• Sonuç bulunamadı

Structural, microstructural and thermal properties of lead-free bismuth-sodium-barium-titanate piezoceramics synthesized by mechanical alloying

N/A
N/A
Protected

Academic year: 2021

Share "Structural, microstructural and thermal properties of lead-free bismuth-sodium-barium-titanate piezoceramics synthesized by mechanical alloying"

Copied!
5
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Structural,

microstructural

and

thermal

properties

of

lead-free

bismuth–sodium–

barium–titanate

piezoceramics

synthesized

by

mechanical

alloying

Rasool

Amini

a,

*

,

Mohammad

Reza

Ghazanfari

a

,

Morteza

Alizadeh

a

,

Hamed

Ahmadi

Ardakani

a

,

Mohammad

Ghaffari

b

a

DepartmentofMaterialsScienceandEngineering,ShirazUniversityofTechnology,71557-13876Shiraz,Iran

b

DepartmentofElectricalandElectronicsEngineering,UNAM—NationalInstituteofMaterialsScienceandNanotechnology,BilkentUniversity,Ankara06800,Turkey

1. Introduction

Lead-basedpiezoceramicssuchasleadtitanate(PT)andlead zirconatetitanate(PZT)are widelyusedin commercial applica-tionsduetotheirsignificantlyhighpiezoelectricproperties[1–3]. Consideringthetoxicityoflead-basedceramics,negativehuman healthimpactsandpossibilityforenvironmentalpollutantsthat canbecausedovertheirlifecycle,itisclearasubstituteisneeded

[4,5]. Bi0.5Na0.5TiO3 ceramics (BNT) with an ABO3 perovskite

structureareknown asappropriatesubstitutetothelead-based piezoelectricmaterials[6].AlthoughtheBNTcompoundexhibits highCurietemperatureandconsiderableferroelectricproperties, ithasverylowpolarizabilityandpiezoelectricpropertieswhich resultinitsrelativelyhighcoercivefield[7].Itiswellknownthat thepiezoelectricpropertiesofBNTceramicscanbesignificantly improved by an addition of barium (Ba) provided that the composition is located at the Morphotropic Phase Boundary (MPB)region[8,9].Inthe(Bi0.5Na0.5)1 xBaxTiO3compound(BNBT),

thecompositionwillbelocatedatthetetragonalboundaryofMPB wherethequantityofxiscloseto6[10,11].

Although BNBT ceramics are commonly synthesized by the convectionalmixedoxidesroutes[12–14],thedifficultytoachieve

thepropercompositionalhomogeneity isthemainlimitationof thesemethods[14,15].BNBTcanbeproducedbyvariouschemical methods [16–18] which have disadvantage like expensive precursors and complexity of processing parameters [19,20]. Mechanicalalloying(MA)isoneofthesolidstateroutesemployed extensivelytoproducestructuresfarfromtheirequilibriumstates suchassupersaturatedsolidstatesolutions,amorphousphases, andnanocrystallinematerials[21–23].

During MA,powder particlesare subjected tosevereplastic deformation and repeated cold welding and fractures which promoteatomicscalealloying[22,23].

Inthecaseofceramicsprocessing,MAwassuccessfullyutilized toproducethematerialsinpowderformwithananocrystalline structure and high compositional homogeneity [24–30]. By employing this method, not only the desired structure can be directly formed without any further processing, but also the calcinationprocesswhichistypically requiredinthesolidstate routescanbereduced[31].InthecaseofBNBT,scientificefforts haverarelybeenconductedonitsprocessingbymechanicalroutes and,tothebestofourknowledge,nosystematicworkhasbeen performed on thecharacterization ofthese advanced materials synthesizedbyMA.Thisstudyisabletodemonstrateforthefirst time thepossibility to synthesize theBNBT ceramicswith the desiredstructurebyutilizingMA.Toachievethis,thestructural, microstructural, and thermalpropertiesof thealloyedpowders wereevaluated.

ARTICLE INFO

Articlehistory: Received31May2012

Receivedinrevisedform4November2012 Accepted5November2012

Availableonline14November2012

Keywords: A.Ceramics A.Nanostructures A.Electronicmaterials D.Phaseequilibria D.Microstructure ABSTRACT

Bismuth–sodium–barium–titanate piezoceramics with a composition of (Bi0.5Na0.5)0.94Ba0.06TiO3 (BNBT)werepreparedbymechanicalalloying(MA).Structuralanalysisandphaseidentificationwere performedbyX-raydiffraction(XRD).Microstructuralstudiesandchemicalcompositionhomogeneity wereperformedbyscanningelectronmicroscope(SEM)coupledwithenergydispersiveX-rayanalysis (EDX).Furthermore,thermalpropertiesoftheas-milledpowderswereevaluatedbythermogravimetry/ differentialthermalanalysis(TG/DTA).Duringtheinitialmilling,theconstituentsweretransformedto theperovskite,pyrochlore,andBNTphases;inaddition,partialamorphizationofthestructureappeared during the milling cycle. As MA progressed, transformation of pyrochlore-to-perovskite and crystallizationoftheamorphousphaseoccurredandalso,theBNBTphasewassignificantlydeveloped. ItwasfoundthattheMAprocesshastheabilitytosynthesizetheBNBTpowderswithasubmicron particlesize,regularmorphology,anduniformelementaldistribution.

ß2012ElsevierLtd.Allrightsreserved.

*Correspondingauthor.Tel.:+989178111858;fax:+987117354520. E-mailaddresses:amini@sutech.ac.ir,ramini2002@gmail.com(R.Amini).

ContentslistsavailableatSciVerseScienceDirect

Materials

Research

Bulletin

j our na l ho me pa g e : w ww . e l se v i e r . com / l oca t e / m a tr e sbu

0025-5408/$–seefrontmatterß2012ElsevierLtd.Allrightsreserved.

(2)

2. Experimentalprocedure

In order to synthesize the BNBT compound, high purity (>99.5%) materials consisting of TiO2, Bi2O3, BaO, and Na2CO3

were mixed according the BNBT stoichiometric ratio of 35.88:48.98:4.11:11.06and thenmilledindry conditionsunder airatmosphere.Forabetterexplanationofthesynthesissteps,a relativelylow-energyballmillwasemployedtoperformtheMA process.Themillingprocesswasperformedinaplanetaryballmill (Sepahan84D)withatemperedsteelbowl(capacity=90ml)ata rotationspeed of180rpmusingfourtempered steelballswith diameterof20mmandseventemperedsteelballswithdiameter of8mmgivingaballtopowdermassratioof20:1.Sampleswere obtainedatdifferentmillingtimes,thelongestbeing360h.

Thestructural phaseanalysiswascarriedoutusinganX-ray diffractometer(XRD,BrukerAdvance2)usingaCuK

a

1,2radiation

setat40kVand40mAatroomtemperaturewitha2

u

rangeof20– 708 with step size and rate of 0.038 and 6s respectively. The microstructuralfeatures,morphology,particlesize,and homoge-neityintheelementaldistributionduringMAwereinvestigatedby ascanningelectronmicroscope(SEM,JEOL-JSM6349F)coupled withanenergydispersiveX-rayspectrometer(EDX)under10kV accelerating voltage, 10pA probe current, 10mm working distance,andzerodegreetiltingangle.Finally,thermogravimetry (TG) and differential thermal analysis (DTA) were done at temperatureranges between 3008C and 9008C witha heating rate of 208C/min, in an air atmosphere using a simultaneous thermalanalyzer(Shimadzu,DTG-60H).

3. Resultsanddiscussion

Fig.1illustratestheXRDresultsofthealloyedpowdersasa functionofmillingtime.AccordingtotheXRDprofileofthemixed primarymaterials,sharppeaksofanatase(a-TiO2),rutile(r-TiO2),

Bi2O3, Na2CO3, and BaO are detectable. By starting the milling

process,thepeakbroadeningoftheinitialmaterialsenhancesat differentrateswherethatoftheNa2CO3andBi2O3phasesismore

significant. It can be attributed to the combination of several reasons suchas (a) a decrease in the crystallite size of initial materials [22], (b) an increase in the lattice strain of these

materials,and(c)anamorphousphaseformationduring milling

[23]. Furtherexaminationofthe XRDpatternofthe 10hmilled powdersindicatesthatdespitetheutilizationofa relativelylow energymilling,severalpeaksofperovskiteBNBT(around2

u

=228 and 2

u

=318), pyrochlore (around 2

u

=298 and 2

u

=29.58), and perovskiteBNT(around2

u

=31.58)withlowintensityandsharpness are detectable.Accordingly, it canbe inferred that at this time interval,themainphenomenonisthedirecttransformationofthe primary materials to the above mentioned phases. Since the perovskitelatticeisexpandedbyBadoping,theBNBTpeaksare locatedatlowerdegrees(2

u

)towardtheBNT peaks.Thatis,the BNBTpeakscanbediscriminatedfromBNTones,althoughitseems thatdistinguishingbetweentheXRDpeaksoftheBNBTandBNT phasesisquitedifficult.Increasingmillingtimeto30h,thepeak broadeningofthefinalphasesaswellasinitialmaterialsincreases; moreover,duetoanincreaseintheatomicplanspacing(d)caused bystrain[23,32],thepeaklocationsshifttoslightlylower2

u

angles. Atthemoment,itcanbeseenthatthepeaksofpyrochlorebroaden (atrange of 2

u

=29–308)noticeably incomparison to the other presentphases.Thenon-stoichiometricnatureofpyrochloreallows thepossibilityofpyrochloreformationwithadifferentcomposition inwhichtheirpeakscanoverlapwitheachotherandconsequently, thesemultiplepeaksappearasasinglebroadpeak[33].

Looking at the XRD pattern of the 30h milled sample, the existenceofabroadpeakaround2

u

=328,probablyrelatedtothe (111)reflectionofmetastables-TiO2(srilankite)phaseproduced

frompolymorphictransformationoftheanatasephaseduringMA is evident. Since the srilankite diffraction peaks are usually broadened due to nanometric crystallites containing a large amount of lattice strain and since the amountof thephase is considerablylow,otherreflectionsofthephasearenotdetectable intheXRDpattern[34,35].

Examining the 60h pattern, while the increase in peak broadeningcontinues,itcanbeobservedthatduetothepresence ofahighamountofamorphousphaseinthestructure,thehigh anglepeaks(2

u

>508)disappear[22].At100hofmilling,thepeak sharpnessoftheinitialphasesdiminishes,whilethesharpnessof pyrochloreandespeciallyoftheBNBTpeaksincreases consider-ably,andduetothecrystallizationofamorphousphase,thehigh angle peaks become visible. Comparing the XRD patterns of the100h,150h,210h,and280hmilledsamplesrevealsthatby increasing milling time, possibly becauseof the pyrochlore-to-perovskite phase transformation, the peak intensity of BNBT increasesandthepeakforpyrochlorereduces.Inaddition,itcanbe seenthatduetothedissolution and/ortransformationofinitial phases,thesrilankite,BaO,Na2CO3,Bi2O3,andBNTpeaksdisappear

completely after 210h of milling and also, the anatase peaks entirely disappear after 280h of milling. Finally, the alloying processiscompletedafter360hmillingwheretheresidualpeaks oftherutileandpyrochlorephasesdiminish.

Based on the aforementioned results, it is evident that considerable energy of the milling process is consumed by polymorphic transformations of TiO2, and consequently it can

beconcludedthatthesetransformationsactasamainimpediment ofthealloyingprocessduringmillingwhichcanbeeasilyresolved byutilizationofr-TiO2(rutile)insteadofa-TiO2(anatase)inthe

initialpowdermixture.

Fig.2 showstheSEM micrographsofthemilledpowders at different millingtimes. The images reveal that as millingtime increases,thepowders’morphologybecomesequiaxedandtheir particlesizeiscontinuouslydecreased.After360hofmilling,the alloyedpowdershaveanaverageparticlesizeof380nm,ranging from250nmto1100nm.

TheEDX elementaldistributionmapsandspectrumsof30h and 280h milled powders are shown in Fig. 3(a) and (b), respectively. Concerning theresults, it can beseen that in the

Fig.1.X-raydiffractionpatternsoftheinitialandas-milledpowdersatdifferent times.

(3)

280hmilledpowder,theconstituentelementsarehomogeneously distributedin thepowders;on thecontrary, inthe30hmilled powders, the distribution of the elements is not sufficiently homogeneous.ByfocusingontheEDXspectrum,itcanbeclearly

observed thatin the30hmilledpowders, in contrastto 280h milledpowders,thepeakintensityofsomeelementssuchasBi is quite low which is incompatible with the stoichiometric composition. Thatis, thecomposition uniformity is inadequate

Fig.2.SEMmicrographsofBNBTpowderafter(a)1h,(b)60h,(c)210hand(d)360hofmilling.

(4)

atrelativelyshortmillingtimes,however,asmillinglengthens, compositionuniformityimproves.

In order to evaluate the thermal behavior of the as-milled powders,theDTA/TGtestuseda constantheatingrateof208C/ min.Allthesampleswereheatedupto9108C(onthefirstrun)and thencooleddownto1008C.Afterwards,thesecondheatingrun was conducted to establish the base line measurement. Fig. 4

illustratestheDTAresultsofthesamplesmilledfor10h,60h,and 280hatatemperaturerangeof300–9108C.Itisclear,thesample milledfor10hdisplaystwoexothermicpeaks(around3508Cand 7508C)aswellasfourendothermicpeaks(around5408C,6088C, 6228C,and8758C)intheDTAprofile.Asmillingprogresses,the

endothermicpeaksdisappearwhilefortheexothermicpeaks,the intensity of the first one (3508C) increases and the second one(7508C)initiallyincreasesthenretards

SinceallthepeaksarepresentintheDTAprofileof10hmilled sample, it wasselected for more interpretation ofDTA results. Accordingly, the 10h milled samples were heated up to temperatures wellbelow and above thetemperatureranges of the reactions (in the same manner as the DTA test) and then quenchedinwater.Subsequently,XRDanalysiswasperformedon the samples at room temperature (Fig. 5). The only difference between the diffraction patterns of the samples heated up to 3008Cand5008Cisthat thereisgreaterpeaksharpnessinthe 5008Csamplewhilethereisnoevidenceofphasechangeduring thistemperaturerange.Thatis,thefirstexothermicpeakisrelated tostressrelaxationduringheattreatmentinwhichitsintensity increasesbymillingevolution.IntheXRDpatternofthesample heated upto6008C, comparedto5008C, thepeakintensity of rutile,withrespecttothatofanatase,growsconsiderably,thereby indicatingthatthefirstendothermicpeakiscorrelatedto anatase-to-rutile phase transition. Comparing the XRD profiles of the samplesheatedupto5008C,6008C,and7008Crevealsthatthe second and third endothermic peaks are correlated to CO2

extractionandpyrochloreformationfromtheprimarymaterials, respectively. The CO2 removal is clearly confirmed by the TG

profileofthe10hmilledsample(Fig.6).Asitcanbeexpected,by increasingmillingtime,thequantityofprimarymaterialsreduces andthealloyingprocessdevelops;consequently,these endother-micpeaksdisappear.ThedifferencesbetweentheXRDpatternsof thesamplesheatedupto7008C,8008C,and9008Cdemonstrate thatthesecondexothermicpeakandtheforthendothermicpeak corresponds tothe crystallization ofthe amorphousphase and pyrochlore-to-perovskitephasetransformation,respectively. Con-sidering the aforementioned results, as milling progresses, the intensity of the DTA peak correlated to the pyrochlore-to-perovskitephasetransitiondecreaseswhiletheamorphousphase crystallizationincreases(60h)andthenreduces(280h), confirm-ingthequalitativephaseanalysisdonebyXRD.

Fig.5.RoomtemperatureXRDpatternsof10hmilledsampleswhichareheatedup tothetemperatureswellbelowandabovethetemperaturerangesofthereactions indicatedintheDTApatternofFig. 4andthenwaterquenched.

Fig.4.DTAresultsofthepowdersatdifferentmillingtimes.

Fig.6.DTA/TGprofilesof10hmilledpowders.

(5)

4. Conclusions

In this work, the (Bi0.5Na0.5)0.94Ba0.06TiO3 (BNBT6)

piezo-ceramicsweresuccessfullysynthesizedbymechanicalalloyinga mixture of TiO2, Bi2O3, Na2CO3, and BaO. Afterwards, their

structural,microstructuralandthermalbehaviorswereevaluated. Theresultscanbesummarizedasfollows:

1)Atshort millingtimes, theconstituents weredirectly trans-formedtoperovskiteBNBTandsomeintermediatephasessuch asBNTandpyrochlorephases.

2)Besidesthecrystallinephases,anamorphousphase wasalso createdduringthemillingcycleanditreaches itsmaximum amountatmediumstagesofmilling.

3)ByprogressionofMA,theperovskiteBNBTphasedevelopeddue tocrystallizationoftheamorphousphaseand,sub-sequently, thepyrochlore-to-perovskitephasetransformationoccurred. 4)Aftertotaldissolutionofr-TiO2andconsequentlycompletionof

MA,asinglecrystallineperovskiteBNBTphasewasdeveloped. However, the existence of a considerable amount of the amorphousphasewasalsoconfirmedatthistime.

5)During themilling cycle, polymorphic transformations of TiO2

occurredwhichactasthemainimpedimentofthealloyingprocess. 6)Duringtheheatingcycle,someofthesetransformations(notall ofthem),suchasthestressrelaxation,anatase-to-rutilephase transition,CO2extractionandpyrochloreformation,

crystalli-zationoftheamorphousphase,and pyrochlore-to-perovskite phase transformation can occur in the as-milled powders dependonthemillingtime,confirmingthestructuralanalysis donebyXRD.

7)TheMAmethodhastheabilitytosynthesizetheBNBTpowder with submicron particle size, regular morphology, and completelyhomogeneousdistributionofelements.

Acknowledgments

The authors gratefully acknowledge the financial support receivedfromIranNationalScienceFoundation(INSF).

References

[1]S.Q. Zhang, W.D. Fei, W.L. Li, J.N. Wang, J. Alloys Compd. 487 (2009) 703–707.

[2]A.K.Singh,J.AlloysCompd.509(2011)5167–5172.

[3]Y.Cheng,Y.Yang,Y.Wang,H.Meng,J.AlloysCompd.508(2010)364–369. [4]P.K.Panda,J.Mater.Sci.44(2009)5049–5062.

[5]T.Takenaka,H.Nagata,J.Eur.Ceram.Soc.25(2005)2693–2700.

[6]G.A.Smolenskii,V.A.Jsupov,A.I.Agranovskaya,N.N.Kainik,Phys.SolidState2 (1961)2651–2654.

[7]T.Takenaka,Ferroelectrics230(1999)389–400.

[8]T.Takenaka,K.Maruyama,K.Sakata,Jpn.J.Appl.Phys.30(1991)2236–2239. [9]H.Yan,D.Xiao,P.Yu,J.Zhu,D.Lin,G.Li,Mater.Design.26(2005)474–478. [10]S.Trujillo,J.Kreisel,Q.Jiang,J.H.Smith,P.A.Thomas,P.Bouvier,F.Weiss,J.Phys.

Condens.Matter17(2005)6587–6597.

[11]L.Huidong,F.Chude,Y.Wenlong,Mater.Lett.58(2004)1194–1198. [12]X.X.Wang,S.W.Or,X.G.Tang,H.L.W.Chan,P.K.Choy,P.C.K.Liu,SolidState

Commun.134(2005)659–663.

[13]J.Abe,M.Kobune,T.Nishimura,T.Yazaw,Y.Nakai,Integr.Ferroelectr.80(2006) 87–95.

[14]X.X.Wang,H.L.W.Chan,C.L.Choy,Appl.Phys.A:Mater.Sci.Process.80(2005) 333–336.

[15]J.Abe,M.Kobune,T.Yazawa,Y.Nakai,S.Osaka,J.KoreanPhys.Soc.46(2005) 138–142.

[16]D.L.West,D.A.Payne,J.Am.Ceram.Soc.86(2003)192–194. [17]S.Saı¨d,J.P.Mercurio,J.Eur.Ceram.Soc.21(2001)1333–1336. [18]Y.J.Ma,J.H.Cho,Y.H.Lee,B.I.Kim,Mater.Chem.Phys.98(2006)5–8. [19]Q.Xu,S.Chen,W.Chen,D.Huang,J.Zhou,H.Sun,Y.Li,J.Mater.Sci.41(2006)

6146–6149.

[20]C.Y.Kim,T.Sekino,K.Niihara,J.Am.Ceram.Soc.86(2003)1464–1467. [21]P.Nandi,P.P.Chattopadhyay,P.M.G.Nambissan,F.Banhart,H.J.Fecht,I.Manna,J.

Non-Cryst.Solids351(2005)2485–2492.

[22]R.Amini,M.J.Hadianfard,E.Salahinejad,M.Marasi,T.Sritharan,J.Mater.Sci.44 (2009)136–148.

[23]C.Suryanarayana,J.Mater.Sci.46(2001)1–184.

[24]L.B.Kong,J.Ma,H.Huang,R.F.Zhang,Mater.Res.Bull.37(2002)1085–1092. [25]J.Wang,W.Dongmei,X.Junmin,N.W.Beng,J.Am.Ceram.Soc.82(2)(1999)

477–479.

[26]L.Liu,M.Wu,Y.Huang,L.Fang,H.Fan,H.Dammak,M.Ph.Thi,Mater.Res.Bull.46 (2011)1467–1472.

[27]L.B.Kong,J.Ma,W.Zhu,O.K.Tan,Mater.Res.Bull.36(2001)1675–1685. [28]S.E.Lee,J.M.Xue,D.W.Wan,J.Wang,ActaMater.47(9)(1999)2633–2639. [29]T.Rojac,M.Kosec,B.Malicˇ,J.Holc,Mater.Res.Bull.40(2005)341–345. [30]P.M.Botta,E.F.Aglietti,J.M.PortoLo´pez,Mater.Res.Bull.41(2006)714–723. [31]B.D.Stojanovic,J.Mater.Process.Technol.143–144(2003)78–81.

[32]J.Karch,R.Birringer,H.Gleiter,J.Nat.330(1987)556–558.

[33]D.Kuscer,E.T. Sturm,J.Kovac, M.Kosec,J. Am.Ceram.Soc.92 (6)(2009) 1224–1229.

[34]R.Ren,Z.Yang,L.L.Shaw,J.Mater.Sci.35(2000)6015–6026.

[35]S.Begin-Colin,T.Girot,G.LeCaer,A.Mocellin,J.SolidStateChem.149(2000) 41–48.

Referanslar

Benzer Belgeler

Çalışmanın yayım yanlılığı durumunu ortaya çıkarmak için yapılan heterojenlik testi sonucunda, meta-analize dahil edilen çalışmaların yayım durumuna

Scopus to ORCID seçeneğini seçince de bizden izin istenmektedir. Onaylayınca adınız ve belki birkaç benzeşen isim görüntülenmektedir. Uygun olanları seçip Next

İzmit istasyonuna bağlı bir dış istasyon olan Bahçecikteki okul Amerikan misyonerlerinin bölgede en etkili okullarından birisi olmuştur.. Bahçecik Erkek Okulu, 1879 yılında

Bu dönemde Harbiye Askeri Okulu’nda iktisat dersleri veren Kazanlı Akyiğitzade Musa da himaye düşüncesini benimsemiş ve 1896 senesinde yazdığı İktisad yahud İlm-i

To do that, we investigate geometries and excited states of thiophene oligomers for singly charged anions and the results are compared with the corresponding cation data

Boy, Kilo, VKİ, Bel Çevresi, Kalça Çevresi, BKO, BBO, Viseral Adipozite İndeksi (VisAI), Vücut Adiozite İndeksi (VuAI), BİA yöntemi ile ölçülen Total Vücut Yağ

However, there are few studies that focus on how, in dealing with these challenges, users try to develop a sense of their audience by categorizing their Facebook friends and

Later, it was dem- onstrated that, even for a single nanohole in a flat metal surface, the excitation of LSPs on the aperture ridge can alter its trans- mission properties [ 20 ];