• Sonuç bulunamadı

New Generalizations of Ostrowski-Like Type Inequalities for Fractional Integrals

N/A
N/A
Protected

Academic year: 2021

Share "New Generalizations of Ostrowski-Like Type Inequalities for Fractional Integrals"

Copied!
12
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

pISSN 1225-6951 eISSN 0454-8124 c

° Kyungpook Mathematical Journal

New Generalizations of Ostrowski-Like Type Inequalities for

Fractional Integrals

C¸ etin Yildiz

Atat¨urk University, K. K. Education Faculty, Department of Mathematics, 25240, Campus, Erzurum, Turkey

e-mail : [email protected] Muhamet Emin ¨Ozdemir

Uluda˘g University, Education Faculty, Department of Mathematics, 16059, Bursa, Turkey

e-mail : [email protected] Mehmet Zeki Sarikaya

D¨uzce University, Department of Mathematics, Faculty of Science and Arts, D¨uzce, Turkey

e-mail : [email protected]

Abstract. In this paper, we use the Riemann-Liouville fractional integrals to establish several new inequalities for some differantiable mappings that are connected with the celebrated Ostrowski type integral inequality.

1. Introduction

In 1938, the classical integral inequality established by Ostrowski as follows: Theorem 1.1. Let f : [a, b] → R be a differentiable mapping on (a, b) whose derivative f0 : (a, b) → R is bounded on (a, b), i.e., kf0k

= sup

t∈(a,b)

|f0(t)| < ∞.

Then, we have the inequality: ¯ ¯ ¯ ¯ ¯f (x) − 1 b − a Z b a f (t)dt ¯ ¯ ¯ ¯ ¯ " 1 4 + ¡ x − a+b 2 ¢2 (b − a)2 # (b − a) kf0k * Corresponding Author.

Received February 24, 2014; accepted February 5, 2016.

2010 Mathematics Subject Classification: 26A15, 26A51, 26D10.

Key words and phrases: Ostrowski’s Inequality, Convex(Concave) Functions, Riemann-Liouville Fractional Integration, H¨older Inequality, Power-mean Inequality.

(2)

for all x ∈ [a, b]. The constant 1

4 is the best possible.

Recently, several generalizations of the Ostrowski integral inequality for map-pings of bounded variation and for Lipschitzian, monotonic, absolutely continuous and n-times differentiable mappings with error estimates for some special means and for some numerical quadrature rules are considered by many authors.

In [6], M. Alomari and M. Darus proved some Ostrowski’s type inequality for the class of convex(concave) functions:

Theorem 1.2. Let f : I ⊂ [0, ∞) → R, be a differentiable mapping on I◦(the

interior of I) such that f0 ∈ L[a, b], where a, b ∈ I with a < b. If |f0|p−1p is convex

on [a, b], then the following inequality holds: (1.1) ¯ ¯ ¯ ¯ ¯f (x) − 1 b − a Z b a f (x)dx ¯ ¯ ¯ ¯ ¯ 1 (b − a)(p + 1)1/p " (b − x)2 µ |f0(x)|q + |f0(b)|q 2 ¶1 q + (x − a)2 µ |f0(x)|q + |f0(a)|q 2 ¶1 q #

for each x ∈ [a, b], where 1

p+1q = 1.

Theorem 1.3. Let f : I ⊂ [0, ∞) → R, be a differentiable mapping on I◦ such

that f0∈ L[a, b], where a, b ∈ I with a < b. If |f0|p−1p is concave on [a, b], then, the

following inequality holds: ¯ ¯ ¯ ¯ ¯f (x) − 1 b − a Z b a f (x)dx ¯ ¯ ¯ ¯ ¯ b − a (p + 1)p1 "µ b − x b − a ¶2¯¯ ¯ ¯f0 µ b + x 2 ¶¯¯ ¯ ¯ (1.2) + µ x − a b − a ¶2¯¯ ¯ ¯f0 µ a + x 2 ¶¯¯ ¯ ¯ # , for each x ∈ [a, b], where p > 1.

Theorem 1.4. Let f : I ⊂ [0, ∞) → R, be a differentiable mapping on I◦ such

that f0 ∈ L[a, b], where a, b ∈ I with a < b. If |f0|q

is concave on [a, b], q ≥ 1 and |f0(x)| ≤ M, then the following inequality holds:

¯ ¯ ¯ ¯ ¯f (x) − 1 b − a Z b a f (x)dx ¯ ¯ ¯ ¯ ¯ (b − a) 2 "µ b − x b − a ¶2¯¯ ¯ ¯f0 µ b + 2x 3 ¶¯ ¯ ¯ ¯ (1.3) + µ x − a b − a ¶2¯¯ ¯ ¯f0 µ a + 2x 3 ¶¯¯ ¯ ¯ # .

(3)

In recent years, such inequalities were studied extensively by many researchers and numerious generalizations, extensions and variants of them appeared in number of papers see ([1]-[8])

Now, we give some necessary definitions and mathematical preliminaries of frac-tional calculus theory which are used throughout this paper, see([18]).

Definition 1.1. Let f ∈ L1[a, b]. The Riemann-Liouville integrals Jaα+f and Jbα−f

of order α > 0 with a ≥ 0 are defined by Jaα+f (x) = 1 Γ(α) Z x a (x − t)α−1f (t)dt, x > a and Jbα−f (x) = 1 Γ(α) Z b x (t − x)α−1f (t)dt, x < b respectively where Γ(α) =∞R 0

e−uuα−1du. Here is J0

a+f (x) = Jb0−f (x) = f (x).

In the case of α = 1, the fractional integral reduces to the classical integral. For some recent results connected with fractional integral inequalities see ([9]-[17]).

2. Main Results

In order to prove our main theorems, we need the following lemma:

Lemma 2.1. Let f : I ⊂ R → R be a differentiable mapping on Io where a, b ∈ I

with a < b. If f0∈ L[a, b], then, for all x ∈ [a, b] and α > 0 we have: · (x − a)α+ (b − x)α (b − a)α+1 ¸ f (x) − Γ(α + 1) (b − a)α+1[J α x+f (b) + Jxα−f (a)] = Z 1 0 m(t)f0(ta + (1 − t)b)dt

for each t ∈ [a, b], where

m(t) =    −tα, t ∈h0,b−x b−a i (1 − t)α, t ∈³b−x b−a, 1 i , for all x ∈ [a, b].

(4)

Proof. By integration by parts, we can obtain I = Z 1 0 m(t)f0(ta + (1 − t)b)dt = Z b−x b−a 0 (−tα) f0(ta + (1 − t)b)dt + Z 1 b−x b−a (1 − t)αf0(ta + (1 − t)b)dt = µ b − x b − aα f (x) b − a− α b − a Z b−x b−a 0 tα−1f (ta + (1 − t)b)dt + µ x − a b − aα f (x) b − a− α b − a Z 1 b−x b−a (1 − t)α−1f (ta + (1 − t)b)dt.

Using the change of the variable u = ta + (1 − t)b for t ∈ [0, 1] , which gives

I = (b − x) α (b − a)α+1f (x) − α (b − a)α+1 Z b x (b − u)α−1f (u)du + (x − a) α (b − a)α+1f (x) − α (b − a)α+1 Z x a (u − a)α−1f (u)du = · (x − a)α+ (b − x)α (b − a)α+1 ¸ f (x) − Γ(α + 1) (b − a)α+1[J α x+f (b) + Jxα−f (a)] .

This is completed the proof. 2

The main results may be stated as follows:

Theorem 2.1. Let f : [a, b] → R, be a differentiable mapping on (a, b) with a < b such that f0 ∈ L[a, b]. If |f0| is convex on [a, b] and x ∈ [a, b], then the following

inequality for fractional integrals with α > 0 holds: ¯ ¯ ¯ ¯ ¯ · (x − a)α+ (b − x)α (b − a)α+1 ¸ f (x) − Γ(α + 1) (b − a)α+1[J α x+f (b) + Jxα−f (a)] ¯ ¯ ¯ ¯ ¯ 1 α + 2 ½µ (b − x)α+2 (b − a)α+2 + (x − a)α+1 (b − a)α+1 · 1 α + 1+ b − x b − a ¸¶ |f0(a)| (2.1) + µ (x − a)α+2 (b − a)α+2 + (b − x)α+1 (b − a)α+1 · 1 α + 1 + x − a b − a ¸¶ |f0(b)| ¾

(5)

Proof. From Lemma and since |f0| is convex on [a, b], we have ¯ ¯ ¯ ¯ · (x − a)α+ (b − x)α (b − a)α+1 ¸ f (x) − Γ(α + 1) (b − a)α+1[J α x+f (b) + Jxα−f (a)] ¯ ¯ ¯ ¯ Z b−x b−a 0 |−t|α|f0(ta + (1 − t)b)| dt + Z 1 b−x b−a |(1 − t)α| |f0(ta + (1 − t)b)| dt Z b−x b−a 0 [t |f0(a)| + (1 − t) |f0(b)|] dt + Z 1 b−x b−a (1 − t)α[t |f0(a)| + (1 − t) |f0(b)|] dt = · 1 α + 2 (b − x)α+2− (x − a)α+2 (b − a)α+2 + 1 α + 1 (x − a)α+1 (b − a)α+1 ¸ |f0(a)| + · 1 α + 2 (x − a)α+2− (b − x)α+2 (b − a)α+2 + 1 α + 1 (b − x)α+1 (b − a)α+1 ¸ |f0(b)| = 1 α + 2 µ (b − x)α+2 (b − a)α+2 + (x − a)α+1 (b − a)α+1 · 1 α + 1 + b − x b − a ¸¶ |f0(a)| + 1 α + 2 µ (x − a)α+2 (b − a)α+2 + (b − x)α+1 (b − a)α+1 · 1 α + 1 + x − a b − a ¸¶ |f0(b)|

which completes the proof. 2

Corollary 2.1. If we take x = a+b

2 in (2.1), we get ¯ ¯ ¯ ¯f µ a + b 2 ¶ 2α−1Γ(α + 1) (b − a)α · (a+b 2 ) +f (b) + Jα (a+b 2 ) −f (a) ¸¯ ¯ ¯ ¯ (2.2) b − a 2 (α + 1) µ |f0(a)| + |f0(b)| 2 ¶ .

Theorem 2.2. Let f : [a, b] → R, be a differentiable mapping on (a, b) with a < b such that f0 ∈ L[a, b]. If |f0|q

is convex on [a, b], q > 1 and x ∈ [a, b], then the following inequality for fractional integrals holds:

¯ ¯ ¯ ¯ · (x − a)α+ (b − x)α (b − a)α+1 ¸ f (x) − Γ(α + 1) (b − a)α+1[J α x+f (b) + Jxα−f (a)] ¯ ¯ ¯ ¯ (2.3) 1 (b − a)α+1(αp + 1)p1 " (b − x)α+1 µ |f0(x)|q+ |f0(b)|q 2 ¶1 q +(x − a)α+1 µ |f0(x)|q+ |f0(a)|q 2 ¶1 q # where 1 p +1q = 1, α > 0.

(6)

Proof. From Lemma and using the well known H¨older inequality, we have ¯ ¯ ¯ ¯ · (x − a)α+ (b − x)α (b − a)α+1 ¸ f (x) − Γ(α + 1) (b − a)α+1[J α x+f (b) + Jxα−f (a)] ¯ ¯ ¯ ¯ Z b−x b−a 0 |−t|α|f0(ta + (1 − t)b)| dt + Z 1 b−x b−a |(1 − t)α| |f0(ta + (1 − t)b)| dt ÃZ b−x b−a 0 tαpdt !1 pÃZ b−x b−a 0 |f0(ta + (1 − t)b)|q dt !1 q + ÃZ 1 b−x b−a (1 − t)αpdt !1 pÃZ 1 b−x b−a |f0(ta + (1 − t)b)|q dt !1 q . Since |f0| is convex, by Hermite-Hadamard inequality we have,

Z b−x b−a 0 |f0(ta + (1 − t)b)|q dt ≤ b − x b − a µ |f0(x)|q+ |f0(b)|q 2 ¶ , Z 1 b−x b−a |f0(ta + (1 − t)b)|qdt ≤ x − a b − a µ |f0(a)|q + |f0(x)|q 2 ¶

and by simple computation Z b−x b−a 0 tαpdt = 1 αp + 1 µ b − x b − aαp+1 , Z 1 b−x b−a (1 − t)αpdt = 1 αp + 1 µ x − a b − aαp+1 . Therefore ¯ ¯ ¯ ¯ · (x − a)α+ (b − x)α (b − a)α+1 ¸ f (x) − Γ(α + 1) (b − a)α+1[J α x+f (b) + Jxα−f (a)] ¯ ¯ ¯ ¯ 1 (b − a)α+1(αp + 1)1p " (b − x)α+1 µ |f0(x)|q+ |f0(b)|q 2 ¶1 q +(x − a)α+1 µ |f0(x)|q+ |f0(a)|q 2 ¶1 q # where 1

p +1q = 1. Hence, using the formula Γ(α + 1) = αΓ(α) (α > 0) for Euler

Gamma function, the proof is complete. 2

(7)

Corollary 2.2. If we take x = a+b 2 in (2.3), we have ¯ ¯ ¯ ¯f µ a + b 2 ¶ 2 α−1Γ(α + 1) (b − a)α · (a+b 2 ) +f (b) + Jα (a+b 2 ) −f (a) ¸¯¯ ¯ ¯ b − a 4 µ 1 αp + 1 ¶1 p   à ¯ ¯f0(a+b 2 ) ¯ ¯q + |f0(b)|q 2 !1 q + à ¯ ¯f0(a+b 2 ) ¯ ¯q + |f0(a)|q 2 !1 q .

Theorem 2.3. Let f : [a, b] → R, be a differentiable mapping on (a, b) with a < b such that f0 ∈ L[a, b]. If |f0|q

is convex on [a, b], q ≥ 1 and x ∈ [a, b], then the following inequality for fractional integrals holds:

¯ ¯ ¯ ¯ ¯ · (x − a)α+ (b − x)α (b − a)α+1 ¸ f (x) − Γ(α + 1) (b − a)α+1[J α x+f (b) + Jxα−f (a)] ¯ ¯ ¯ ¯ ¯ (2.4) µ 1 α + 11−1 q µ 1 α + 2 ¶1 q ×b − x b − aα+1·µ b − x b − a|f0(a)|q+ µ 1 α + 1+ x − a b − a|f0(b)|q ¸1 q + µ x − a b − aα+1·µ 1 α + 1 + b − x b − a|f0(a)|q + µ x − a b − a|f0(b)|q ¸1 q )

where α > 0 and Γ is Euler Gamma function.

Proof. From Lemma and using the well known power mean inequality, we have ¯ ¯ ¯ ¯ · (x − a)α+ (b − x)α (b − a)α+1 ¸ f (x) − Γ(α + 1) (b − a)α+1[J α x+f (b) + Jxα−f (a)] ¯ ¯ ¯ ¯ (2.5) Z b−x b−a 0 |−t|α|f0(ta + (1 − t)b)| dt + Z 1 b−x b−a |(1 − t)α| |f0(ta + (1 − t)b)| dt ÃZ b−x b−a 0 dt !1−1 q ÃZ b−x b−a 0 |f0(ta + (1 − t)b)|q dt !1 q + ÃZ 1 b−x b−a (1 − t)αdt !1−1 qÃZ 1 b−x b−a (1 − t)α|f0(ta + (1 − t)b)|q dt !1 q .

(8)

Since |f0|q is convex, we have Z b−x b−a 0 |f0(ta + (1 − t)b)|q dt (2.6) Z b−x b−a 0 £t |f0(a)|q + (1 − t) |f0(b)|q¤ dt = 1 α + 2 µ b − x b − aα+2 |f0(a)|q + Ã 1 α + 1 µ b − x b − aα+1 1 α + 2 µ b − x b − aα+2! |f0(b)|q and (2.7) Z 1 b−x b−a (1 − t)α|f0(ta + (1 − t)b)|qdt Z 1 b−x b−a (1 − t)α£t |f0(a)|q+ (1 − t) |f0(b)|q¤dt = Ã 1 α + 1 µ x − a b − aα+1 1 α + 2 µ x − a b − aα+2! |f0(a)|q + 1 α + 2 µ x − a b − aα+2 |f0(b)|q.

Therefore, if we write (2.6) and (2.7) in (2.5), then we get (2.4) which is required.2 Corollary 2.3. If we take x = a+b

2 in (2.4), we have ¯ ¯ ¯ ¯f µ a + b 2 ¶ 2 α−1Γ(α + 1) (b − a)α · J(αa+b 2 ) +f (b) + Jα (a+b 2 ) −f (a) ¸¯ ¯ ¯ ¯ µ 1 α + 11−1 qµ 1 α + 2 ¶1 qµ1 2 ¶α+1 q +1 ×|f0(a)|q + α + 3 (α + 1)|f 0(b)|q ¶1 q + µ α + 3 (α + 1)|f 0(a)|q + |f0(b)|q ¶1 q ) .

Theorem 2.4. Let f : [a, b] ⊂ [0, ∞) → R, be a differentiable mapping on (a, b) with a < b such that f0 ∈ L[a, b]. If |f0|q is concave on [a, b] and x ∈ [a, b], then the

(9)

following inequality for fractional integrals holds: ¯ ¯ ¯ ¯ ¯ · (x − a)α+ (x − b)α (b − a)α+1 ¸ f (x) − Γ(α + 1) (b − a)α+1[J α x+f (b) + Jxα−f (a)] ¯ ¯ ¯ ¯ ¯ (2.8) 1 (αp + 1)1p(b − a)α+1 · (b − x)α+1 ¯ ¯ ¯ ¯f0 µ b + x 2 ¶¯¯ ¯ ¯ + (x − a)α+1 ¯ ¯ ¯ ¯f0 µ a + x 2 ¶¯¯ ¯ ¯ ¸

for each x ∈ [a, b], where p > 1.

Proof. From Lemma and using the H¨older inequality, we have ¯ ¯ ¯ ¯ · (x − a)α+ (x − b)α (b − a)α+1 ¸ f (x) − Γ(α + 1) (b − a)α+1[J α x+f (b) + Jxα−f (a)] ¯ ¯ ¯ ¯ (2.9) Z b−x b−a 0 |−t|α|f0(ta + (1 − t)b)| dt + Z 1 b−x b−a |(1 − t)α| |f0(ta + (1 − t)b)| dt ÃZ b−x b−a 0 tαpdt !1 pÃZ b−x b−a 0 |f0(ta + (1 − t)b)|qdt !1 q + ÃZ 1 b−x b−a (1 − t)αpdt !1 pÃZ 1 b−x b−a |f0(ta + (1 − t)b)|qdt !1 q . Since |f0|q

is concave on [a, b], by Hermite-Hadamard’s inequality we get (2.10) Z b−x b−a 0 |f0(ta + (1 − t)b)|q dt ≤ b − x b − a ¯ ¯ ¯ ¯f0 µ b + x 2 ¶¯¯ ¯ ¯ q and (2.11) Z 1 b−x b−a |f0(ta + (1 − t)b)|qdt ≤ x − a b − a ¯ ¯ ¯ ¯f0 µ a + x 2 ¶¯¯ ¯ ¯ q .

Therefore, if we write (2.10) and (2.11) in (2.9), we get (2.8). This completes the

proof. 2

Remark 2.2. In Theorem , if we choose α = 1, then the inequality (2.8) reduces the inequality (1.2) of Theorem .

Corollary 2.4. In Theorem if we take x = a+b

2 , we have ¯ ¯ ¯ ¯f µ a + b 2 ¶ 2α−1Γ(α + 1) (b − a)α · (a+b 2 ) +f (b) + Jα (a+b 2 ) −f (a) ¸¯ ¯ ¯ ¯ b − a 4 1 (αp + 1)1p ·¯ ¯ ¯ ¯f0 µ a + 3b 4 ¶¯ ¯ ¯ ¯ + ¯ ¯ ¯ ¯f0 µ 3a + b 4 ¶¯ ¯ ¯ ¯ ¸ .

(10)

Theorem 2.5. Let f : [a, b] ⊂ [0, ∞) → R, be a differentiable mapping on (a, b) with a < b such that f0 ∈ L[a, b]. If |f0|q is concave on [a, b], q ≥ 1 and x ∈ [a, b],

then the following inequality for fractional integrals holds: (2.12) ¯ ¯ ¯ ¯ ¯ · (x − a)α+ (x − b)α (b − a)α+1 ¸ f (x) − Γ(α + 1) (b − a)α+1[J α x+f (b) + Jxα−f (a)] ¯ ¯ ¯ ¯ ¯ 1 α + 1b − x b − aα+1¯¯ ¯ ¯f0 µ b + (α + 1)x α + 2 ¶¯ ¯ ¯ ¯ + µ x − a b − aα+1¯¯ ¯ ¯f0 µ a + (α + 1)x α + 2 ¶¯ ¯ ¯ ¯ # .

Proof. We note that by concavity of |f0|q and power-mean inequality, we have ¯ ¯ ¯ ¯ · (x − a)α+ (x − b)α (b − a)α+1 ¸ f (x) − Γ(α + 1) (b − a)α+1[J α x+f (b) + Jxα−f (a)] ¯ ¯ ¯ ¯ Z b−x b−a 0 |−t|α|f0(ta + (1 − t)b)| dt + Z 1 b−x b−a |(1 − t)α| |f0(ta + (1 − t)b)| dt ÃZ b−x b−a 0 dt !1−1 qÃZ b−x b−a 0 |f0(ta + (1 − t)b)|q dt !1 q + ÃZ 1 b−x b−a (1 − t)αdt !1−1 q ÃZ 1 b−x b−a (1 − t)α|f0(ta + (1 − t)b)|q dt !1 q . Accordingly, by Lemma and the Jensen integral inequality, we obtain Z b−x b−a 0 |f0(ta + (1 − t)b)|q dt ≤ ÃZ b−x b−a 0 dt ! ¯¯ ¯ ¯ ¯ ¯f 0   Rb−x b−a 0 tα(ta + (1 − t)b)dt Rb−x b−a 0 tαdt   ¯ ¯ ¯ ¯ ¯ ¯ q = 1 α + 1 µ b − x b − aα+1¯¯ ¯ ¯f0 µ b + (α + 1)x α + 2 ¶¯¯ ¯ ¯ q and Z 1 b−x b−a (1 − t)α|f0(ta + (1 − t)b)|qdt ÃZ 1 b−x b−a (1 − t)αdt ! ¯¯¯ ¯ ¯ ¯f 0   R1 b−x b−a(1 − t) α(ta + (1 − t)b)dt R1 b−x b−a(1 − t) αdt   ¯ ¯ ¯ ¯ ¯ ¯ q = 1 α + 1 µ x − a b − aα+1¯¯ ¯ ¯f0 µ a + (α + 1)x α + 2 ¶¯ ¯ ¯ ¯ q .

(11)

Therefore ¯ ¯ ¯ ¯ ¯ · (x − a)α+ (x − b)α (b − a)α+1 ¸ f (x) − Γ(α + 1) (b − a)α+1[J α x+f (b) + Jxα−f (a)] ¯ ¯ ¯ ¯ ¯ 1 α + 1b − x b − aα+1¯¯ ¯ ¯f0 µ b + (α + 1)x α + 2 ¶¯ ¯ ¯ ¯ + µ x − a b − aα+1¯¯ ¯ ¯f0 µ a + (α + 1)x α + 2 ¶¯ ¯ ¯ ¯ #

which completes the proof. 2

Remark 2.3. In Theorem , if we choose α = 1, then the inequality (2.12) reduces the inequality (1.3) of Theorem .

Corollary 2.5. If we take x = a+b

2 in (2.12), we have ¯ ¯ ¯ ¯f µ a + b 2 ¶ 2 α−1Γ(α + 1) (b − a)α · J(αa+b 2 ) +f (b) + Jα (a+b 2 ) −f (a) ¸¯¯ ¯ ¯ b − a 4 (α + 1) ½¯ ¯ ¯ ¯f0 µ a (α + 1) + b (α + 3) 2 (α + 2) ¶¯ ¯ ¯ ¯ + ¯ ¯ ¯ ¯f0 µ a (α + 3) + b (α + 1) 2 (α + 2) ¶¯ ¯ ¯ ¯ ¾ .

References

[1] A. M. Ostrowski, ¨Uber die absolutabweichung einer differentiebaren funktion von ihrem integralmitelwert, Comment. Math. Helv., 10(1938), 226-227.

[2] S. S. Dragomir, The Ostrowski integral inequality for Lipschitzian mappings and

ap-plications, Comput. Math. Appl., 38 (1999), 33-37.

[3] Z. Liu, Some companions of an Ostrowski type inequality and application, J. Inequal. in Pure and Appl. Math., 10(2), 2009, Art. 52, 12 pp.

[4] B. G. Pachpatte, On an inequality of Ostrowski type in three independent variables, J. Math.Anal. Appl., 249(2000), 583-591.

[5] B. G. Pachpatte, On a new Ostrowski type inequality in two independent variables, Tamkang J. Math., 32(1)(2001), 45-49

[6] M. Alomari, M. Darus, Some Ostrowski type inequalities for convex functions with

applications, RGMIA 13(1)(2010) article No. 3. Preprint..

[7] M. Alomari, M. Darus, S. S. Dragomir, P. Cerone, Ostrowski type inequalities for

func-tions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23(2010),

1071-1076.

[8] M. Z. Sarikaya, On the Ostrowski type integral inequality, Acta Math. Univ. Comeni-anae, Vol. LXXIX, 1(2010), pp. 129-134

[9] M. Z. Sarikaya, E. Set, H. Yaldız and N. Ba¸sak, Hermite-Hadamard’s inequalities

for fractional integrals and related fractional inequalities, Math. and Comput. Mod.,

(12)

[10] M. Z. Sarikaya, H. Ogunmez, On new inequalities via Riemann-Liouville fractional

integration, Abstract and Applied Analysis, 2012.

[11] C¸ . Yıldız, M. E. ¨Ozdemir and H. K. ¨Onalan, Fractional integral inequalities for

dif-ferent functions, New Trends in Mathematical Sciences, 3(2)2015, 110-117.

[12] E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-convex

in the second sense via fractional integrals, Comput. Math. Appl., 63(7)(2012),

1147-1154.

[13] B. Belarbi, Z. Dahmani, On some new fractional integral inequalities, J. Ineq. Pure and Appl. Math., 10(3)(2009), Art. 86.

[14] Z. Dahmani, New inequalities in fractional integrals, International Journal of Nonlin-ear Science, 9(4)(2010), 493-497.

[15] Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional

integration, Ann. Funct. Anal., 1(1)(2010), 51-58.

[16] Z. Dahmani, L. Tabharit and S. Taf, Some fractional integral inequalities, Nonl. Sci. Lett. A., 1(2)(2010), 155-160.

[17] Z. Dahmani, L. Tabharit and S. Taf, New generalizations of Gr¨uss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2(3)(2010), 93-99.

[18] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives

Referanslar

Benzer Belgeler

Düzce İli fındık bahçelerinde Mayıs böceği popülasyon yoğunluğu ekonomik zarar eşiği açısından incelendiğinde; İl genelinde incelenen 32 bahçenin 3’ünde,

İşletmenin yabancı sermaye ile ortaklık yapıp yapmama durumuna göre örgüt- çevre etkileşimi arasında anlamlı bir fark olup olmadığını belirlemek amacıyla

türlerinin bulunduğu su örneklerindeki klor miktarlarına bakıldığında sadece iki örneğin klor miktarı 0.3ppm’den yüksek (0.4 ppm) çıkmıştır. Klor miktarı

Aim: Evaluation of the effect of Ramadan fasting on circadian variation of acute ST-elevation myocardial infarction (STEMI) in Turkish patients.. Material and methods: This

After the use of sugammadex as a reversal agent and rocu- ronium as a neuromuscular blocking agent, the time to reach TOF 0.7, 0.8 and 0.9 in relation to intubation time and the

The comparison curves of the tensile strength, tear strength, elongation and hardness values showed that the types and rates of UV stabilizers had no effect on the

Numerous experimental studies have been carried out to investigate the effect of deep cryogenic heat treatment on the mechanical properties of tool steels; however, very little

The Effects of Densification and Heat Post-Treatment on Hardness and Morphological Properties of Wood Materials Mehmet Budakçı,a,* Hüseyin Pelit,a Abdullah Sönmez,b and Mustafa