesthenumberofroundstobe performed.Forinstance,forthekeysizeof128,192and256bits, thenumberofroundsare10,12and14,respectively.

Inourproposedscheme,weusetheversionofRijndaelthathas a128-bitkey,operateson128-bitplaintextsandhas10rounds. Multipleof128bits(5×128bits)arefedintoAESEncryptionblock. TheinputlevelofML/LDPCblockdeterminestheinputlevelofAES. Itisbothpossibletooperateonlongsizedatablocksandprovide bandwidth-efficienttransmissionatthesametimewithmultilevel inputs.

3. LowDensityParityCheckCodes

LDPCcodesarethemembersofbinarylinearblockcodesfamily. Thesecodescanbedescribedasverysparseparitycheckmatrix H,whichcontainsmanyzerosandonlyfewones.Itispossibleto representaLDPCcodeasagraph,namelybipartitegraph,whose node-setcanbepartitionedintotwonon-emptysetsVandCand everyedgeconnectsanodeinVwithanodeinC.Thevariableand checknodescorrespondtothecolumnsandrowsofparitycheck matrixHandrepresentabitsymbolinthecodewordsandaparity equationofcode,respectively.Anedgebetweeneachvariablenode andchecknodecanberepresentedbya“1”incorrespondingrow andcolumnintheparity-checkmatrix.Inthispaperonlyregular LDPCcodesareinvestigated.InregularLDPCcodes,everycolumnof Hcontainsjamountof“1”andeveryrowofHisfilledwithkamount of“1”,whichjandkdenotevariablenodedegreeandchecknode degree,respectively.TherearetwokindsofLDPCcodes:regularand irregular[23].HereregularLDPCcodesareinvestigated.Inregular LDPCcodesallrowsandcolumnsoftheparitycheckmatrixHhas thesamedegreewhichcorrespondstothenumberof“1”bitsin theserowsandcolumns.Allvariablenodeshavedegreejandall checknodeshavedegreekinabipartitegraphofregularLDPCcode. Thebipartitegraphofaregular(3,4)LDPCcodeisdepictedinFig.1 andthecorrespondingparitycheckmatrixofthiscodeisdescribed asanexample. H=

0 0 1 0 0 1 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 0

(1) 3.1. EncodingofLDPCcodes

LDPCcodes canberepresented withtwo parameters:(n,k), wherencorrespondstoinformationbitsandkcorrespondsto

code-Variable Node

Check Node

Fig.1.Bipartitegraphrepresentationofregular(3,4)LDPCcode.

words.ALDPCcodewithaparitycheckmatrixH,whichhasn−k rowsandkcolumns,encodeskinformationbitsintoncodewords. CodewordsofthisLDPCcodesatisfythefollowingrelation:

HxT=0 (2)

whereH,xandTreferstoparitycheckmatrix,codewordand trans-poseoperation,respectively.TheparitycheckmatrixHofanLDPC codecanbedefinedas:

H=[Hp|Hu] (3)

whereHpisparitybitssubmatrixandHuisinformationbits

sub-matrix.Likewisecodewordscanbedefinedas:

X=[Xp|Xu] (4)

wherexpisasetofparitybitsandxuisasetofinformationbits.

Thefollowingrelationcanbedefined:

b=HuXuT (5)

Withthisequality,encodingofabinarysystematic(n,k)LDPCcode becomesequivalenttosolvingthefollowingequation:

b=HpXpT (6)

Fromthisequationthefollowingrelationcanbedefined:

XpT=H−1p b (7)

3.2. DecodingofLDPCcodes

LDPC codes can be decoded by Message Passing Algorithm (MPA),which iterativelyupdates the probabilitiesof bitnodes.

(3)

Someauthorshavecalleddifferentnamesforthisalgorithmlike Sum Product Algorithm (SPA) or Belief Propagation Algorithm (BPA)atthesametime.Atthispoint,sometermsandformulations whichweusedinMPAaredefinedasfollows:

yi:setofreceivedsignal

ci:setofbitnode

b:0,1

qij(b):theprobabilityofmessagetobepassedfrombitnodecito

thechecknodefj

rji(b):theprobabilityofmessagetobepassedfromchecknodefj

tothebitnodeci

Rj=setofcolumnlocationsofthe1sinthejthrow

Rj/i: setofcolumnlocationsof1sinthejthrow,excludingthe

variablenodei

Cj=setofrowlocationsofthe1sintheithcolumn

Ci/j:setofrowlocationsof1sintheithcolumn,excludingthecheck

nodej

Kij:constantvalues

Qi(b):posteriorprobabilityofthecodebitci

pi=prob(ci=1|yi)

DecodingprocessofLDPCCodescanbeexplainedstepbystep inthefollowingsection.

Step1:Initialization

Allbitnodessendtheirqij(0)andqij(1)messages.Sincenoother

informationisavailableatthisstep,theprobabilitiesofmessages (qij(0)andqij(1))canbecomputedusingEqs.(8)and(9).

qij(0)=1pi=prob(ci=0|yi)= 1 1+e−2yi/2 (8) qij(1)=pi=prob(ci=1|yi)= 1 1+e2yi/2 (9) Step2:Paritynodeupdates(firsthalfrounditeration)

Thechecknodescalculatetheirrji(0)andrji(1)response

mes-sagesaccordingtoEqs.(10)and(11). rji(0)= 1 2+ 1 2



iRj/i (1−2qij(1)) (10) rji(1)=1−rji(0) (11)

Step3:Bitnodeupdates(secondhalfrounditeration)

The bitnodes update theirresponse messages to thecheck nodes.So,theprobabilitiesofmessages(qij(0)andqij(1))canbe

updatedusingEqs.(12)and(13). qij(0)=Kij(1−pi)



j∈Ci/j rji(0) (12) qij(1)=Kijpi



jCi/j rji(1)) (13)

whereconstantskijareselectedtoensureqij(0)+qij(1)=1

Step4:Softdecision

AllthebitnodescalculatetheQi(0)andQi(1)posterior

proba-bilitiesofthecodebitciusingEqs.(14)and(15).

Qi(0)=Ki(1−pi)



j∈Ci rij(0) (14) Qi(1)=Kipi



j∈Ci rij(1) (15)

whereconstantskiareselectedtoensureQi(0)+Qi(1)=1

Step5:Harddecision

Finally,allthebitnodesupdatetheircurrentestimationci of

theirvariableci bycalculatingtheprobabilitiesfor0 and1

andvotingforthebiggeroneasinEq.(16). ˆci=

1 Qi(1)> 1 2 0 other (16)

Step6:If ˆcHT=0orthenumberofiterationsreachesthemaximum

limit,thenthealgorithmterminates,otherwiseitreturnstostep2. 4. ContinuousPhaseFrequencyShiftKeying

CPFSKisaspecialkindofCPM[23],whichhasanM-dimensional form.Atthispointsometermsandformulationswhichareusedin CPFSKaredefinedasfollows:

(t,Y):tilted-phaserepresentationofCPM

Y:inputsequenceofM-arysymbols,Yi∈{0,1,2,...,M−1}.

h: modulationindex h=J/P,where Jand Parerelativelyprime integers

T:channelsymbolperiod q(t):phaseresponsefunction L:integer

g(t):frequencypulse s(t):transmittedsignal

f1:asymmetriccarrierfrequencywheref1=fc−h(M−1)/2T

fc:carrierfrequency

Es:energyperchannelsymbol

0:initialcarrierphase

Tilted-phaserepresentationofCPMwasderivedbyRimoldiin [17],withtheinformation-bearingphasegivenby

(t,Y )=4h

i=0

Yiq(t−iT ) (17)

Here,Jisgenerallychosenas1andPiscalculatedas2tothepower ofthenumberofmemoriesinCPE.Modulationindexcanbe com-putedfromtheequationofh=1/P.Thephaseresponsefunction q(t)isacontinuousandmonotonicallyincreasingfunctionsubject tothefollowinginequalities:

q(t)=

0 t0

1/2 t≥LT (18)

Thephaseresponseiscanbedescribedasin

q(t)=

t

−∞

g()d (19)

Transmittedsignals(t)canbecomputedfromthefollowing equa-tion:

s(t,Y )=

2Es

T cos(2f1t+(t,Y )+0) (20) wheref1Tisassumedasanintegerforsimplificationwhenusing

theequivalentrepresentationoftheCPMwaveform. 5. Wide-SenseStationaryUncorrelatedScattering enviromentandequalization

Indigitalcommunicationsystemsmultipathfadingisthemost importantfactorforsystemperformance.Duetovariousobjects surrounding,scattering,diffractionandreflectioncausethe multi-pathfadingwhichhasfrequencyandtimedispersivenature.Since

(4)

Fig.2.GeneralMultilevel/AES-LDPCC-CPFSKscheme.

changingcharacteristicsofchannelduetothemovementofthe mobilestationitcanbeassumedasatime-variantandmultipath fadingchannel and this channel canbe described as statistical WSSUS channel. Thischannel model canbe characterizedby a twodimensionalscatteringfunctionwhichhastwoparameters; Dopplerfrequencyduetothemobilemovementandechodelay duetomultipatheffects.Fadingstatisticsofthischannelmodelare assumedtobeconstantforashorttimeinterval.Sincesevere trans-missionconditionsofWSSUSchannelsandtheaddednoise,signals arecorruptedandneedtoberegeneratedbyusingchannel equaliz-ers.Undersevereconditionsreceiversrequirethecharacteristicsof atransmissionchannelforchannelidentification.Butthese charac-teristicsarenotalwaysavailableandchannel’sequivalentimpulse responsehastobeestimated.Itisimpossibletoestimate infor-mationbitswithoutchannelequalization.Thuschannelequalizer blockisnecessaryforallschemesinWSSUSchannelsfor perfor-manceimprovement.

6. Proposedscheme

InFig.2,blockdiagramofdesignedjointML/AES-LDPCC-CPFSK modelisdepicted.Ascanbeseenfromthis figure,thereexists a “ML/AESEncryption block”for theencryption of messagebit sequences.Multilevelinputstothisblockaremultipleof128bits (M×128bits)andaredependentontheinputlevelof“ML/LDPC block”[22].Aftertheencryptionblock,thereisaLDPCencoderat everylevelofthesystemmodelandaCPEwhichisserially con-nectedtotheLDPCencoderatthelastlevel.Encodedmessagebit sequenceisconvertedfromserialtolog2Mparallelbranchinthe

multilevelschemeaccordingtothetypeofM-aryCPFSK modula-tion.Then,eachLDPCencoderprocessestheinformationsequence simultaneously.Thelevelof“ML/LDPCblock”determinesthelevel of“ML/AESEncryptionblock”(i.e.2,3and4levelsofLDPC,the lev-elsofAESare5,7and10,respectively).TheoutputofthelastLDPC encoderisrunthroughtheCPE.CPEisusedtoshapethemodulated signal’sspectrumforphasecontinuity.Finally,allencoderoutputs andCPEoutputaremappedtoCPFSKsignalsbyamemoryless map-peraccordingtopartitioningrule.Inthepartitioningrule,signal setisdividedintotwosubsetsbytheMSBofSerialtoParallel(S/P) converteroutput.Ifthefirstoutputz11is0,thenthefirstsubset

ischosen,ifz11is1,thenthesecondsubsetischosen.Thesecond

outputz12bitdividesthesubsetsintotwogroupsasthesimilar

way.Thispartitioningprocesscontinuesuntilthelastpartitioning level.Thesesignalsarerunthroughthechannel.Noiseisadded accordingtothechannelmodel.ChannelEqualizerblockprocesses thesecorruptedandnoiseaddedsignalsequence.Atthereceiver sideofthecommunicationchannel,“CPFSKdemodulator” demod-ulatesthecorruptednoisysignals.Then“Signalconstellationand probabilitycalculationblock”processesthesesignalstoevaluate oneand zero probabilitiesof receivedsignals.After that“LDPC decoder”decodesthesesignalsandinputbitsareestimatedfrom decodedbitsineverypartitioninglevel.Finally,thesebitstreams aregonethroughthe“ML/AESdecryptionprocess”andestimated bitsequencescanbedecrypted.Forabetterbiterrorperformance, someofthemessagebitsequenceswhichwillbeknownbyreceiver blockasinpilotsymbolcommunication[24],canbeusedinthelast levelofAEStoestimatechannelparameters.

In Fig. 3, the partitioning mechanism for 4CPFSK system is depictedinorder toexplainthepartitioning of ML/AES-LDPCC-CPFSK. In thefirst partitioninglevel z1 defineswhich subset is

chosen.Ifz1=0,thenfirstsubset{s0,s1,s4,s5}ischosen,ifz1=1,

thenthesecondsubset{s2,s3,s6,s7}ischosen.Atthesecond

par-titioninglevel,ifweassumethatthefirstsubsetischoseninfirst partitioninglevel,z2z3bitsspecifywhichsignalwillbetransmitted

tothechannel.Similarly,inthefirstpartitioninglevel,ifthesecond subsetischosen,z2z3bitsspecifywhichsignalwillbetransmitted

tothechannel.Table1summarizesthisprocess.

ItcanbeseenfromFig.3thatinitialandendingphaseof trans-mittedsignalwilltake(0,)valuesifmodulationindexhofan LDPCC-4CPFSKsystemischosenas1/2.Input–outputdataand sig-nalconstellationsforthissystemaresummarizedinTable1.Here,

Table1

Input–outputandsignalconstellationfor4CPFSK.

n ˇn z1z2z3 n+1 4CPFSK 0 0 000 0 s0 0 1 001  s1 0 2 010 0 s2 0 3 011  s3  0 100  s4=−s0  1 101 0 s5=−s1  2 110  s6=−s2  3 111 0 s7=−s3

(5)

01

0

0

{s

0

,s

2

}

{s

1

,s

3

}

{s

4

,s

6

}

{s

5

,s

7

}

θ

n

θ

n+1

π

π

z1=0 z1=1

s

0

s

4

s

5

s

1

s

7

s

3

s

6

s

2

z

2

z

3

=

00 01 10 11 00 10 11 s0 s1 s5 s4 s2 s3 s7 s6

Fig.3.4CPFSKh=1/2signalphasediagram.

z1issystematicbit,z2andz3arethebitsencodedbyCPE.Here,z2

helpstoshowusatwhichphasethesignalwillstartatthenext

codinginterval.Iftheinitialphase(n)is“0”and“z2”is0,the

end-ingphaseoftheinstantsignalandthestartingangleofthenext

signalphase(n+1)is“0”,ifn=0andz2=1,n+1=,ifn=1and

z2=0,n+1=,ifn=1andz2=1,n+1is0.Iftheinitialphaseis“0”,

thenthesignalispositive,iftheinitialphaseis“1”,thenthesignal

isnegative.Onlyiftheseconditionsaremetiscontinuitygranted.

AccordingtoFig.3andTable1,thetransmittedsignalsatthephase

transitionsareasfollows:from0phaseto0phase,s0,s2;from0

phasetophase,s1,s3;fromphaseto0phase,s5,s7andfrom

phasetophase,s4,s6.

Messagepassingalgorithmisusedfordecodingatthereceiver sideofLDPCcodes.Oneandzeroprobabilitiesofreceivedsignal areusedinthisalgorithm.Foreverydecodinginterval,these prob-abilitiesarefirstlyevaluatedforallparallelinputbranchsequences

accordingtopartitioningrule.Atthispoint,sometermsand formu-lationsaredefinedasfollows:

rk:receivedsignal

L:partitioninglevel

si:transmittedM-aryCPFSKsignal

Pji:probabilitywhereidenotes0or1

Oneandzeroprobabilitiesofreceivedsignalarecomputedfrom thefollowingequations:

PL 0= 1 M



M−1

i=0 1 (rk−s2i)2



(21) PL 1= 1 M



M−1

i=0 1 (rk−s2i+1)2



(22)

ThenreceivedsignalismappedtoonedimensionalBPSKsignalas canbedescribedinbelow.

L=1− 2·P L 0 PL 0+PL1 (23) InFig.3,itcanbeshownthatineverypartitioninglevel proba-bilitycomputationsandmappingareexecutedaccordingtosignal set.TheseprobabilitiesarecalculatedasinEqs.(24)–(27)for par-titioninglevel1and2.

P01=14



3

i=0 1 (rk−s2i)2



(24) P1 1= 1 4



3

i=0 1 (rk−s2i+1)2



(25) P2 0= 1 4



1

i=0 1 (rk−si)2 + 1 (rk−si+4)2



(26) P12=14



1

i=0 1 (rk−si+2)2 + 1 (rk−si+6)2



(27)

(6)

Fig.5.FivelevelAEStwolevelLDPCC-16CPFSKscheme.

Theseoneandzeroprobabilitiesofreceivedsignalareevaluated andthen ˆciisestimatedfromEqs.(9)–(13)foreverypartitioning

level.

Partitioningmechanismfor16CPFSKsystemhasthesame prop-ertyasin4CPFSK.

6.1. Five-levelAEStwo-levelLDPCcoded4CPFSK

In Fig. 4, five-level AES two-level LDPC coded 4CPFSK sys-temmodelisdepicted.Firstofall“5-levelAESEncryptionblock” encrypts5parallelmessagebitsequenceswhicharemultipleof 5×128bitsandthus5×128bitslonginputdatacanbeprocessed simultaneously.Five-levelinputs aredependentonthenumber oftwo-levelLDPC.Aftertheencryptionprocess,two-levelLDPC encoderencodestheseencryptedparallelbitsequences.Atthis stage, LSB bits are encoded by CPEfor phase continuity. Then memorylessmapper mapsthesecodedbitsinto4CPFSKsignals. ThesesignalsaresenttotheWSSUSmultipathchannel.Noiseis addedaccordingtothechannel model.ChannelEqualizerblock processesthesecorruptedandnoiseaddedsignalsequence.Atthe receiversideofthecommunicationchannel,“CPFSKdemodulator” demodulatesthenoisycorruptedsignals.“Signalconstellationand probabilitycalculationblock”is thenprocessedthesesignals in everyleveltoevaluateoneandzeroprobabilitiesofreceived sig-nals.Afterthat“LDPCdecoder”decodesthesesignalsandsoinput bitsequencesareestimatedfromdecodedbitsinevery partition-inglevel.Inthefinalstep,“5-levelAESdecryptionprocess”decrypts theseestimatedbitsequences.

6.2. Five-levelAEStwo-levelLDPCcoded16CPFSK

InFig.5,five-levelAEStwo-levelLDPCcoded16CPFSKsystem modelisdepicted.Inthisscheme“AESEncryptionblock”and“LDPC Encoderblock”worklikein“Five-levelAEStwo-levelLDPCcoded 4CPFSK”asdescribedinSection6.1.Thenencodedbitsareturned intoserialtoparallelwithtwobranchesforeachoutputof“LDPC Encoderblock”.Here,LSBbitsareencodedbyCPEagainforphase continuity.Thenmemorylessmappermapsthesecodedbitsinto 16CPFSKsignals.ThesesignalsaresenttotheWSSUSmultipath channel.Noiseisaddedaccordingtothechannelmodel.Channel Equalizerblock processesthesecorruptedand noiseadded sig-nalsequence.Atthereceiversideofthecommunicationchannel,

“CPFSKdemodulatorblock”,“Signalconstellationandprobability calculationblock”,“LDPCdecoderblock”and“5-levelAES decryp-tion block” work like in “Five-level AES two-level LDPC coded 4CPFSK”.Finally,estimatedbitsequencescanbedecrypted. 7. Performanceanalysisanddiscussion

Here, we investigate multilevel AES encryption, multilevel LDPCcoded CPFSK structures and join theseschemes as “Mul-tilevel/AdvancedEncryptionStandard-LowDensityParityCheck Coded-ContinuousPhaseFrequencyShiftKeying (ML/AES-LDPCC-CPFSK)”. Thus a real communication environment is achieved employingbothdataencryptionandchannelencoding.Westudy ontwodifferentmodulationtechniques;“FivelevelAEStwolevel LDPCC-4CPFSK”and“FivelevelAEStwolevelLDPCC-16CPFSK”over WSSUSchannelswithRLS,LMSequalization.Weuseregular(3,4) LDPCcodeswithablocklengthof302bits,andmaximum100 iter-ations.TheBitErrorRatio(BER)versusSignaltoNoiseRatio(SNR) curvesoftheproposedsystemsareobtainedforBU,TUandHT typesofCOST207(Figs.6–8).Inoursimulationweuseseventeen

-5 -4 -3 -2 -1 0 1 2 10-4 10-3 10-2 10-1 100 Eb/No (dB) BER

Five-level AES two-level LDPC coded 4CPFSK&16CPFSK over BU type of COST207

4CPFSK RLS 4CPFSK LMS 16CPFSK RLS 16CPFSK LMS

Fig.6. Performanceof five-levelAES two-levelLDPCcoded 4CPFSK&16CPFSK schemeoverBUtypeofCOST207channel.

(7)

-5 -4 -3 -2 -1 0 1 2 10-4 10-3 10-2 10-1 100 Eb/No (dB) BER

Five-level AES two-level LDPC coded 4CPFSK&16CPFSK over TU type of COST207

4CPFSK RLS 4CPFSK LMS 16CPFSK RLS 16CPFSK LMS

Fig.7. Performanceof five-levelAES two-levelLDPCcoded 4CPFSK&16CPFSK schemeoverTUtypeofCOST207channel.

channelcoefficientsforBU,TUandHTascanbeseenfromTable2. Weassumethevelocityofthemobileradiocommunication ter-minalas100km/h.ThecarrierfrequencyofCOST207channelis takenas950MHz.ThemaximumDopplerShiftistakenas88Hzand minimumDopplerperiodischosenas11.4ms.Finally,thesymbol periodisassumedas3.7␮s.

Althoughidealdataencryptionisassumedinmostoftherelated comparedmodels[18,20,23,24]weincludedataencryptionblock. WehavesimulatedourschemesforvariousSNRvaluesoverWSSUS channelmodels.AsitcanbeseenfromTables3and4,FivelevelAES twolevelLDPCC-4CPFSK&16CPFSKsystemsshowhigherBER per-formanceinallSNRvaluesover2Level-TurboCodes4PhaseShift Keying(2L-TC4PSK)[24]forTU,BU,HTtypeofCOST207withRLS, LMS.Thus,bothhighercodinggainandreductioninthenumberof CPFSKlevelsareachieved.

-4 -2 0 2 4 6 8 10-4 10-3 10-2 10-1 100 Eb/No (dB) BER

Five-level AES two-level LDPC coded 4CPFSK&16CPFSK over HT type of COST207

4CPFSK RLS 4CPFSK LMS 16CPFSK RLS 16CPFSK LMS

Fig.8. Performance offive-levelAES two-levelLDPC coded 4CPFSK&16CPFSK schemeoverHTtypeofCOST207channel.

Table2

ChannelcoefficientsofBU,TUandHTtypesofCOST207.

BU TU HT

−0.0484−0.2943i −0.1651+0.5534i −1.0607+0.2118i −0.0000−0.4282i −0.0506+0.7480i −1.3775−0.0015i 0.0447−0.5339i 0.0849+0.9113i −1.5213−0.1868i 0.0815−0.6063i 0.2169+1.0292i −1.4957−0.3254i 0.1064−0.6414i 0.3215+1.0907i −1.3252−0.4056i 0.1162−0.6368i 0.3778+1.0881i −1.0507−0.4232i 0.1090− 0.5919i 0.3702+1.0178i −0.7242− 0.3814i 0.0839−0.5077i 0.2910+0.8806i 0.4014−0.2902i 0.0418−0.3872i 0.1403+0.6815i −0.1342−0.1641i −0.0152−0.2351i −0.0733+0.4294i 0.0356−0.0203i −0.0835−0.0577i −0.3338+0.1373i 0.0820+0.1237i −0.1582+0.1375i −0.6196−0.1790i −0.0021+0.2523i −0.2335+0.3418i −0.9057−0.5011i −0.2047+0.3541i −0.3030+0.5460i −1.1663−0.8090i −0.4962+0.4224i −0.3599+0.7407i −1.3771−1.0820i −0.8341+0.4562i −0.3978+0.9165i −1.5177−1.3001i −1.1686+0.4600i −0.4108+1.0649i −1.5736−1.4452i −1.4497+0.4420i

Table3

ComparisonofBER-SNR(indB)valuesof2L-TC4PSK[24]andfivelevelAEStwolevelLDPCC-4CPFSKaforTU,BU,HTtypeofCOST207withRLS,LMS.

TU BU HT

RLS LMS RLS LMS RLS LMS

BER [24] a Gain [24] a Gain [24] a Gain [24] a Gain [24] a Gain [24] a Gain

1.00E−01 2 −2 4 0 −2 2 3 −2 5 4 −2 6 5 −2 7 7 −2 9 1.00E−02 3 0 3 4 0 4 5 0 5 6 0 6 7 1.8 5.2 9 1.8 7.2 1.00E−03 4 1.2 2.8 5 1.2 3.8 6 1.2 4.8 7 1.2 5.8 9 4.4 4.6 10 3.4 6.6 1.00E−04 5 2 3 6 1.6 4.4 7 1.6 5.4 8 1.6 6.4 10 8 2 11 4 7 1.00E−05 7 8 1.9 6.1 8 9 1.8 7.2 12 12 4.4 7.6 [24]:2L-TC4PSK.

aFivelevelAEStwolevelLDPCC-4CPFSK.

Table4

ComparisonofBER-SNR(indB)valuesof2L-TC4PSK[24]andfivelevelAEStwolevelLDPCC-16CPFSKaforTU,BU,HTtypeofCOST207withRLS,LMS.

TU BU HT

RLS LMS RLS LMS RLS LMS

BER [24] a Gain [24] a Gain [24] a Gain [24] a Gain [24] a Gain [24] a Gain

1.00E−01 2 −5 7 0 −5 5 3 −5 8 4 −5 9 5 −5 10 7 −5 12 1.00E−02 3 −3 6 4 −2 6 5 −3 8 6 −3 9 7 −3 10 9 −2 11 1.00E−03 4 −2 6 5 −1.3 6.3 6 −2 8 7 −1.5 8.5 9 −2 11 10 −0.5 10.5 1.00E−04 5 −1.85 6.85 6 −1.2 7.2 7 −1.85 8.85 8 −1.3 9.3 10 −1.85 11.85 11 −0.2 11.2 1.00E−05 7 −1.8 8.8 8 −1 9 8 −1.8 9.8 9 −1.2 10.2 12 −1.8 13.8 12 0 12 [24]:2L-TC4PSK.

(8)

Asitcanbeseenfromsimulationresults,ML/AES-LDPCC-CPFSK schemeshavebettererrorperformancethan2L-TC4PSK[24] mod-els.

8. Conclusion

Inthispaper,wepresentanewjointencryptionanderror cor-rectionstructuretoensuresecureandrobustcommunicationin WSSUSchannelswithoutadditionalcomplexity.Forthispurpose, weintroduceMultilevel/AdvancedEncryptionStandard-Low Den-sityParityCheckCoded-ContinuousPhaseFrequencyShiftKeying andweevaluateerrorperformanceoverWSSUSchannelsforTU,BU andHTtypeofCOST207withRLS,LMSequalization.Itisshownthat ourproposedsystemprovidessecure,reliabledatatransmission withhigherrorcapability,bandwidthefficiencyandreductionof transmissionpowerusage.Thus,oursystemhasimportantpower andbandwidthadvantagesandisverysuitableforlowpowerand bandlimitedapplications.

References

[1]DaemenJ,RijmenV.TheblockcipherRijndael.SmartCardResearchand Appli-cations,LNCS1820.Berlin:Springer;2000.pp.288–296.

[2] Daemen J, Rijmen V. AES proposal: Rijndael AES algorithm submission, September3,1999.

[3]FIPS197.AdvancedEncryptionStandard,FederalInformationProcessing Stan-dard(FIPS).Washington,D.C.:NationalBureauofStandards,U.S.Department ofCommerce;November26,2001[Publication197].

[4]GallagerRG. Low-densityparity-checkcodes. Cambridge,MA: MITPress; 1963.

[5]ZyablovV,PinksterM.Estimationoftheerror-correctioncomplexityofGallager low-densitycodes.ProblPeredInform1975;11(January):23–6.

[6]MargulisGA.Explicitconstructionofgraphswithoutshortcyclesandlow den-sitycodes.Combinatorica1982;2(1):71–8.

[7]TannerR.Arecursiveapproachtolowcomplexitycodes.IEEETransInform Theory1981;IT-27(September):533–47.

[8]MacKayDJC,NealRM.NearShannonlimitperformanceoflowdensityparity checkcodes.ElectronLett1996;32(August):1645–6.

[9]Wiberg N.Codes and decoding ongeneral graphs. Dissertationon. 440. Linköping,Sweden:DeptElect.LinköpingUniv.;1996.

[10]Haley D, Gaudet V, Winstead C, Grant A, Schlegel C. A dual-function mixed-signalcircuit forLDPCencoding/decoding.IntegrationVLSIJ2008, doi:10.1016/j.vlsi.2008.09.006.

[11] CuiY,SiX,ShenY.AnovelalgorithmofconstructingLDPCcodeswithgraph theory.In:CIS.2008.

[12] LubyMG,MitzenmacherM,ShrokrollahiMA,SpielmanD,StemannV.Practical loss-resilientcodes.In:Proc29thAnnuACMSympTheoryofComputing.1997. p.150–9.

[13]Johnson SJ. Burst erasure correcting LDPC codes. IEEE Trans Commun 2009;57(March(3)).

[14]BingD,JunZ.Designandoptimizationofjointnetwork-channelLDPCcodefor wirelesscooperativecommunications.ICCS2008.

[15]AbematsuD,OhtsukiT,KashimaT,JarotSPW.LDPCcodesforhighdatarate multibandOFDMsystemsover1Gbps.PACRIM’07.

[16]Nik HP, Fekri F. Results on punctured low-density parity-check codes and improved iterative decoding techniques. IEEE Trans Inform Theory 2007;53(February(2)).

[17]RimoldiBE.AdecompositionapproachtoCPM.IEEETransInformTheory 1988;34(March):260–70.

[18]OsmanO.Blindequalizationofmultilevelturbocoded-continuousphase fre-quencyshiftkeyingoverMIMOchannels:researcharticles.IntJCommunSyst 2007;20(January(1)):103–19.

[19]Sakamoto T, Kawanishi T, Izutsu M. Continuous-phase frequency-shift keying with external modulation. IEEE J Sel Top Quantum Electron 2006;12(July/August(4)).

[20] AltayG.Performanceofsystematicdistance-4binarylinearblockcodeswith continuousphasefrequencyshiftkeyingoverMIMOsystems.WirelessPers Commun2008;44:403–13,doi:10.1007/s11277-007-9364-2.

[21]ChengCC,LuCC.Space-timecodedesignforCPFSKmodulationover frequency-nonselectivefadingchannels.IEEETransCommun2005;53(September(9)). [22]LimpaphayomP,WinickKA.Powerandbandwidth-efficientcommunications

usingLDPCcodes.IEEETransCommun2004;52(March(3)):350–4.

[23] HekimY,OdabasiogluN,UcanON.Performanceoflowdensityparitycheck codedcontinuousphasefrequencyshiftkeying(LDPCC-CPFSK)overfading channels.IntJCommunSyst2007;20:397–410.

[24] UcanON,BuyukatakK,GoseE,OsmanO,OdabasiogluN.Performanceof multilevel-turbocodeswithblind/non-blindequalizationoverWSSUS mul-tipathchannels.IntJCommunSyst2006;19:281–97.

Şekil

Fig. 1. Bipartite graph representation of regular (3,4) LDPC code.
Fig. 2. General Multilevel/AES-LDPCC-CPFSK scheme.
Fig. 3. 4CPFSK h = 1/2 signal phase diagram.
Fig. 6. Performance of five-level AES two-level LDPC coded 4CPFSK&16CPFSK scheme over BU type of COST207 channel.
+2

Referanslar

Benzer Belgeler

Eviriciler paralel çalıştırılırken güç akışında devamlılık, aktif güç-frekans ve reaktif güç-gerilim düşüm yöntemleri ile eviricilerin optimal güç

Tarayıcı sistem, manyetize edici sistemi demir örgünün üzerinde hareket ettirerek, bütün donatının algılanması için kullanılmaktadır.. Bu sayede manyetik alan

Sultan Abdül’aziz, Cülusundan sonra ekseri günler tenezzühlerini icra etmek üzere geldiği Ihlamur kasrında, çok merakı olan pehlivan gü­ reşlerini, koç ve

Rizosferde bulunan organik kirleticiler bitki kökleri tarafından salınan enzimler ya da mikrobiyal degradasyonun fitostimülasyonu (kirleticilerin, rizosferde bitki kök eksudatları

1920 senesi ikinci kânu­ nun 23 üncü cuma günü darüfünun (Üniversi­ te) konferans snlonunda yapılan Pierre Loti ihtifali ve orada Süleyman Nazif merhumun

Bakırköy Tıp Dergisi, Cilt 9, Sayı 3, 2013 / Medical Journal of Bakırköy, Volume 9, Number 3, 2013 141. kullanımı; lökopeni, trombositopeni, aplastik anemi,

The power capacity of the hybrid diesel-solar PV microgrid will suffice the power demand of Tablas Island until 2021only based on forecast data considering the

In this study, effects of frequency shift keying modulation technique on charging times of RF energy harvesting were measured and investigated in detail.. An