• Sonuç bulunamadı

Distance between a maximum modulus point and zero set of an entire function

N/A
N/A
Protected

Academic year: 2021

Share "Distance between a maximum modulus point and zero set of an entire function"

Copied!
17
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Full Terms & Conditions of access and use can be found at

https://www.tandfonline.com/action/journalInformation?journalCode=gcov20

Complex Variables

ISSN: 0278-1077 (Print) 1563-5066 (Online) Journal homepage: https://www.tandfonline.com/loi/gcov19

Distance between a Maximum Modulus Point and

Zero Set of an Entire Function

Iossif Ostrovskii & Adem Ersin Üreyen

To cite this article: Iossif Ostrovskii & Adem Ersin Üreyen (2003) Distance between a Maximum

Modulus Point and Zero Set of an Entire Function, Complex Variables, 48:7, 583-598, DOI: 10.1080/0278107031000120431

To link to this article: https://doi.org/10.1080/0278107031000120431

Published online: 15 Sep 2010.

Submit your article to this journal

Article views: 21

(2)

Distance between a Maximum Modulus Point

and Zero Set of an Entire Function

IOSSIF OSTROVSKIIa,b,* and ADEM ERSIN REYENa

aDepartment of Mathematics, Bilkent University, 06800 Bilkent, Ankara,Turkey; bVerkin Institute of LowTemperature Physics and Engineering, 61103 Kharkov, Ukraine

Communicated by M. Essen

(Received 6 December 2002; In final form 15 March 2003)

Let f be an entire function of finite positive order. A maximum modulus point is a point w such that jf ðwÞj ¼maxfj f ðzÞj: jzj ¼ jwjg. We obtain lower bounds for the distance between a maximum modulus point w and the zero set of f . These bounds are valid for all sufficiently large values of jwj.

Keywords:Entire function; Order; Proximate order; Strong proximate order; Type

2000 AMS Subject Classification:30D20

1. INTRODUCTION

Let f be an entire function. A point w 2 C is called a maximum modulus point if

jf ðwÞj ¼ Mðjwj, f Þ,

where

Mðr, f Þ ¼ max

jzj¼rjf ðzÞj:

We denote by Rðw, f Þ the distance between a maximum modulus point w and the zero set of f , i.e.

Rðw, f Þ ¼ inffjw  zj: f ðzÞ ¼ 0g:

*Corresponding author. E-mail: iossif@fen.bilkent.edu.tr; OSTROVSKII@ilt.kharov.ua

ISSN 0278-1077 print: ISSN 1563-5066 onlineß 2003 Taylor & Francis Ltd DOI: 10.1080/0278107031000120431

(3)

Following Macintyre [3], let us introduce the nondecreasing function Kðr, f Þ ¼ d

dlog rlog Mðr, f Þ, r >0, (we take the right derivative at fracture points of log Mðr, f ÞÞ.

Macintyre [3] showed that the well-known Wiman–Valiron formula (see, e.g. [1], p.22) describing the behavior of f in a neighborhood of a maximum modulus point remains valid with Kðr, f Þ instead of the central index of f . Namely, Macintyre showed that

f ðzÞ ¼ f ðwÞ z w  Kðjwj, f Þ

ð1 þ oð1ÞÞ, w ! 1, jwj =2E, ð1Þ where E ð0, 1Þ is an exceptional set and z lies in a (depending on w) neighbor-hood of w.

In Macintyre’s proof of formula (1) estimates of Rðw, f Þ from below played an important role. We formulate these estimates as the following separate theorem. THEOREMA ([3])

(i) The following inequality holds

lim sup

jwj!1

1

jwjRðw, f Þðlog Mðjwj, f ÞÞ

1=2>0: ð2Þ

(ii) For each  >0 the following inequality holds

lim inf jwj!1 jwj =2A 1 jwjRðw, f Þðlog Mðjwj, f ÞÞ ð1=2Þþ>0, ð3Þ

where A Rþ is such that

Z

A

dt

t < 1: ð4Þ

The inequality (2) gives an asymptotic bound for Rðw, f Þ from below only on a sequence of values of jwj ! 1. The inequality (3) gives a bit less precise bound which is valid outside of a ‘‘small’’ set. In this article we are going to show that bounds for Rðw, f Þ given by (2) and (3) cannot be valid in general without exceptional sets at all and find in some sense unimprovable bounds valid for all sufficiently large values of jwj.

Note that far reaching generalizations of (1)–(3) to functions analytic in a half-plane, multi-valued functions and entire functions of several variables were obtained by Sh. Strelitz [6]. We think that similar generalizations are possible for our results as well, but we do not touch them here and restrict ourselves to entire functions of one variable and finite positive order.

Note also that, for some specific parametrical families f fg, 0 <  < 1, of entire

(4)

for Rðw, fÞfrom below play an important role in the theory of phase transitions (see [5],

Chap. 3). Nevertheless, we cannot extract from our results any useful consequences for this theory because our approach does not permit to take into account asymptotical behavior in parameter  ! 1.

2. STATEMENT OF RESULTS

Let f be an entire function of order . We assume that 0 <  < 1.

To state our results we need the notions of proximate order ([4], p.31) and strong proximate order ([4], p.41).

Remind that a proximate order is a function ðrÞ 2 C1ðR

þÞsuch that

(i) 9limr!1ðrÞ ¼  ð>0Þ,

(ii) limr!10ðrÞrlog r ¼ 0.

Note that ([4], p.32)

lim

r!1r

ðrÞðkrÞðkrÞ¼

k, ð5Þ

uniformly on each interval 0 < a  k  b < 1.

By Valiron’s theorem ([4], p.35) any entire function f of order  has its own proximate order, that is there exists such a proximate order ðrÞ !  that the type

:¼ lim sup

r!1

rðrÞlog Mðr, f Þ

is finite and positive. We denote by ½ðrÞ,  the set of all entire functions having proximate order ðrÞ and type :

Strong proximate orderis a function ðrÞ 2 C2ðR

þÞrepresentable in the form

ðrÞ ¼  þ#2ðlog rÞ  #1ðlog rÞ

log r , ð6Þ

where #1 and #2 are concave functions on R satisfying conditions (i ¼ 1, 2):

(i) limx!1#iðxÞ ¼ 1;

(ii) limx!1#iðxÞ=x ¼0;

(iii) limx!1#00iðxÞ=#0iðxÞ ¼0:

Note that these properties imply lim x!1# 0 iðxÞ ¼x!1lim # 00 iðxÞ ¼0, i ¼1, 2: ð7Þ

By Levin’s theorem ([4], p.39), any entire function of order  has its own strong proximate order (6), that is such a strong proximate order ðrÞ !  that the type

:¼ lim sup

r!1

(5)

is finite and positive. We denote by ½ðrÞ,  the set of all entire functions of strong

proximate order ðrÞand type :

Our first result is the following.

THEOREM1

(i) If f 2 ½ðrÞ, , then lim inf

jwj!1 jwj

ðjwjÞ1Rðw, f Þ  ðe2Þ1: ð8Þ

(ii) If f 2 ½ðrÞ,  has nonnegative Taylor coefficients, then lim inf

jwj!1jwj

ðjwjÞ1Rðjwj, f Þ  ðeÞ1

: ð9Þ

(iii) There exists f 2 ½ðrÞ,  such that

lim inf

jwj!1 jwj

ðjwjÞ1Rðw, f Þ  ðeÞ1

: ð10Þ

We do not know whether the constants ðe2Þ1and ðeÞ1 in the right hand sides

of (8) and (9) are the best possible. Nevertheless, part (iii) of Theorem 1 shows that the best possible constant is not greater than ðeÞ1.

Let us compare Theorem 1 with Macintyre’s Theorem A. It is easy to see that, for f 2 ½ðrÞ, , Theorem A implies

(i0) For some sequence of w tending to 1,

Rðw, f Þ > Cjwj1ðjwjÞ=2: ð11Þ

(ii0) For jwj =2A

, where A Rþsatisfies (4),

Rðw, f Þ > Cjwj1ðjwjÞ=2: ð12Þ

Here C denotes a positive constant.

Part (i) of Theorem 1 shows that Rðw, f Þ > Cjwj1ðjwjÞ:This estimate is less precise than (11) and (12), but it is valid for all w. Moreover, part (iii) of Theorem 1 shows that Macintyre’s estimates (11) and (12) cannot be valid for all w.

If we consider functions of regular growth, then we can get a better bound for Rðw, f Þ, than (8).

THEOREM2 Let f 2 ½ðrÞ, . Assume

log Mðr, f Þ ¼  rðrÞþOð ðrÞÞ, r ! 1, ð13Þ where ðrÞ >0 is a nondecreasing function such that

ðiÞ ðrÞ ¼ oðrðrÞÞ, r ! 1,

(6)

then lim inf jwj!1 jwj  ðjwjÞ1Rðw, f Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðjwjÞ jwjðjwjÞ s >0: ð15Þ

It is easy to see that (15) is a better estimate than (8). Moreover, the smaller the func-tion is the better the bound for Rðw, f Þ is. In particular, if ðrÞ ¼ Oð1Þ, r ! 1, then Rðw, f Þ > Cjwj1ðjwjÞ=2, i.e. Macintyre’s bound (11) remains valid for all w in this case. In general, the bound (15) cannot be improved as the example of the Weierstrass sigma-function with lattice consisting of integer points of C shows. In this example, (13) holds with ðrÞ 2,  ¼ =4, ðrÞ  1 (see [2], p.346) and, evidently,

Rðw, f Þ  1=pffiffiffi2.

3. PROOF OF THEOREM 1

Without loss of generality let us assume that f ð0Þ ¼ 1. We need the following lemma. LEMMA3.1 The following inequality holds

lim sup

r!1

Kðr, f Þ

rðrÞ e: ð16Þ

Proof For any k 2 ð1, 1Þ we have

log Mðkr, f Þ ¼ Zkr 0 d dtlog Mðt, f Þ dt ¼ Zkr 0 Kðt, f Þ t dt  Zkr r Kðt, f Þ t dt Kðr, f Þ Zkr r dt t ¼Kðr, f Þ log k: Hence, lim sup r!1 Kðr, f Þ rðrÞ  1

log klim supr!1

log Mðkr, f Þ ðkrÞðkrÞ ðkrÞðkrÞ rðrÞ : Using (5), we get lim sup r!1 Kðr, f Þ rðrÞ  k log k:

Taking minimum with respect to k > 1 in the right hand side, we obtain (16). g Now we will prove part (i) of Theorem 1. Let w be a maximum modulus point of f . Consider the function

wðzÞ:¼

f ðw þ zÞ f ðwÞ :

(7)

Let

Qðh, wÞ :¼ max

jzj  hjwðzÞj:

Evidently, Qðh, wÞ > 1 for h > 0 because wð0Þ ¼ 1. Since j f ðw þ zÞj  Mðjwj þ jzj, f Þ,

we have

Qðh, wÞ Mðjwj þ h, f Þ Mðjwj, f Þ : Hence,

log Qðh, wÞ  log Mðjwj þ h, f Þ  log Mðjwj, f Þ ¼ Zjwjþh jwj d dtlog Mðt, f Þ dt ¼ Zjwjþh jwj Kðt, f Þ t dt  Kðjwj þ h, f Þ Zjwjþh jwj dt t ¼Kðjwj þ h, f Þ log 1 þ h jwj   Kðjwj þ h, f Þ h jwj:

By Lemma 3.1, for each  > 0 there exists rsuch that Kðr, f Þ  ðe þ ÞrðrÞfor r > r.

Hence,

log Qðh, wÞ  ðe þ Þðjwj þ hÞðjwjþhÞ h

jwj, for jwj > r: ð17Þ Following Macintyre [3] consider the function

wðzÞ:¼

QðwðzÞ 1Þ

Q2 wðzÞ

,

where Q ¼ Qðh, wÞ. Using properties of bilinear transformation and taking into account that by definition of Q, we hav e jwðzÞj  Qfor jzj  h, we conclude that j wðzÞj 1

for jzj  h: Since wð0Þ ¼ 0, Schwarz lemma implies

j wðzÞj  jzj=h, for jzj  h: Hence, QjwðzÞ 1j  jzj h jQ 2 wðzÞj  jzj h ðjQ 21j þ j wðzÞ 1jÞ: Thus, jwðzÞ 1j  ðjzj=hÞ ðQ2 Q  jzj=h :

(8)

Since ðjzj=hÞ ðQ2 Q  jzj=h <1, for jzj < h=Q, we get jwðzÞ 1j < 1, for jzj < h=Q: Hence, wðzÞ 6¼0, for jzj < h=Q,

and therefore f ðw þ zÞ 6¼ 0. This implies

Rðw, f Þ  h=Q: Using (17), we obtain Rðw, f Þ  h exp ðe þ Þ h jwjðjwj þ hÞ ðjwjþhÞ  , jwj > r: Setting h ¼ ðeÞ1jwj1ðjwjÞ, we get Rðw, f Þ jwj 1ðjwjÞ e exp  ðe þ Þ e ðjwj þ hÞðjwjþhÞ jwjðjwjÞ ( ) : Hence, lim inf jwj!1 jwj ðjwjÞ1Rðw, f Þ  lim inf jwj!1 1 eexp  ðe þ Þ e ðjwj þ hÞðjwjþhÞ jwjðjwjÞ ( ) : ð18Þ

Since (5) holds uniformly in k on any interval 0 < a  k  b < 1, we obtain

lim jwj!1 ðjwj þ hÞðjwjþhÞ jwjðjwjÞ ¼jwj!1lim ðjwjð1 þ h=jwjÞÞðjwjð1þh=jwjÞÞ jwjðjwjÞ ¼1:

Thus, inequality (18) reduces to

lim inf jwj!1 jwj ðjwjÞ1Rðw, f Þ  1 eexp  1 þ  e    :

(9)

Proof of (ii) Let f 6 0,

f ðzÞ ¼X

1

k¼0

akzk, ak0, k ¼ 0, 1, . . .

Then the set of maximum modulus points contains Rþ. If it does not coincide with Rþ,

then there is w =2 Rþ such that

X1 k¼0 akwk ¼ X1 k¼0 akjwjk:

This equality may hold if and only if

ak6¼0 ) argðwkÞ 0 ðmod 2Þ:

It follows that there is an integer n  2 such that ak¼0 for each k being not integer

multiple of n. Let us take the largest n with this property. Then we have f ðze2i=nÞ ¼

f ðzÞ and the set of maximum modulus points consists of the system of rays fz: arg z ¼ 2j=ng, j ¼ 0, . . . , n  1: Therefore without loss of generality we can con-sider further only maximum modulus points w lying on Rþ.

Let z ¼ rei’r, j’ rj< , be a zero of f . We hav e f ðrÞ ¼ f ðrÞ  f ðrei’rÞ ¼X 1 k¼0 akrkð1  eik’rÞ  j’rj X1 k¼0 kakrk¼ j’rjrf0ðrÞ: Whence j’rj  f ðrÞ rf0ðrÞ¼ 1 Kðr, f Þ:

Assume that (9) is wrong. Then there exists a sequence 0 < wk! 1and a number

 >0 such that

Rðwk, f Þ  ðe þ Þ1w1ðwk kÞ ¼oðwkÞ, k ! 1: ð19Þ

By the definition of R, there are zeros zk¼rkei’k of f such that Rðwk, f Þ ¼ jzkwkj:

Note that (19) implies rk¼ ð1 þ oð1ÞÞwk, ’k¼oð1Þ: Hence,

Rðwk, f Þ  j=zkj ¼rkj’kjð1 þ oð1ÞÞ 

wk

Kðrk, f Þ

ð1 þ oð1ÞÞ:

This and (19) imply

Kðrk, f Þ 

wk

Rðwk, f Þ

ð1 þ oð1ÞÞ  ðe þ ÞwðwkÞ

(10)

Hence,

lim sup

r!1

Kðr, f Þ

rðrÞ  ðe þ Þlim sup k!1 wðwkÞ k rðrkÞ k : ð20Þ

Since wk¼rkð1 þ oð1ÞÞ, (5) implies that the right hand side of (20) equals e þ 

and we obtain a contradiction with (16). g Proof of (iii) Set

f ðzÞ ¼Y 1 k¼1 1 þ z pk  apðpkÞk  0 @ 1 A, ð21Þ where pk¼e2 k , a ¼ e: We should show: (a) f 2 ½ðrÞ, 

(b) lim infjwj!1jwjðjwjÞ1Rðw, f Þ  ðeÞ1:

Let us first show (b). It is evident from definition (21) that f has nonnegative Taylor coefficients. Hence Rþ consists of maximum modulus points of f and in particular,

each point pkis such a point. Zeros of f are located at the points,

pkexp ið1 þ 2jÞ= apðpk kÞ h i n o , j ¼0, 1, . . . , apðpkÞ k h i 1, k ¼ 1, 2, . . . Evidently, Rðpk, f Þ  pkpkexp i= apðpk Þ k h i n o ¼ 2pksin 2 apðpkÞ k h i : Therefore, pðpkÞ1 k Rðpk, f Þ  2pðpk kÞsin 2 apðpkÞ k h i :

Taking limit as k ! 1 and remembering that a ¼ e, we obtain (b). For part (a), we need to show that

lim sup

r!1

rðrÞlog Mðr, f Þ ¼ : ð22Þ

Let us first prove that the following relation holds

log Mðr, f Þ ¼ apðpnÞ n   log r pn þoðrðrÞÞ, r ! 1, pn< r  pnþ1: ð23Þ

(11)

We have log Mðr, f Þ ¼X 1 k¼1 log 1 þ r pk  apðpkÞk  0 @ 1 A ¼ apðpnÞ n   log r pn þ X n1 k¼1 apðpkÞ n   log r pk   þX n k¼1 log 1 þ pk r   apðpkÞn  ! þ X 1 k¼nþ1 log 1 þ r pk  apðpkÞn   0 @ 1 A ¼: apðpnÞ n   log r pn þS1þS2þS3:

It is easy to show that

S1¼o rðrÞ

 

, S2¼Oð1Þ, S3¼Oð1Þ, r ! 1, pn< r  pnþ1,

which proves (23); we use that ðrÞ !  > 0 as r ! 1 (details omitted). Now let us prove (22), or equivalently,

lim sup

r!1

rðrÞlog Mðr, f Þ ¼ a=e: ð24Þ

Denoting the left hand side of (24) by  and using (23), we obtain

 ¼ lim sup r!1 r2ðpn, pnþ1 rðrÞ apðpnÞ n   logðr=pnÞ þoðrðrÞÞ    lim sup r!1 r2ðpn, pnþ1 rðrÞ apðpnÞ n logðr=pnÞ   alim sup n!1 pðpnÞ n max r2ðpn, pnþ1 gnðrÞ ð25Þ where gnðrÞ ¼ rðrÞlogðr=pnÞ.

Let us find an upper bound of gnfor pn< r  pnþ1. We hav e

g0 nðrÞ ¼ r

ðrÞ1ðr0ðrÞlog r þ ðrÞÞ logðr=p nÞ þ1

½ :

Since r0ðrÞlog r þ ðrÞ !  as r ! 1, we have for large n

rðrÞ1h ð þ Þlogðr=pnÞ þ1 i < g0 nðrÞ < r ðrÞ1h ð  Þlogðr=p nÞ þ1 i , ð26Þ

where  is an arbitrary number from ð0, Þ.

When r < pne1=ðþÞ, the left inequality in (26) implies that g0nðrÞ >0. When

(12)

maximum value on ðpn, pnþ1at some point rn2 ½pne1=ðþÞ, pne1=ðÞ:Therefore, using (5) and (25), we obtain   alim sup n!1 pðpnÞ n gnðrnÞ ¼alim sup n!1 pðpnÞ n logðrn=pnÞ rðrnÞ n alim sup n!1 pðpkÞ n ðpne1=ðþÞÞðpne 1=ðþÞÞ 1   ¼ a e=ðþÞ 1 ð  Þ: Letting  ! 0, we get   a=e:

For the reverse inequality, let sn¼pne1=. Since limr!1pnþ1=pn ¼ 1, we have

pn< snpnþ1 for sufficiently large n. Therefore, using (5), we obtain

 lim sup n!1 ðapðpnÞ n 1Þ logðsn=pnÞ rðrnÞ n ¼alim sup n!1 pðpnÞ n ðpne1=Þðpne 1=Þ 1 ¼ a e: Hence, (24) is true. g 4. PROOF OF THEOREM 2 Let us denote LðrÞ ¼ rðrÞ: ð27Þ By (6) we have

LðrÞ ¼expf#2ðlog rÞ  #1ðlog rÞg:

We need the following amplification of (5) for a strong proximate order. LEMMA4.1 The following relation holds

ðkrÞðkrÞrðrÞ¼rðrÞðk1Þ þ kðk 1Þrþ1L0ðrÞ

þkðk 1Þ2rðrÞoð1Þ, r ! 1, ð28Þ

uniformly in each interval0 < a  k  b < 1. Proof We have ðkrÞðkrÞrðrÞ¼rLðrÞðk1Þ þ ðkrÞ½LðkrÞ  LðrÞ: By Taylor’s formula, jLðkrÞ  LðrÞ  ðk 1ÞrL0ðrÞj ¼1 2ðk 1Þ 2 r2jL00ðcÞj, ð29Þ

(13)

for some c between r and kr. Since c2L00ðcÞ ¼ LðcÞn½#0 2ðlog cÞ  # 0 1ðlog cÞ 2þ ½#00 2ðlog cÞ  # 00 1ðlog cÞ  ½#02ðlog cÞ  #01ðlog cÞo,

using (7) we obtain (without loss of generality we assume a < 1 < b)

max

ar  c  brc

2jL00ðcÞ=LðcÞj !0, as r ! 1:

Taking into account that LðcÞ=LðrÞ ! 1, as r ! 1 uniformly in c, ar  c  br, we get

max ar  c  br r2L00ðcÞ LðrÞ ¼ar  c  brmax r2 c2 c2L00ðcÞ LðcÞ LðcÞ LðrÞ!0, as r ! 1,

and using (27) and (29) we get (28). g We also need the following amplification of (16) for functions satisfying conditions of Theorem 2.

LEMMA4.2 If(13) and (14) is satisfied, then

Kðr, f Þ ¼ rðrÞþrþ1L0ðrÞ þ O ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffirðrÞ

ðrÞ

p 

, r ! 1:

Proof Let 1  k  3. Using the conditions (13) and (14), we get ½logMðkr,f Þ  logMðr,f Þ  ½ðkrÞðkrÞ rðrÞ ¼ Oð ðkrÞÞ  Oð ðrÞÞ  C ðrÞ, ð30Þ where C does not depend on k or r. Since

log Mðkr, f Þ  log Mðr, f Þ ¼ Z kr r d dt log Mðt, f Þ dt ¼ Zkr r Kðt, f Þ t dt Kðr, f Þ Zkr r dt t ¼Kðr, f Þ log k, we obtain by (30) Kðr, f Þ  1 log k ðkrÞ ðkrÞ rðrÞþC ðrÞ   :

(14)

Using Lemma 4.1, we get (uniformly in k 2 ½1, 3) Kðr, f Þ  1 log kr ðrÞ ðk1Þ þ 1 log kk ðk 1Þrþ1L0ðrÞ þ 1 log kk ðk 2rðrÞ oð1Þ þ 1 log kC ðrÞ: ð31Þ Using log Mðr, f Þ  log Mðr=k, f Þ ¼ Zr r=k Kðt, f Þ t dt  Kðr, f Þ log k,

Lemma 4.1 and (30), we obtain

Kðr, f Þ  1 log kr ðrÞ ð1  kÞ þ 1 log kk ð1  k1Þrþ1L0ðrÞ þ 1 log kk ð1  k1Þ2rðrÞ oð1Þ  1 log kC ðrÞ: ð32Þ Choosing k ¼1 þpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðrÞrðrÞ ,

we see that the estimate in (31) will give the upper bound and the estimate in (32) will give the lower bound for Kðr, f Þ. g Now we will prove Theorem 2. Let w be a maximum modulus point. Following Macintyre [3] define wðzÞ:¼ f ðwezÞ f ðwÞ e Kðjwj, f Þz: Let Pðh, wÞ :¼ max jzjhjwðzÞj, 0 < h  1 : Denoting jwj by r, we have

log jwðzÞj log MðreRe z, f Þ  log Mðr, f Þ  Kðr, f ÞRe z:

Set Re z ¼ t. Then

log Pðh, wÞ  max

h  t  h



(15)

It is easy to see that

log Mðret, f Þ  log Mðr, f Þ  tKðr, f Þ ¼ Zret r ½Kðu, f Þ  Kðr, f Þdu u ¼ Zret r

½Kðu, f Þ  uðuÞuþ1L0ðuÞ  ½Kðr, f Þ  rðrÞ

rþ1L0ðrÞdu u þ

Zret r

½uðuÞþuþ1L0ðuÞ  ½rðrÞþrþ1L0ðrÞdu u : Using Lemma 4.2 and the identity

rd drr ðrÞ ¼rd drr LðrÞ ¼ rðrÞ þrþ1L0ðrÞ, we get

log Mðret, f Þ  log Mðr, f Þ  tKðr, f Þ

 Zret r C1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi uðuÞ ðuÞ p du u þ Z ret r C1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi rðrÞ ðrÞ p du u þ  ðretÞ ðretÞ rðrÞt½rðrÞþrþ1L0ðrÞ ¼: Y1þY2þY3: ð34Þ

Let us estimate Y1, Y2, Y3. Since r ðrÞ

ðrÞ is monotonically increasing for sufficiently large r, we have for t < 0,

Y1C1jtj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi rðrÞ ðrÞ p : Using (5) and (14), we have for 0 < t  h < 1,

Y1C1t ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðretÞðretÞ ðretÞ q C2t ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi rðrÞ ðrÞ p : Hence Y1C3jtj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi rðrÞ ðrÞ p , for jtj  h: ð35Þ Evidently, Y2¼C1jtj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi rðrÞ ðrÞ p : ð36Þ

Finally using Lemma 4.1, we get

Y3¼

rðrÞ

ðet1Þ þ etðet1Þrþ1L0ðrÞ þ rðrÞetðet1Þ2oð1Þ trðrÞtrþ1L0ðrÞ

¼rðrÞ

(16)

Since oð1Þ’s are uniform with respect to t, jtj  1, we obtain

Y3C4r 

ðrÞt2, ð37Þ

where C4>0 does not depend on both r and t.

Hence, by (34) and (35)–(37) we conclude

log Mðret, f Þ  log Mðr, f Þ  tKðr, f Þ  D1jtj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi rðrÞ ðrÞ p þD2r  ðrÞt2: Using (33) we obtain log Pðh, wÞ  D1h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi rðrÞ ðrÞ p þD2r ðrÞ h2: ð38Þ Introducing wðzÞ:¼ PðwðzÞ 1Þ P2 wðzÞ ,

we conclude similarly as we did for the function win the proof of Theorem 1.(i), that

wðzÞ 6¼0 for jzj < h=P:

Therefore

f ðwezÞ 6¼0 for jzj < h=P < 1: This implies (remind that r ¼ jwj)

Rðw, f Þ  min jzj ¼ h=Pjw  we zj ¼r min jzj¼h=Pj1  e zj rCh P:

Hence, with inequality (38) we obtain

Rðw, f Þ  Crh exp n  ðD1h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi rðrÞ ðrÞ p þD2h2r  ðrÞÞo: Setting h ¼ 1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffirðrÞ ðrÞ p

, we get for sufficiently large values of jwj

Rðw, f Þ  C0jwj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1 jwjðjwjÞ ðjwjÞ

p :

This is equivalent to (15). g

Acknowledgement

(17)

References

[1] A.A. Goldberg, B.Ya. Levin and I.V. Ostrovskii (1996). Entire and meromorphic functions. In: R. Gamkrelidze (Ed.), Encyclopedia of Math. Sciences, Vol. 85, pp. 1–193. Springer, Berlin.

[2] W.K. Hayman (1974). The local growth of power series: a survey of the Wiman-Valiron method. Canad. Math. Bull., 17, 317–358.

[3] A.J. Macintyre (1938). Wiman’s method and ‘‘flat regions’’ of integral functions. Quart. J. Math., 9, 81–88. [4] B.Ya. Levin (1980). Distribution of Zeros of Entire Functions. AMS, Providence, R.I.

[5] D. Ruelle (1969). Statistical Mechanics: Rigorous Results. Addison-Wesley, New York.

[6] Sh. Strelitz (1972). Asymptotic Properties of Analytical Solutions of Differential Equations. Mintis, Vilnius (Russian).

Referanslar

Benzer Belgeler

For each one, we need to prove a modu- lar transformation formula, and use Farey dissection to avoid the essential singularities of the generating functions.. After that, we need

Interesting interconnections among multidimensional Bohr radii, local Banach space theory and complex analysis in infinite number of variables established in [12] and [15] triggered

But the reason is that we're more afraid when we think of dying in a terrorist incident, than we are when we think simply of dying.. But if you reverse the order,

The power capacity of the hybrid diesel-solar PV microgrid will suffice the power demand of Tablas Island until 2021only based on forecast data considering the

Bu dönemde bulaşıcı hastalıklardan en sık rastlanılan verem, sıtma, frengi, trahom, çiçek ve kuduz hastalıkları ile mücadele, o dönemin Sağlık ve Sosyal

B303097070 楊啟智       大腦研究趨勢

Second, we aimed to evalu- ate the plausible association between scintigraphic results obtained with the MIBI parathyroid scintigraphy in patient groups (having either ectopic

• Aino-Liisa Oukka Oulu University Hospital district. • Veronika Sundström County Council