• Sonuç bulunamadı

Başlık: Regularized trace of sturm-liouville equation with singilarity on a bounded segmentYazar(lar):HAŞİMOĞLU, İlyasCilt: 61 Sayı: 1 Sayfa: 001-009 DOI: 10.1501/Commua1_0000000673 Yayın Tarihi: 2012 PDF

N/A
N/A
Protected

Academic year: 2021

Share "Başlık: Regularized trace of sturm-liouville equation with singilarity on a bounded segmentYazar(lar):HAŞİMOĞLU, İlyasCilt: 61 Sayı: 1 Sayfa: 001-009 DOI: 10.1501/Commua1_0000000673 Yayın Tarihi: 2012 PDF"

Copied!
9
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

IS S N 1 3 0 3 –5 9 9 1

REGULARIZED TRACE OF STURM-LIOUVILLE EQUATION WITH SINGILARITY ON A BOUNDED SEGMENT

ILYAS HA¸SIMO ¼GLU

Abstract. Let 1 2 ::: n ::: and 1 2 ::: n :::

be the eigenvalues of the operatorsL0and L which are formed by di¤erential

expressions `o[y] = y00+ v2 1=4 x2 y; `[y] = y 00+v2 1=4 x2 y + q(x)y; 1/2

respectively and with the same boundary conditions Eq.(2.4) y(0) = y(1) = 0

We prove that under some conditions on q(x), the following formula for traces

1 X n=1 ( n n) = 2 q(0) + q(1) 4 with Eq.(2.4) holds.

1. Introduction

In literature there are numerous papers devoted to the calculation of regular-ized trace of scalar di¤erential operators which is the generalization of concept of matrix trace. First work in this direction belongs to I.M.Gelfand and B.M Levi-tan [1], where the formula for the sum of di¤rences of eigenvalues of two regular Sturm-Liouville operators on the [0; ], was obtained. This work has numerous con-tinuations. In [2-16] the regularized traces are calculated in several cases. In [2] the formula was obtained for the sum of di¤rences of eigenvalues of two singular self-adjoint Sturm-Liouville operators which di¤er by …nite potentials. In [4-8] by using zeta function and teta function V.A.Sadovnichiy has obtained formulae for regu-larized traces for wide class of di¤erential operators. In [7] the author considered the following operator

Ly = y00+

2 1/4

x2 y + q(x)y = 2

y

Received by the editors Dec. 20, 2011, Accepted: Feb. 15, 2012. 2000 Mathematics Subject Classi…cation. 47A10, 47A75, 34L10, 34L05. Key words and phrases. Regularized trace; Sturm-Liouville operators.

c 2 0 1 2 A n ka ra U n ive rsity

(2)

and is a su¢ ciently smooth function. In this case the series P1

n=1

( n (n +2 12)2)

is calculated.

The aim of this article is to calculate the regularized trace with the peculiarity on the bounded segment. Namely we consider the following problem.

Let L0and L be operators acting in L2(0; 1)and formed by di¤erential expressions

`o[y] = y00+v

2 1=4

x2 y

`[y] = y00+v2 1=4

x2 y + q(x)y; 1/2

respectively and with same boundary conditions Eq.(2.4)

y(0) = y(1) = 0;

where potential q(x) is a bounded function and satis…es the following conditions: a) q(x) satis…es the Hölder condion with order > 0 on the neigbour of zero, i.e. there is & > 0such that for any x 2 [0; &] the following inequality holds

jq(x) q(0)j < const: x b) 1 R 0 q(x)dx = 0

Our aim is to …nd the regularized trace of these operators.

2. Main results

Let 1 2 ::: n ::: and 1 2 ::: n ::: be the eigenvalues

of the operators L0and L, respectively. Then the following theorem holds

Theorem. Let the function q(x) satisfy conditions a) and b). Then P1 n=1 ( n n) = 2 q(0)+q(2:4) 4 It is shown in [11] that P1 n=1

( n n (q`n; `n)) = 0, where `nare eigenfunctions

of L0. If 1 P n=1 (q`n; `n) is convergent then 1 P n=1 ( n n) = 1 P n=1 (q`n; `n):

Eigenfunctions of the operator L0 have the form [2]

`n =

p

2xJ v(jnx)

Jv+1(jn) where Jv(x) is the Bessel function, j1 j2 j3 ::: are

(3)

1 X n=1 (q`n; `n) = lim N!1 N X n=1 (q`n; `n) (2.1) = lim N!1 N X n=1 1 Z 0 2xJ 2 v(jnx) J2 v+1(jn) q(x)dx (2.2) = lim N!1 1 Z 0 N X n=1 2xJ2 v(jnx) J2 v+1(jn) ! q(x)dx (2.3)

To …nd this limit we will study the asymptotical behavior of the function TN(x) = N P n=1 2xJv2(jnx) J2 v+1(jn) with and " > 0

For later use we note the following lemma Lemma. For the function TN(x);

TN(x) = AN cos(2xAN v ) 2 sin x + (ANx) x where AN = (N +v2 +14) , when 0 < x < 1; (ANx) ! 0 as N ! 1.

Proof of Lemma. To get formula for TN(x) we express the mth term of the

sum TN(x) in the form of residue at point jmof some function of complex variable

z, which has poles at the points j1; j2; :::; jN:

Consider the following complex function. zxfJ2

v(xz) Jv 1(xz)Jv+1(xz)g

J2 v(z)

First, prove that this function has a residue 2xJv2(jmx) J2

v+1(jm) at z = jm:

If z = jm+ ; where is small, then

J (z) = J0(jm) + 1 2 2J00 (jm) + ::: and hence zJv2(z) = 2jmJ02(jm) + 3(jm) fjmJ00(jm) + J0(jm)g + :::

Using Bessel di¤erential equation it is easy to prove that the coe¢ cient of 3 on the right hand side of this expression is zero.

Therefore the residue of function g(z) zJ2 v(z) =z 2x J2 v(xz) Jv 1(xz)Jv+1(xz) zJ2 v(z) (2.4)

(4)

g0(jm) jmJ02 (jm) = 2x Jv2(jmx) J2 v+1(jm)

As a contour of integration we take the rectangle with vertex at iB; AN iB.

Here B ! 1 and jN < AN < jN +1. For AN we take the value N +v2+14 , in

the case when N is su¢ ciently large this value is between jN and jN +1:

It is easy to prove that the function (2.4) is an odd function of z, therefore the integral on the left sides of rectangle is zero. If z = u + iw, then for large jwj and for u 0 integrand will have an order O(e 2(1 x)jwj) and consequently for given

value of AN, integrals on upper and lower sides converge to zero as B ! 1; when

0 < x < 1: Thus we obtain TN(x) = 1 2 i ANZ+iB AN iB zxfJz v(xz) Jv+1(xz)Jv 1(xz)g J2 v(z) dz

When jN1+" x < 1; where 0 < " < 1=2; jxzj ! 1; the Bessel functions in the integrant can be replaced by the corresponding asymptotes with large arguments

Jv2(xz) Jv 1(xz)Jv+1(xz) = 2 xz 1 1 2xzcos(2xz v ) 1 + 0 1 (xz)2 Jv2(z) = 2 z 1 2 + sin(2z v ) 2 + cos(2z v )(2v 1)(2v + 1) 8z 1 + 0 1 z2

(5)

Then if N ! 1 TN(x) = 1 2 iBlim!1 ANZ+iB AN iB xzfJ2 v(xz) Jv+1(xz)Jv 1(xz)g J2 v(xz) dz = 1 2 iBlim!1 ANZ+iB AN iB z[1 2xz1 cos(2xz v )(1 + 0 (xz)12 dz 1 2 + sin(2z v ) 2 + cos(2z v )(2v 1)(2v + 1) 8z 1 + 0 1 z2 1 i ANZ+i1 AN i1 z [ 1 2xz1 cos(2xz v ) ] 1 + sin(2z v ) dz = 1 i ANZ+i1 AN i1 [ z 1 + sin(2z v ) 1 2x cos(2xz v ) 1 + sin(2z v )]dz = 1 +1 Z 1 (AN+ iw)dv 1 + cos(2iw) 1 2x 1 Z 1 cos(2xAN+ 2ixw ) 1 + cos(2iv) dw = AN cos(2xAN v ) 2x 1 Z 1 cosh(2xw) 1 + cosh(2w)dw = AN cos(2xAN v ) 2 sin x That is we obtain TN(x) = AN cos(2xAN v ) 2 sin x + (ANx) x ;

where AN = (N +v2 +14) and (ANx) = O( lim B+1 ANR+i1 AN i1 sin(2xz v ) xz(1+sin(2z v ))dz) when 0 < x < 1; (ANx) ! 0 as N ! 1.

Really, if we put z = AN + iw, the integral

ANZ+iB AN iB

sin(2z v )

(6)

2ANsin(2xAN v ) 1 Z 0 cosh(2xw) x(A2 N+ w2)(1 + cosh(2w)) dw +2 cos(2xAN v ) 1 Z 0 w sinh(2xw)dw x(A2 N+ w2)(1 + cosh(2w))

When jW1+" x < 1, absolute value of (2.5) doesn’t exceed

1 xAN 1 Z 0 cosh(2xv) 1 + cosh(2v)dv + 2 xA2 N 1 Z 0 v sinh(2xv) 1 + cosh(2v)dv

This shows, that (ANx) ! 0 as N ! 1:

If x = 1 lim B!1 ANZ+iB AN iB sin(2z v ) z(1 + sin(2z v ))dz = limB!1 B Z B cosh(2w)dw (AN + iw)(1 + cosh(2w)) = lim B!1 2 42AN B Z 0 cosh(2w) (A2 N+ w2)(1 + cosh(2w)) dw i B Z B w cosh(2w)dw (A2 N+ w2)(1 + cosh(2w)) 3 5 = lim B!12AN B Z 0 cosh(2w) (A2 N+ w2)(1 + cosh(2w)) dw :

Absolute value of this integral doesn’t exceed 2AN 1 R 0 dw A2 N+w2 = .

We obtain that (ANx) ! 0 as N ! 1 when jN1+"< x < 1 and j (ANx)j < c

when x = 1:

Proof of Theorem. Now using the asymtotes of the function TN(x) = N P n=1 2xJv2(jnx) J2 v+1(jn); we get

(7)

1 P n=1 ( n n) = lim N!1 N P n=1 1 R 0 2xJ2 v(jnx) J2 v+1(jn)q(x)dx = limN!1 1 R 0 TN(x)q(x)dx = lim N!1 1 R 0 TN(x)(q(x) q(0))dx + q(0)N = lim N!1 ANR1+" 0 TN(x)(q(x) q(0))dx + 1 R AN1+" AN cos(2ANx ) 2 sin x (ANx) x (q(x) q(0)dx + q(0)N ] = lim N!1 "A 1+" NR 0 TN(x)(q(x) q(0))dx A 1+" NR 0 (AN cos(2ANx ) 2 sin x )(q(x) q(0))dx + 1 R 0 (AN cos(2ANx ) 2 sin x )(q(x) q(0))dx + q(0)N + 1 R AN1+" (ANx) x (q(x) q(0))dx 3 5 = lim N!1 2 6 4 AZN1+" 0 TN(x)(q(x) q(0))dx+ when 0 < " < +1:

Using the inequality jpxJv(x)j < const; for any x [17], it is easy to prove that

TN(x) const N (3)

Take into account (3) and condition a), one can easily see that

lim N!1 ANR1+" 0 TN(x)(q(x) q(0)dx lim N!1 ANR1+" 0 TN(x) jq(x) q(0)j dx lim N!1const ARN 0 N x dx = const lim N!1N A 1 +"( +1) N = 0 for 0 < " < +1 .

Moreover if is easy to prove that

lim N!1 AZN1+" 0 AN cos(2ANx v 2 sin x (q(x) q(0))dx = 0 (2.6)

(8)

lim N!1 A 1+" N (ANx) x (q(x) q(0)dx = 0 (2.7)

Taking into account (3) –(2.7) and condition b), we obtain lim N!1 1 R 0 AN cos(2ANx v ) 2 sin x (q(x) q(0))dx + q(0)N = lim N!1 AN 1 R 0 q(x)dx ANq(0) + N q(0) 1 4 1 R 0 cos(2N +1 2) cos2x cos(v (x 1)) sin2x (q(x) q(0))dx = v 2+ 1 4 q(0) q(1) q(0) 4 = 2vq(0)+q(1) 4 That is, 1 X n=1 ( n n) = 2vq(0) + q(1) 4 :

This completes the proof of the theorem. ÖZET: 1 2 ::: n ::: ve 1 2 ::: n :::say¬lar¬ `o[y] = y00+v 2 1=4 x2 y; `[y] = y00+ v2 1=4 x2 y+q(x)y; 1/2

diferansiyel ifadeleri ve y(0) = y(1) = 0 s¬n¬r ¸sartlar¬ile tan¬mlan-m¬¸s s¬ras¬yla L0 ve L1operatörlerinin özde¼gerleri olsun. Makalede

q(x) fonkisyonu baz¬¸sartlar¬sa¼glad¬¼g¬nda

1

P

n=1

( n n) = 2 q(0)+q(1)4 iz formülü ¬spatlanm¬¸st¬r.

References

[1] I.M.Gelfand, B.M.Levitan, On the simple identity for the eigenvalues of second order di¤er-ential operator. Doklady Akademii Nauk SSSR, 88(1953) 593-596

[2] M.G.Gasimov , The sum of di¤erence of eigenvalues of two singular Sturm-Liouville operators. Doklady Akademii Nauk SSSR, 151(1963) 1014-1017

[3] L.A.Dikiy, On the Gelfand-Levitan formula. Uspekhi Mat. Nauk, 7(1953) 119-123

[4] L.A.Dikiy, Zeta function of ordinary di¤erential equation on the segment. Izvestiya Akademii Nauk SSSR, ser. Matematika, 19(1955) 187-200

[5] V.A.Sadovnichiy, The trace of ordinary di¤erential operators. Mat. Zametki 1(1967) 179-188 [6] V.A.Sadovnichiy, The identity of eigenvalues of Dirac system and some other systems of high

order. Vestnik MGU 3(1967) 37-47

[7] V.A.Sadovnichiy, Some identities for the eigenvalues of singular di¤erential operators. Re-lations for the zeros of the Bessel function. Vestnik MGU , ser. Matem. Mechan. 3(1971) 77-86

[8] V.A.Sadovnichiy, Zeta function and eigenvalues of di¤erential operators. Di¤erensiyalniye uravneniya 10(1974) 1276-1285

[9] V.A.Sadovnichiy, The trace of high order di¤erential operators. Di¤erensialniye uravneniya 28(1996) , 1611-1624

(9)

[10] F.G.Maksudov, M.Bairamoglu, A.A.Adigozelov, On the regularized trace on the segment of Sturm-Liouville operator with unbounded operator coe¢ cients. Doklady Akademii Nauk SSSR, 277(1984) 795-799

[11] V.A.Lyubishkin, Formulae of Gelfand-Levitan and Crayn. Math. Sbornik, 182(1991) 1786-1795

[12] V.A.Lyubishkin, V.E. Podolskiy, On the summarizing of regularized traces of di¤erential operators. Mat. Zametki, 54(1993), 33-38

[13] V.G. Papanicolaou, Trace formulas and the behavior of large eigenvalues. SIAM J. Math.Anal. 26(1995) 218-237

[14] F.Gesztesy, H.Holden, B.Simon and Z.Zhao, Trace formulae and inverse spectral theory for Schroedinger operators. Bull. Amer. Math. Soc. 29(1993) 250-255

[15] V.A.Vinokurov, V.A.Sadovnichiy, Asymptote of eigenvalues and eigenfunctions and trace formula for the potential contains function. Doklady Akademii Nauk SSSR, 376(2001) , 445-448

[16] A.M.Savchuk, A.A.Shkalikov, Trace formula for the Sturm-Liouville operator with singular potential. Mat. Zametki, 69(2001) 427-442

[17] G.N.Watson, A tretise on the theory of Bessel functions. Cambridge University Press, Cam-bridge, 1992

Current address : Ilyas Ha¸simo¼glu; Karabuk University, Karabuk, TURKEY and Institute of Mathematics, Academy of Sciences of Azerbaijan, Baku, Azerbaijan

E-mail address : ilyas_hashimov@yahoo.com

Referanslar

Benzer Belgeler

Bu dü ş ünce literatür bildiri ş leri ( Collins ve ark. 1970; Marks 1991) ile uyum göstermemekle birlikte çal ış an populasyonun tabiat ı ndan kaynaklanabilece ğ i gibi, do

Research is planned and performed for understanding the clustering in SMEs (small and medium enterprises) industrial estate in Istanbul if it gives a competitive advantage to

Inspired by the relation between stability and dissipativeness of dynamical systems, the convergence property of threshold networks is investigated.Using the energy function

It was expected that integration intensity factors, (commitment, trust, communication, cooperation, and conflict resolution), should lead to substantial improvements

Kansei Mühendisliği müşteri odaklı bir yaklaşım olup, kişinin arzu ettiği bir ürünle ilgili olarak hissettiklerinin ve aklındaki imajın ürünün tasarım

Reanimasyon (yeniden canlandırma) metot ve aletlerinin yaygın bir biçim- de kullanılmaya başlanması, son nefes ve son kalp atışı şeklindeki klâsik ölüm tanımının yeterli

Mevlana’nın kültür endüstrisi bağlamında yeniden üretimini politik-ekonomik boyutlarda değerlendirmek ve kültür endüstrisinin ticari ve politik bir

The bottom panels show the ratios between the electron and the muon distributions where the error bars are purely statistical and the shaded areas represent the total