• Sonuç bulunamadı

Cesaro summability of double sequences of sets

N/A
N/A
Protected

Academic year: 2021

Share "Cesaro summability of double sequences of sets"

Copied!
11
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

www.i-csrs.org

Available free online at http://www.geman.in

Ces`

aro Summability of Double Sequences of Sets

Fatih Nuray1, U˘gur Ulusu2 and Erdin¸c D¨undar3 1,2,3Department of Mathematics, Faculty of Science and Literature

Afyon Kocatepe University, Afyonkarahisar, Turkey 1E-mail: fnuray@aku.edu.tr

2E-mail: ulusu@aku.edu.tr 3E-mail: edundar@aku.edu.tr (Received: 1-6-14 / Accepted: 21-7-14)

Abstract

In this paper, we study the concepts of Wijsman Ces`aro summability and Wijsman lacunary convergence of double sequences of sets and investigate the relationship between them.

Keywords: Lacunary sequence, Ces`aro summability, double sequence of sets, Wijsman convergence.

1

Introduction

The concept of convergence of sequences of numbers has been extended by several authors to convergence of sequences of sets (see, [3, 4, 5, 11, 16, 17, 18]). Nuray and Rhoades [11] extended the notion of convergence of set sequences to statistical convergence and gave some basic theorems. Ulusu and Nuray [15] defined the Wijsman lacunary statistical convergence of sequence of sets and considered its relation with Wijsman statistical convergence, which was defined by Nuray and Rhoades. Ulusu and Nuray [16] introduced the concept of Wijsman strongly lacunary summability for set sequences and discused its relation with Wijsman strongly Ces`aro summability.

Hill [8] was the first who applied methods of functional analysis to double sequences. Also, Kull [9] applied methods of functional analysis of matrix maps of double sequences. A lot of usefull developments of double sequences in summability methods, the reader may refer to [1, 10, 14, 19].

(2)

In this paper, we study the concepts of Wijsman Ces`aro summability and Wijsman lacunary convergence of double sequences of sets and investigate the relationship between them.

2

Definitions and Notations

Now, we recall the basic definitions and concepts (See [1, 2, 3, 4, 5, 11, 12, 14, 16, 17, 18]).

For any point x ∈ X and any non-empty subset A of X, we define the distance from x to A by

d(x, A) = inf

a∈Aρ(x, a).

Throughout the paper, we let (X, ρ) be a metric space and A, Ak be any non-empty closed subsets of X.

We say that the sequence {Ak} is Wijsman convergent to A if lim

k→∞d(x, Ak) = d(x, A)

for each x ∈ X. In this case we write W − lim Ak = A.

The sequence {Ak} is said to be Wijsman Ces`aro summable to A if {d(x, Ak)} Ces`aro summable to {d(x, A)}; that is, for each x ∈ X,

lim n→∞ 1 n n X k=1 d(x, Ak) = d(x, A).

The sequence {Ak} is said to be Wijsman strongly Ces`aro summable to A if {d(x, Ak)} strongly Ces`aro summable to {d(x, A)}; that is, for each x ∈ X,

lim n→∞ 1 n n X k=1 |d(x, Ak) − d(x, A)| = 0.

The sequence {Ak} is said to be Wijsman strongly p-Ces`aro summable to A if {d(x, Ak)} strongly p-Ces`aro summable to {d(x, A)}; that is, for each p positive real number and for each x ∈ X,

lim n→∞ 1 n n X k=1 |d(x, Ak) − d(x, A)|p = 0.

By a lacunary sequence we mean an increasing integer sequence θ = {kr} such that k0 = 0 and hr = kr− kr−1 → ∞ as r → ∞. Throughout this paper the intervals determined by θ will be denoted by Ir = (kr−1, kr], and ratio kkr

(3)

will be abbreviated by qr.

Let θ = {kr} be a lacunary sequence. We say that the sequence {Ak} is Wijsman lacunary convergent to A for each x ∈ X,

lim r 1 hr X k∈Ir d(x, Ak) = d(x, A). In this case we write Ak→ A(W Nθ).

Let θ = {kr} be a lacunary sequence. We say that the sequence {Ak} is Wijsman strongly lacunary convergent to A for each x ∈ X,

lim r 1 hr X k∈Ir |d(x, Ak) − d(x, A)| = 0.

In this case we write Ak→ A([W Nθ]).

A double sequence x = (xkj)k,j∈N of real numbers is said to be convergent to L ∈ R in Pringsheim’s sense if for any ε > 0, there exists Nε ∈ N such that |xkj − L| < ε whenever k, j > Nε. In this case we write

P − lim

k,j→∞xkj = L or k,j→∞lim xkj = L.

A double sequence x = (xkj) of real numbers is said to be bounded if there exists a positive real number M such that |xkj| < M for all k, j ∈ N. That is

kxk∞= sup k,j

|xkj| < ∞.

The double sequence θ = {(kr, js)} is called double lacunary sequence if there exist two increasing sequence of integers such that

k0 = 0, hr = kr− kr−1 → ∞ as r → ∞ and

j0 = 0, ¯hu = ju− ju−1→ ∞ as u → ∞. We use the following notations in the sequel:

kru = krju, hru = hrh¯u, Iru = {(k, j) : kr−1 < k ≤ kr and ju−1 < j ≤ ju}, qr = kr kr−1 and qu = ju ju−1 .

Lemma 2.1 [7, Lemma 3.2] If b1, b2, ..., bn are positive real numbers, and if a1, a2, ..., an are real numbers satisfying

|a1+ a2+ ... + an| b1+ b2+ ... + bn

> ε > 0, then |ai|/bi > ε for some i, where 1 ≤ i ≤ n.

(4)

3

Main Results

Throughout the paper, A, Akj denote any non-empty closed subsets of X. Definition 3.1 The double sequence {Akj} is Wijsman convergent to A if

P − lim

k,j→∞d(x, Akj) = d(x, A) or k,j→∞lim d(x, Akj) = d(x, A) for each x ∈ X. In this case we write W2− lim Akj = A.

Example 3.2 Let X = R2 and {Akj} be the following double sequence: Akj =  (x, y) ∈ R2 : x2+ (y − 1)2 = 1 kj  .

This double sequence of sets is Wijsman convergent to the set A = {(0, 1)}. Definition 3.3 The double sequence {Akj} is said to be Wijsman Ces`aro summable to A if {d(x, Akj)} Ces`aro summable to {d(x, A)}; that is, for each x ∈ X, lim m,n→∞ 1 mn m,n X k,j=1,1 d(x, Akj) = d(x, A).

In this case we write Akj (W2σ1)

−→ A.

Definition 3.4 The double sequence {Akj} is said to be Wijsman strongly Ces`aro summable to A if {d(x, Akj)} strongly Ces`aro summable to {d(x, A)}; that is, for each x ∈ X,

lim m,n→∞ 1 mn m,n X k,j=1,1 |d(x, Akj) − d(x, A)| = 0.

In this case we write Akj [W2σ1]

−→ A.

Example 3.5 Let X = R2 and define the double sequence {A kj} by Akj =    {(x, y) ∈ R2 : (x − 1)2 + (y − 1)2 = k} , j = 1, for all k {(x, y) ∈ R2 : (x − 1)2+ (y − 1)2 = j} , k = 1, for all j {(0, 0)} , otherwise.

Then {Akj} is Wijsman convergent to the set A = {(0, 0)} but lim m,n→∞ 1 mn m,n X k,j=1,1 d(x, Akj)

does not tend to a finite limit. Hence, {Akj} is not Wijsman Ces`aro summable. Also, {Akj} is not Wijsman strongly Ces`aro summable.

(5)

Definition 3.6 The double sequence {Akj} is said to be Wijsman strongly p-Ces`aro summable to A if {d(x, Akj)} strongly p-Ces`aro summable to {d(x, A)}; that is, for each p positive real number and for each x ∈ X,

lim m,n→∞ 1 mn m,n X k,j=1,1 |d(x, Akj) − d(x, A)|p = 0.

In this case we write Akj [W2σp]

−→ A.

Definition 3.7 Let θ = {(kr, js)} be a double lacunary sequence. The dou-ble sequence {Akj} is Wijsman lacunary convergent to A if for each x ∈ X,

lim r,u→∞ 1 hrh¯u kr X k=kr−1+1 ju X j=ju−1+1 d(x, Akj) = d(x, A).

In this case we write Akj

(W2Nθ)

−→ A.

Definition 3.8 Let θ = {(kr, js)} be a double lacunary sequence. The dou-ble sequence {Akj} is Wijsman strongly lacunary convergent to A if for each x ∈ X, lim r,u→∞ 1 hr¯hu kr X k=kr−1+1 ju X j=ju−1+1 |d(x, Akj) − d(x, A)| = 0.

In this case we write Akj [W2Nθ]

−→ A.

Definition 3.9 Let θ = {(kr, js)} be a double lacunary sequence. The dou-ble sequence {Akj} is Wijsman strongly p-lacunary convergent to A if for each p positive real number and for each x ∈ X,

lim r,u→∞ 1 hrh¯u kr X k=kr−1+1 ju X j=ju−1+1 |d(x, Akj) − d(x, A)|p = 0.

In this case we write Akj

[W2pNθ]

−→ A.

Theorem 3.10 For any double lacunary sequence θ, if lim infrqr > 1 and lim infuqu > 1, then [W2σ1] ⊆ [W2Nθ].

Proof: Assume that lim infrqr > 1 and lim infuqu > 1. Then there exist λ, µ > 0 such that qr ≥ 1 + λ and qu ≥ 1 + µ for all r, u ≥ 1, which implies that

krju hrhu

≤ (1 + λ)(1 + µ)

(6)

Let Akj [W2σ1] −→ A. We can write 1 hr¯hu P k,j∈Iru |d(x, Akj) − d(x, A)| = 1 hr¯hu kr,ju P i,s=1,1 |d(x, Ais) − d(x, A)| − 1 hr¯hu kr−1,ju−1 P i,s=1,1 |d(x, Ais) − d(x, A)| = krju hr¯hu  1 krju kr,ju P i,s=1,1 |d(x, Ais) − d(x, A)|  −kr−1ju−1 hrh¯u  1 kr−1ju−1 kr−1,ju−1 P i,s=1,1 |d(x, Ais) − d(x, A)|  . Since Akj [W2σ1] −→ A, the terms 1 krju kr,ju X i,s=1,1 |d(x, Ais) − d(x, A)| and 1 kr−1ju−1 kr−1,ju−1 X i,s=1,1 |d(x, Ais) − d(x, A)|

both tend to 0, and it follows that 1 hr¯hu X k,j∈Iru |d(x, Akj) − d(x, A)| → 0, that is, Akj [W2Nθ] −→ A. Hence, [W2σ1] ⊆ [W2Nθ].

Theorem 3.11 For any double lacunary sequence θ, if lim suprqr < ∞ and lim supuqu < ∞ then [W2Nθ] ⊆ [W2σ1].

Proof: Assume that lim suprqr < ∞ and lim supuqu < ∞, then there exists M, N > 0 such that qr < M and qu < N , for all r, u. Let {Akj} ∈ [W2Nθ] and ε > 0. Then we can find R, U > 0 and K > 0 such that

sup i≥R,s≥U

τis < ε and τis< K for all i, s = 1, 2, · · · ,

where τru = 1 hrh¯u X Iru |d(x, Akj) − d(x, A)|.

(7)

If t, v are any integers with kr−1 < t ≤ kr and ju−1< v ≤ ju, where r > R and u > U , then we can write

1 tv t,v P i,s=1,1 |d(x, Ais) − d(x, A)| ≤ 1 kr−1ju−1 kr,ju P i,s=1,1 |d(x, Ais) − d(x, A)| = 1 kr−1ju−1  P I11 |d(x, Ais) − d(x, A)| +P I12 |d(x, Ais) − d(x, A)| +P I21 |d(x, Ais) − d(x, A)| +P I22 |d(x, Ais) − d(x, A)| + · · · +P Iru |d(x, Ais) − d(x, A)|  ≤ k1j1 kr−1ju−1 .τ11+ k1(j2− j1) kr−1ju−1 .τ12 +(k2− k1)j1 kr−1ju−1 .τ21 +(k2− k1)(j2− j1) kr−1ju−1 .τ22 + · · · + (kR− kR−1)(jU − jU −1) kr−1ju−1 τRU + · · · + (kr− kr−1)(ju− ju−1) kr−1ju−1 τru ≤  sup i,s≥1,1 τis  kRjU kr−1ju−1 +  sup i≥R,s≥U τis  (kr− kR)(ju− jU) kr−1ju−1 ≤ K kRjU kr−1ju−1 + εM N.

(8)

Since kr−1, ju−1→ ∞ as t, v → ∞, it follows that 1 tv t,v X i,s=1,1 |d(x, Ais) − d(x, A)| → 0 and consequently {Akj} ∈ [W2σ1]. Hence, [W2Nθ] ⊆ [W2σ1].

Theorem 3.12 For any double lacunary sequence θ, if 1 < lim infrqr ≤ lim suprqr < ∞ and 1 < lim infuqu ≤ lim supuqu < ∞, then [W2Nθ] = [W2σ1]. Proof: This follows from Theorem 3.10 and Theorem 3.11.

Theorem 3.13 For any double lacunary sequence θ, let {Akj} ∈ [W2Nθ] ∩ [W2σ1]. If Akj [W2Nθ] −→ A and Akj [W2σ1] −→ B then A = B. Proof: Let Akj [W2σ1] −→ A, Akj [W2Nθ]

−→ B and suppose that A 6= B. We can write υru + τru = 1 hrhu P k,j∈Iru |d(x, Akj) − d(x, A)| + 1 hrhu P k,j∈Iru |d(x, Akj) − d(x, B)| ≥ 1 hrhu P k,j∈Iru |d(x, A) − d(x, B)| = |d(x, A) − d(x, B)|, where υru = 1 hrhu X k,j∈Iru |d(x, Akj) − d(x, A)| and τru = 1 hrhu X k,j∈Iru |d(x, Akj) − d(x, B)|. Since {Akj} ∈ [W2Nθ] , τru → 0. Thus for sufficiently large r, u we must have

υru > 1 2|d(x, A) − d(x, B)|. Observe that 1 krju kr,ju X i,s=1,1 |d(x, Ais) − d(x, A)| ≥ 1 krju X Iru |d(x, Ais) − d(x, A)| =(kr− kr−1)(ju− ju−1) krju .υru =  1 − 1 qr   1 − 1 qu  .υru >1 2  1 − 1 qr   1 − 1 qu  . |d(x, A) − d(x, B)|

(9)

for sufficiently large r, u. Since {Akj} ∈ [W2σ1], the left hand side of the inequality above convergent to 0, so we must have qr → 1 and qu → 1. But this implies, by proof of Theorem 3.11, that

[W2Nθ] ⊂ [W2σ1] . That is, we have

Akj [W2Nθ] −→ B ⇒ Akj [W2σ1] −→ B, and therefore 1 tv t,v X i,s=1,1 |d(x, Ais) − d(x, B)| → 0. Then, we have 1 tv t,v X i,s=1,1 |d(x, Ais) − d(x, B)| + 1 tv t,v X i,s=1,1 |d(x, Ais) − d(x, A)| ≥ |d(x, A) − d(x, B)| > 0,

which yields a contradiction to our assumption, since both terms on the left hand side tend to 0. That is, for each x ∈ X,

|d(x, A) − d(x, B)| = 0, and therefore A = B.

Definition 3.14 The double sequence θ0 = {(kr0, ju0)} is called double lacu-nary refinement of the double laculacu-nary sequence θ = {(kr, ju)} if {kr} ⊆ {k

0

r} and {ju} ⊆ {j

0

u}.

Theorem 3.15 If θ0 is a double lacunary refinement of double lacunary sequence θ and if {Akj} 6∈ [W2Nθ], then {Akj} 6∈ [W2Nθ0].

Proof: Let {Akj} 6∈ [W2Nθ]. Then, for any non-empty closed subset A ⊆ X there exists ε > 0 and a subsequence (krn) of (kr) and (jun) of (ju)

such that τrnun = 1 hrnhun krn,jun X k,j=1,1 |d(x, Akj) − d(x, A)| ≥ ε. Writing Irnun = I 0 s+1,t+1∪ I 0 s+1,t+2∪ I 0 s+2,t+1 ∪ I 0 s+2,t+2∪ ... ∪ I 0 s+p,t+p

(10)

where krn−1 = k 0 s< k 0 s+1 < ... < k 0 s+p = krn and jun−1 = j 0 t< j 0 t+1 < ... < j 0 t+p= jun. Then we have τrnun = P Is+1,t+10 |d(x, Akj) − d(x, A)| + ... + P Is+p,t+p0 |d(x, Akj) − d(x, A)| h0s+1h0t+1+ ... + h0s+ph0t+p . It follows from Lemma 2.1 that

1 h0 s+ph 0 t+p X I0 s+p,t+p |d(x, Akj) − d(x, A)| ≥ ε

for some j and consequently, {Akj} 6∈ [W2Nθ0] .

References

[1] B. Altay and F. Ba¸sar, Some new spaces of double sequences, J. Math. Anal. Appl., 309(1) (2005), 70-90.

[2] J.P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, Boston, (1990).

[3] M. Baronti and P. Papini, Convergence of sequences of sets, In: Methods of Functional Analysis in Approximation Theory, ISNM 76, Birkhauser-Verlag, Basel, (1986), 133-155.

[4] G. Beer, On convergence of closed sets in a metric space and distance functions, Bull. Aust. Math. Soc., 31(1985), 421-432.

[5] G. Beer, Wijsman convergence: A survey, Set-Valued Var. Anal., 2(1994), 77-94.

[6] J.S. Connor, The statistical and strong p-Cesaro convergence of sequences, Analysis, 8(1988), 46-63.

[7] A.R. Freedman, J.J. Sember and M. Raphael, Some Cesaro type summa-bility spaces, Proc. London Math. Soc., 37(1978), 508-520.

[8] J.D. Hill, On perfect summability of double sequences, Bull. Amer. Math. Soc., 46(1940), 327-331.

[9] I.G. Kull, Multiplication of summable double series, Uch. zap. Tartusskogo un-ta, 62(1958), 3-59 (in Russian).

(11)

[10] B.V. Limayea and M. Zeltser, On the pringsheim convergence of double series, Proc. Est. Acad. Sci., 58(2009), 108-121.

[11] F. Nuray and B.E. Rhoades, Statistical convergence of sequences of sets, Fasc. Math., 49(2012), 87-99.

[12] A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann., 53(1900), 289-321.

[13] R.T. Rockafellar and R.J.B. Wets, Variational Analysis, Grundlehren der Mathematischen Wissenschaften 317, Springer-Verlag, (2009).

[14] E. Sava¸s, On some double lacunary sequence spaces of fuzzy numbers, Math. Comput. Appl., 15(3) (2010), 439-448.

[15] U. Ulusu and F. Nuray, Lacunary statistical convergence of sequence of sets, Prog. Appl. Math., 4(2) (2012), 99-109.

[16] U. Ulusu and F. Nuray, On strongly lacunary summability of sequences of sets, J. Appl. Math. Bioinform, 3(3) (2013), 75-88.

[17] R.A. Wijsman, Convergence of sequences of convex sets, cones and func-tions, Bull. Amer. Math. Soc., 70(1964), 186-188.

[18] R.A. Wijsman, Convergence of sequences of convex sets, cones and func-tions II, Trans. Amer. Math. Soc., 123(1) (1966), 32-45.

[19] M. Zeltser, M. Mursaleen and S.A. Mohiuddine, On almost conserva-tive matrix methods for double sequence spaces, Publ. Math. Debrecen, 75(2009), 1-13.

Referanslar

Benzer Belgeler

Şekil 2.1. Kuvvet ile yer değiştirme arasındaki ilişki ... Biçimlendirilebilir metaller için gerilme-şekil değiştirme eğrisi ... Dengedeki bir cisim ... tt en kesitli

Bu tez çalışmasında kanal kodlama tekniklerinden katlamalı kodlar için kullanılan yumuşak çıkışlı Viterbi algoritması ve Turbo kod çözme algoritmalarından SOVA ile

Destekleyici ve ılımlı bir atmosferin oluşturulmasının ve üst yönetim ile çalışanlar arasında desteğin sağlanmasının güçlendirme, yaratıcılık, iş tatmini gibi

Bunun için, öncelikle BirGün, Cumhuriyet, Hürriyet, Yeniçağ ve Yeni Şafak gazetelerinin manşet sayfalarında konu ile ilgili çıkan haberler taranmıştır.. Bu

Beklenti düzeyini incelediğimizde empati özelliklerinde yaş, cinsiyet, eğitim durumu, gelir, geliş sıklığı ve geliş vasıtasının yetenek boyutlarında beklenti düzeyi

Kalp ekstraselüler matriksindeki farklılaşma neticesinde elde edilen immünfloresan analizlerin verilerini doğrulamak ve matriks içinde standart besiyeri ve kardiyomiyojenik

Öne sürülen birinci varsayıma göre, iş ilanlarında halkla ilişkiler mesleği kurumlar tarafından tek yönlü olarak sunulmakta ve çok yönlü olan meslek, bir ya da

Set-valued function, double sequence of sets, Kuratowski con- vergence, Hausdorff convergence, Wijsman convergence, Fisher convergence.. Kapalı k¨ umelerin ¸cift dizilerinin