• Sonuç bulunamadı

Measurements of production cross sections of WZ and same-sign WW boson pairs in association with two jets in proton-proton collisions at root s=13 TeV

N/A
N/A
Protected

Academic year: 2021

Share "Measurements of production cross sections of WZ and same-sign WW boson pairs in association with two jets in proton-proton collisions at root s=13 TeV"

Copied!
29
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Measurements

of

production

cross

sections

of

WZ and

same-sign

WW

boson

pairs

in

association

with

two

jets

in

proton-proton

collisions

at

s

=

13

TeV

.

The

CMS

Collaboration



CERN,Switzerland

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received3May2020

Receivedinrevisedform18July2020 Accepted18August2020

Availableonline22August2020 Editor:M.Doser Keywords: CMS Physics Diboson Electroweak

Measurements of production cross sections of WZ and same-sign WW boson pairs in association with two jets in proton-proton collisions at √s=13 TeV at the LHC are reported. The data sample corresponds to an integrated luminosity of 137 fb−1, collected with the CMS detector during 2016–2018. The measurements are performed in the leptonic decay modes W±Z→ ±ν ± ∓and W±W±→ ±ν ±ν, where ,=e, μ. Differential fiducial cross sections as functions of the invariant masses of the jet and charged lepton pairs, as well as of the leading-lepton transverse momentum, are measured for W±W± production and are consistent with the standard model predictions. The dependence of differential cross sections on the invariant mass of the jet pair is also measured for WZ production. An observation of electroweak production of WZ boson pairs is reported with an observed (expected) significance of 6.8 (5.3) standard deviations. Constraints are obtained on the structure of quartic vector boson interactions in the framework of effective field theory.

©2020 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The observation of a Higgs boson with a mass of about 125 GeV [1–3] established that the W and Z gauge bosons ac-quiremassviatheBrout–Englert–Higgsmechanism [4–9].Further insightintotheelectroweak(EW)symmetrybreakingmechanism canbeachievedthroughmeasurementsofvectorbosonscattering (VBS)processes [10,11].AttheCERNLHCinteractionsfromVBSare characterizedbythepresenceoftwogaugebosons,inassociation withtwoforwardjetswithlargedijetinvariantmassandlarge ra-pidity separation,as shownin Fig.1. Theyare part ofa class of processes contributing to diboson plus two jets production that proceedsvia theEWinteraction,referred toasEW-induced dibo-sonproduction,attreelevel,

O(

α

4

)

,where

α

istheEW coupling. Anadditional contribution to thediboson statesarises via quan-tumchromodynamics(QCD)radiationofpartonsfromanincoming quark or gluon, leading to tree-level contributions at

O(

α

2

α

2S

)

,

where

α

S isthestrongcoupling.Thisclassofprocessesisreferred

toasQCD-induceddibosonproduction.

Modifications of the VBS production cross sections are pre-dictedinmodels ofphysics beyondthestandard model(SM),for



E-mailaddress:cms-publication-committee-chair@cern.ch.

example through changes to theHiggs boson couplings togauge bosons [10,11]. In addition, the non-Abelian gauge structure of theEW sectoroftheSM predictsself-interactionsbetweengauge bosons through tripleandquartic gauge couplings,which canbe probed via measurements ofVBS processes [12,13]. The possible presence of anomalous quarticgauge couplings (aQGC) could re-sultinanexcessofeventswithrespecttotheSMpredictions [14]. ThisletterpresentsastudyofVBSinW±W±andWZ channels using proton-proton(pp) collisions at

s

=

13TeV. Forthe WW measurement, the same-sign W±W± channel is chosen because of thesmaller backgroundyield from SM processes comparedto W±W∓.Thedatasamplecorresponds toanintegratedluminosity of 137

±

2 fb−1 [15–17] collected withthe CMS detector [18] in threeseparateLHCoperatingperiodsduring2016,2017,and2018. The threedata setsare analyzed independently,withappropriate calibrations and corrections, to account forthe various LHC run-ningconditionsandtheperformanceoftheCMSdetector.

Themeasurements areperformedintheleptonicdecaymodes W±W±

→ 

±

ν

 ±

ν

andW±Z

→ 

±

ν

 ±



 ∓,where

,





=

e,

μ

. Fig. 1 shows representative Feynman diagrams involving quartic vertices.Candidateeventscontaineithertwoidentifiedleptons of the samecharge orthree identified chargedleptons withthe to-talchargeof

±

1,moderatemissingtransversemomentum(pmissT ),

andtwojetswithalargerapidityseparationandalargedijetmass.

https://doi.org/10.1016/j.physletb.2020.135710

0370-2693/©2020TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

Fig. 1. RepresentativeFeynmandiagramsofaVBSprocesscontributingtotheEW-inducedproductionofeventscontainingW±W±(left)andWZ (right)bosonpairsdecaying toleptons,andtwoforwardjets.Newphysics(representedbyadashedcircle)intheEWsectorcanmodifythequarticgaugecouplings.

Fig. 2. Representative Feynman diagrams of the QCD-induced production of W±W±(left) and WZ (right) boson pairs decaying to leptons, and two jets.

Therequirementsonthedijetmassandrapidityseparationreduce thecontributionfromtheQCD-inducedproductionofbosonpairs inassociationwithtwojets,makingtheexperimentalsignaturean idealtopology forVBS studies. Fig. 2shows representative Feyn-man diagrams of the QCD-induced production. The EW W±W± and WZ production cross sections are simultaneously measured by performing abinned maximum-likelihood fitofseveral distri-butionssensitivetotheseprocesses.

TheEWproductionofW±W±attheLHCintheleptonicdecay modeshasbeen previouslymeasured at

s

=

8 and 13 TeV [19–

22]. The ATLAS and CMS Collaborations reported observations of the EW W±W± production at13 TeV with a significancegreater than5standarddeviationsusingthedatacollectedin2016, corre-spondingtointegratedluminositiesofapproximately36 fb−1.The EW WZ production in the fully leptonic decay modes has been studiedat8and13 TeV [23–25];theATLASCollaborationreported an observationat13 TeV with a significancegreater than 5 stan-dard deviations. The EW production of W±W± and WZ boson pairshasalsobeenstudiedinsemileptonicfinalstates [26].Limits onaQGCswerealsoreportedinRefs. [27,28].

2. TheCMSdetector

The central feature of the CMS apparatus is a superconduct-ing solenoidof 6 m internal diameter, providinga magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead-tungstate crystalelectromagnetic calorimeter (ECAL),andabrass andscintillatorhadroncalorimeter,each com-posedof abarrel andtwo endcapsections.Forwardcalorimeters extend the pseudorapidity (η) coverage provided by the barrel andendcap detectors up to

|

η

|

<

5. Muons are detected in gas-ionization chambers embedded in the steelmagnetic flux-return yokeoutsidethesolenoid.AmoredetaileddescriptionoftheCMS detector,together witha definitionof thecoordinate systemand the relevant kinematic variables, is reported in Ref. [18]. Events ofinterestareselectedusingatwo-tieredtriggersystem [29].The

firstlevel,composedofcustomhardwareprocessors,uses informa-tionfromthecalorimetersandmuondetectorstoselecteventsat arateofaround100 kHz withalatencyof4

μs.

Thesecondlevel, known as thehigh-level trigger, consistsof a farm ofprocessors running a version ofthe full event reconstruction software opti-mized forfast processing, and reduces the eventrate to around 1 kHz beforedatastorage.

3. Signalandbackgroundsimulation

MultipleMonteCarlo(MC)eventgenerators areusedto simu-late thesignal andbackgroundcontributions.Three sets of simu-latedeventsforeachprocessareneededtomatchthedata-taking conditionsinthevariousyears.

The SM EW W±W± and WZ processes, where both bosons decay leptonically, are simulated using MadGraph5_amc@nlo 2.4.2 [30–32] atleadingorder(LO) accuracywithsixEW (

O(

α

6

)

) and zero QCD vertices. MadGraph5_amc@nlo 2.4.2 is also used to simulatetheQCD-inducedW±W± process.Contributionswith an initial-state b quark are excluded from the EW WZ simu-lation because they are considered part of the tZq background process.Tribosonprocesses,wheretheWZ bosonpairis accompa-nied by a third vector boson that decays into jets, are included in the simulation. The simulation of the aQGC processes uses the MadGraph5_amc@nlo generator andemploys matrixelement reweighting toobtain afinelyspaced gridofparameters foreach of the probed anomalous couplings [33]. The QCD-induced WZ process issimulatedatLOwithuptothree additionalpartonsin the matrix element calculationsusing the MadGraph5_amc@nlo generator with at least one QCD vertex at tree level. The dif-ferent jet multiplicities are merged using the MLM scheme [34] to match matrixelement and partonshower jets, and the inclu-sive contribution is normalized to next-to-next-to-leading order (NNLO) predictions [35]. The interference between the EW and QCD diagrams is also produced with MadGraph5_amc@nlo. The contributionoftheinterferenceisconsideredtobepartoftheEW

(3)

production,leading to an increase ofabout 4 and1% ofthe ex-pectedyieldsoftheEWW±W± andWZ processesinthefiducial region,respectively.

A complete set of next-to-leading order (NLO) QCD and EW correctionsfortheleptonic W±W± scatteringprocess havebeen computed [36,37] and they reduce the LO cross section of the EW W±W± process at the level of 10-15%, with the correction increasing in magnitude with increasing dilepton and dijet in-variant masses. Similarly, the NLO QCD and EW corrections for the leptonic WZ scattering process have been computed at the orders of

O(

α

S

α

6

)

and

O(

α

7

)

[38], reducing the cross sections forthe EW WZ process atthe level of 10%. The predictions for thecrosssections oftheEW W±W± andWZ processes arealso madeafterapplyingthese

O(

α

S

α

6

)

and

O(

α

7

)

correctionsto Mad-Graph5_amc@nlo LO cross sections. These corrections have ap-proximately1% effectonthe measurementsandare notincluded at the data analysis level. Satisfactory agreement between pre-dictionsfrom MadGraph5_amc@nlo andvariouseventgenerators andfixed-order calculationsin the fiducial region is reported in Ref. [39].

The powheg v2 [4044] generator isused to simulatethe tt , tW, and other diboson processes at NLO accuracy in QCD. Pro-duction of tt W, tt Z, ttγ, and triple vector boson (VVV) back-groundeventsissimulatedatNLOaccuracyinQCDusingthe Mad-Graph5_amc@nlo 2.2.2(2.4.2) generator [3032] for 2016 (2017 and2018) samples. The tZq process is simulated at NLO in the four-flavorschemeusing MadGraph5_amc@nlo 2.3.3.TheMC sim-ulationisnormalizedusingacrosssectioncomputedatNLO with MadGraph5_amc@nlo inthefive-flavorscheme,followingthe pro-cedureofRef. [45].ThedoublepartonscatteringW±W± produc-tion is generated at LO using pythia 8.226 (8.230) [46] in 2016 (2017and2018).

The NNPDF 3.0 NLO [47] (NNPDF 3.1 NNLO [48]) parton dis-tributionfunctions(PDFs)are used forsimulatingall 2016(2017 and2018) samples. For all processes, the parton showering and hadronization are simulated using pythia 8.226 (8.230) in 2016 (2017and2018).Themodeling oftheunderlyingeventis gener-ated using the CUETP8M1 [49,50] (CP5 [51]) tune for simulated samplescorrespondingtothe2016(2017and2018)data.

AllMCgeneratedeventsareprocessedthroughasimulationof theCMSdetectorbasedon Geant4 [52] andarereconstructedwith thesame algorithms used fordata. Additional pp interactions in the same and nearby bunch crossings, referred to as pileup, are alsosimulated.The distribution ofthe numberof pileup interac-tionsin thesimulation isadjusted tomatchthe one observedin thedata.Theaveragenumberofpileupinteractionswas23(32)in 2016(2017and2018).

4. Eventreconstruction

TheCMS particle-flow(PF) algorithm [53] isused tocombine the information from all subdetectors for particle reconstruction and identification. The vector



pmissT is defined as the projection

ontotheplaneperpendiculartothebeamaxisofthenegative vec-tormomentumsumofallreconstructedPFobjectsinanevent.Its magnitudeisreferredtoaspmissT .

Jets are reconstructed by clustering PF candidates using the anti-kT algorithm [54] withadistanceparameterR =0.4.Jetsare

calibrated in the simulation, and separately in data, accounting forenergydepositsofneutralparticles frompileupandany non-lineardetector response [55,56]. Jets withtransverse momentum pT

>

50GeV and

|

η

|

<

4

.

7 areincludedintheanalysis. Theeffect

ofpileupismitigatedthroughacharged-hadronsubtraction tech-nique,whichremovestheenergyofchargedhadronsnot originat-ingfromtheeventprimaryvertex(PV) [57].Jetenergycorrections

tothedetectormeasurementsarepropagatedtopmissT [58].ThePV isdefinedasthevertexwiththelargestvalueofsummed physics-objectp2T.Here,thephysicsobjectsarethejetsclusteredusingthe

jetfindingalgorithm [54,59] withthetracksassignedtothevertex asinputs,andtheassociatedpmissT ,takenasthenegativevector pT sumofthosejets.

The DeepCSV b taggingalgorithm [60] isusedtoidentifyevents containingajetthatisconsistentwiththefragmentationofa bot-tomquark.Thistaggingalgorithm,animprovedversionofprevious taggers,wasdevelopedusinga deepneural networkwitha more sophisticatedarchitecture anditprovides a simultaneoustraining in both secondary vertex categoriesand jet flavors. For the cho-sen working point, the efficiency to select b quark jets is about 72% andtherateforincorrectly taggingjetsoriginatingfromthe hadronizationofgluonsoru,d,s quarksisabout1%.

Electrons andmuons are reconstructed by associating a track reconstructedinthetrackingdetectorswitheitheraclusterof en-ergyintheECAL [61] oratrackinthemuonsystem [62].Electrons (muons)mustpass“loose”identificationcriteriawithpT

>

10GeV and

|

η

|

<

2

.

5 (2.4)tobeselectedfortheanalysis.Atthefinalstage oftheleptonselection,tightworkingpoints,followingthe defini-tions provided in Refs. [61,62], are chosen for the identification criteria, including requirements on the impact parameter of the candidateswithrespecttothePVandtheirisolationwithrespect toother particlesintheevent [63].Forelectrons,thebackground contribution comingfroma mismeasurement ofthe trackcharge is not negligible. The signof this charge is evaluated with three different observables that measure the electron curvature using differentmethods; requiringall threecharge evaluationsto agree reducesthisbackgroundcontributionbyafactoroffivewithan ef-ficiencyofabout97% [61].Formuons,thechargemismeasurement isnegligible [64,65].

5. Eventselection

Collisioneventsare collected usingsingle-electronand single-muontriggersthatrequirethepresenceofanisolatedleptonwith pT larger than 27 and 24 GeV, respectively. In addition, a set of

dilepton triggers with lower pT thresholds are used, ensuring a

triggerefficiencyabove99%foreventsthat satisfythesubsequent offlineselection.

Several selection requirements are used to isolate the VBS topology by reducing the contributions from background pro-cesses. By inverting some of these selection requirements we can select background-enriched control regions (CRs). In the of-fline analysis, events with two or three isolated charged leptons with pT

>

10GeV and at least two jets with p

j

T

>

50GeV and

|

η

|

<

4

.

7 are accepted as candidate events. Jets that are within



R

=



(

η

)

2

+ (φ)

2

<

0

.

4 ofoneoftheidentifiedcharged lep-tons are excluded. Candidate events with four or more charged leptonssatisfyingthelooseidentificationcriteriaarerejected.

In the WZ candidate events, one of the oppositely charged same-flavorleptonsfromtheZ bosoncandidateisrequiredtohave pT

>

25GeV andtheother pT

>

10GeV withtheinvariantmassof thedileptonpairm satisfying

|

m

mZ

|

<

15GeV.Incandidate

eventswiththreesame-flavorleptons,theoppositelycharged lep-ton pair withthe invariant massclosest to the nominalZ boson massmZ [66] isselectedastheZ bosoncandidate.The third lep-tonwithpT

>

20GeV isassociatedwiththeW boson.Inaddition,

thetrileptoninvariantmassmisrequiredtoexceed100 GeV.

Oneof theleptons inthesame-sign W±W± candidateevents isrequiredtohavepT

>

25GeV andtheotherpT

>

20GeV.The

in-variantmassofthedileptonpairm mustbegreaterthan20 GeV.

Candidate events in the dielectron final state with

|

m

mZ

|

<

15GeV arerejectedtoreduce thenumberofZ bosonbackground

(4)

Table 1

Summaryofthe selectionrequirements definingthe W±W± and WZ SRs.The looserleptonpTrequirementontheWZ selectionreferstothetrailingleptonfrom theZ bosondecays.The

|

mmZ|requirementisappliedtothedielectronfinal stateonlyintheW±W±SR.

Variable W±W± WZ

Leptons 2 leptons, pT>25/20 GeV 3 leptons, pT>25/10/20 GeV pjT >50 GeV >50 GeV

|mmZ| >15 GeV (ee) <15 GeV

m >20 GeV —

m>100 GeV

pmissT >30 GeV >30 GeV b quark veto Required Required max(z) <0.75 <1.0

mjj >500 GeV >500 GeV

|ηjj| >2.5 >2.5

events where the charge of one of the electron candidates is misidentified.

TheVBStopologyistargetedbyrequiringalargedijetinvariant massmjj

>

500GeV andalargepseudorapidityseparation

|

η

jj|

>

2

.

5.ThecandidateW±W± (WZ)eventsarealsorequiredtohave max

(

z

)

<

0.75(1.0),where z

=





η



η

j1

+

η

j2 2



/|

η

jj

|

(1)

istheZeppenfeldvariable [67],

η

 isthepseudorapidityofa lep-ton,and

η

j1 and

η

j2 arethepseudorapiditiesofthetwocandidate

VBSjets.Inthecaseofmorethantwojetcandidates,thetwojets withthelargest pTareselected.

The pmissT associatedwiththeundetectedneutrinosisrequired tobegreaterthan30 GeV. Thelistofselectionrequirementsused to define the same-sign W±W± and WZ signal regions (SRs) is summarizedin Table1.The W±W± SRisdominated by theEW signalprocess,whereastheWZ SRhasaverylargecomponentof theQCDWZ process,asseeninTable4.

6. Backgroundestimation

A combinationof methods based on CRsin data and simula-tion is used to estimate background contributions. Uncertainties related to the theoretical and experimental predictions are esti-mated as described in Section 7. The normalization of the WZ contributionin the W±W± SRis constrainedby the data inthe WZ SR, which is evaluated simultaneously for the extraction of results. The background contribution from charge misidentifica-tion (wrong-sign) is estimated by applying a data-to-simulation efficiency correction due to charge-misidentified electrons. The electron charge misidentification rate, estimated using Drell–Yan events,isabout0.01(0.3)%inthebarrel(endcap)region [61,68].

The nonprompt lepton backgrounds originating from leptonic decaysofheavyquarks,hadronsmisidentifiedasleptons,and elec-tronsfromphotonconversionsaresuppressedbytheidentification andisolationrequirementsimposed onelectrons andmuons. The remainingcontributionfromthenonpromptleptonbackgroundis estimateddirectlyfromadatasamplefollowingthetechnique de-scribed in Ref. [19]. This sample is selected by choosing events usingthefinalselection criteria,exceptforoneoftheleptons for which the selection is relaxed to a looser criteria and that has failed the nominal selection. The yield in this sample is extrap-olated to thesignal region using theefficiencies for such loosely identified leptons to pass the standard lepton selection criteria. This efficiencyis calculated in a sample ofevents dominated by dijet production. A normalization uncertainty of 20% is assigned

for the nonprompt lepton background to include possible differ-encesinthecompositionofjetsbetweenthedatasampleusedto derive theseefficiencies andthedatasamplesintheW±W±and WZ SRs [63].

Three CRs are used to select nonprompt lepton, tZq, and ZZ background-enriched events to further estimate these processes from data. The ZZ process is treated as background since the analysis selection is not sensitive to the EW ZZ production. The nonprompt lepton CRis defined by requiring the sameselection asfortheW±W± SR, butwiththe b quarkvetorequirement in-verted.The selectedeventsareenriched withthenonprompt lep-ton background,coming mostly fromsemileptonictt events,and further estimatesthe contribution of thisbackground process in the W±W± SR. Similarly, the tZq CRis definedby requiringthe same selection asfor the WZ SR, butwiththe b quark veto re-quirementinverted.TheselectedeventsaredominatedbythetZq backgroundprocess.Finally,theZZ CRselectseventswithfour lep-tonswiththesameVBS-likerequirements.ThethreeCRsareused to estimate the normalizationof the main background processes fromdata.Allotherbackgroundprocessesareestimatedfrom sim-ulation afterapplyingcorrectionstoaccountforsmalldifferences betweendataandsimulation.

TwosetsofadditionalCRsaredefinedfortheW±W±andWZ measurements to validate thepredictionsof thebackground pro-cesses. The firstCRis definedbyrequiring thesameselection as fortheW±W±SR,butwitharequirementof200

<

mjj

<

500GeV.

The second CR is defined by selecting events satisfying the re-quirements on the leptons, pjT, andmjj,but withatleast one of

the other requirements inTable 1 not satisfied. Good agreement betweenthedataandpredictedyieldsisobservedinallthese re-gions.

7. Systematicuncertainties

Multiple sources of systematic uncertainty are estimated for these measurements. Independent sources of uncertainty are treated asuncorrelated. The impact in different bins of a differ-entialdistributionisconsideredfullycorrelatedforeachsourceof uncertainty.

The uncertainties in the integrated luminosity measurements for the data used in this analysis are 2.5, 2.3, and 2.5% for the 2016,2017,and2018datasamples [15–17],respectively.Theyare treatedasuncorrelatedacrossthethreedatasets.

The simulation of pileup events assumes a total inelastic pp crosssectionof69.2 mb,withanassociateduncertaintyof5% [69,

70],which hasanimpacton theexpectedsignalandbackground yieldsofabout1%.

Discrepanciesintheleptonreconstructionandidentification ef-ficiencies betweendataandsimulation are correctedby applying scale factorsto allsimulation samples.Thesescalefactors, which dependonthe pT and

η

forbothelectrons andmuons,are deter-mined usingZ

→ 

eventsintheZ bosonpeakregionthat were recordedwithindependenttriggers [61,62,71]. Theuncertaintyin thedeterminationofthetriggerefficiencyleads toanuncertainty smaller than1% intheexpectedsignalyield. Thelepton momen-tum scale uncertainty is computed by varying the momenta of theleptonsinsimulationbytheir uncertainties,andrepeatingthe analysisselection.Theresultinguncertaintiesintheyieldsare

1% for both electrons andmuons. These uncertainties are treatedas correlatedacrossthethreedatasets.

The uncertaintyinthecalibration ofthejet energyscale(JES) directly affectsthe acceptanceofthejet multiplicity requirement andthepmissT measurement.Theseeffectsareestimatedbyshifting the JES in the simulation up and down by one standard devia-tion. The uncertainty in the JES is 2–5%, depending on pT and

η

[55,56],andtheimpactontheexpectedsignalandbackground

(5)

Table 2

RelativesystematicuncertaintiesintheEWW±W±andWZ crosssection measure-mentsinunitsofpercent.

Source of uncertainty W±W±(%) WZ (%)

Integrated luminosity 1.5 1.6

Lepton measurement 1.8 2.9

Jet energy scale and resolution 1.5 4.3

Pileup 0.1 0.4

b tagging 1.0 1.0

Nonprompt rate 3.5 1.4

Trigger 1.1 1.1

Limited sample size 2.6 3.7

Theory 1.9 3.8

Total systematic uncertainty 5.7 7.9

Statistical uncertainty 8.9 22

Total uncertainty 11 23

yieldsisabout3%.ThereisalargerJESuncertaintyintheEWWZ cross section measurement since a multivariate analysis is used forthemeasurement, whichhelpsdiscriminate againstthe back-groundprocesses,butalsoincreasesthecorrespondinguncertainty, asseeninTable2.

The b tagging efficiency in the simulation is corrected using scale factors determined from data [60]. These values are esti-matedseparatelyforcorrectlyandincorrectly identifiedjets.Each setofvaluesresultsinuncertaintiesintheb taggingefficiencyof about1–4%,andtheimpactontheexpectedsignalandbackground yieldsisabout1%.The uncertainties intheJESandb taggingare treatedasuncorrelatedacrossthethreedatasets.

BecauseofthechoiceoftheQCDrenormalizationand factoriza-tionscales, thetheoretical uncertaintiesare estimatedby varying thesescales independentlyup anddownby a factoroftwofrom their nominal values(excluding the two extreme variations) and takingthelargest crosssectionvariations asthe uncertainty [39]. ThePDFuncertaintiesareevaluatedaccordingtotheprocedure de-scribedinRef. [72].Thestatisticaluncertaintiesthatareassociated withthelimitednumberofsimulatedeventsanddataeventsused toestimate thenonpromptleptonbackgroundarealsoconsidered assystematicuncertainties;thedataeventsarethedominant con-tribution.

Asummary oftherelative systematicuncertainties inthe EW W±W± andWZ cross sectionsis showninTable 2. Theslightly larger theoretical uncertainty in the EW WZ cross section mea-surementarises from the difficulty of disentangling the EW and QCDcomponentsinthediscriminantfit.

8. Results

Todiscriminate between the signals andthe remaining back-grounds,abinned maximum-likelihoodfitisperformedusingthe W±W±andWZ SRs,andthenonpromptlepton,tZq,andZZ CRs. The normalization factors for the tZq and ZZ background pro-cesses are included in themaximum-likelihood fit together with theEWW±W±,EWWZ,andQCD WZ signalcrosssections.The QCDW±W± contributionissmallandistakenfromtheSM pre-diction. The systematic uncertainties are treatedas nuisance pa-rametersinthefit [73,74].

Thevalueofmjjiseffectiveindiscriminatingbetweenthe

sig-nal and background processes because VBS topologies typically exhibitlargevaluesforthedijetmass.Thevalueofm isalso ef-fectiveindiscriminatingbetweensignalandbackgroundprocesses becausethenonpromptleptonprocessestendtohaverathersmall mvalues.Atwo-dimensionaldistributionisusedinthefitforthe W±W± SRwith8bins inmjj ([500, 650,800, 1000, 1200, 1500,

1800,2300,

] GeV)and4binsinm([20,80,140,240,

] GeV).

Aboosteddecisiontree(BDT) istrainedusingthe tmva pack-age [75] withgradientboostingandoptimizedonsimulatedevents

tobetterseparate theEWWZ andQCDWZ processesintheWZ SR by exploring the kinematic differences. Several discriminating observablesareusedastheBDTinputs,includingthejetand lep-ton kinematicsand pmissT ,aslistedinTable3.Alarger setof dis-criminatingobservableswasstudied,butonlyvariablesimproving thesensitivityandshowingsome signal-to-backgroundseparation areretained.TheBDT scoredistributionisused fortheWZ SRin thefitwith8bins ([-1,-0.28, 0.0,0.23, 0.43,0.60, 0.74, 0.86,1]). ThemjjdistributionisusedfortheCRsinthefitwith4bins([500,

800, 1200,1800,

] GeV). Thebinboundariesarechosen tohave thesameEWW±W±andWZ contributionsacrossthebinsas ex-pectedfromsimulation.

The distributions of mjj and m in the W±W± SR, and the

distributions of mjj and BDT score in the WZ SR are shown in

Fig.3.Thedatayields, togetherwiththenumbersoffittedsignal andbackgroundevents,aregiveninTable4.Thetablealsoshows the result of a fit to the Asimov data set [76]. The significance oftheEW WZ signalisquantified fromthep-value usinga pro-file ratio test statistic [73,74] andasymptotic results forthe test statistic [76].Theobserved(expected)statisticalsignificanceofthe EW WZ signalis6.8(5.3) standard deviations,whilethe statisti-cal significanceof theEW W±W± signal is farabove 5standard deviations.

8.1. Inclusiveanddifferentialfiducialcrosssectionmeasurements The fiducial region is defined by a common set of kinematic requirementsinthemuonandelectronfinalstatesatthe genera-torlevel,emulatingtheselection performedatthereconstruction level. The measured distributions, after subtracting the contribu-tions from the background processes, are corrected for detector resolutioneffectsandinefficiencies.Theleptonsatgeneratorlevel areselectedattheso-calleddressedlevelbycombiningthe four-momentum of each lepton after the final-state photon radiation with that of photons found within a cone of



R

=

0

.

1 around thelepton.TheW±W±fiducialregionisdefinedbyrequiringtwo same-sign leptonswith pT

>

20GeV,

|

η

|

<

2

.

5,andm

>

20GeV, andtwojetswithmjj

>

500GeV and

|

η

jj|

>

2

.

5.Thejetsat

gen-eratorlevelareclusteredfromstableparticles,excludingneutrinos, using the anti-kT clustering algorithm with R = 0.4, and are re-quiredtohavepT

>

50GeV and

|

η

|

<

4

.

7.Thejetswithin



R

<

0

.

4

of the selected charged leptons are not included. The WZ fidu-cialregionisdefinedbyrequiringthreeleptonswithpT

>

20GeV,

|

η

|

<

2

.

5, a pair of opposite charge same-flavor lepton pair with

|

m

mZ|

<

15GeV,andtwojetswithmjj

>

500GeV and

|

η

jj|

>

2

.

5. MadGraph5_amc@nlo isusedto extrapolatefromthe recon-struction level to the fiducial phase space. Electrons and muons producedinthedecayofa

τ

leptonarenotincludedinthe defini-tionofthefiducialregion.Nonfiducialevents,i.e.,eventsselected atthereconstructed levelthatdo notsatisfy thefiducial require-ments,are includedasbackgroundprocessesinthesimultaneous fit.

Inclusive cross section measurements for the EW W±W±, EW+QCDW±W±,EWWZ,QCDWZ,andEW+QCDWZ processes, andthetheoreticalpredictionsaresummarizedinTable5.To per-formabsoluteandnormalizeddifferentialproductioncrosssection measurements,signaltemplatesfromdifferentbinsof differential-basisobservablevaluespredictedbytheeventgeneratorarebuilt. Each signal template is considered as a separate process in the simultaneous binned maximum-likelihood fit. In the normalized crosssectionmeasurements,theindividual crosssectionsinevery fiducial region and the total production cross section are simul-taneously evaluated, reducing the systematic uncertainties. The signalextractionatreconstructionlevelandtheunfoldingintothe generatorlevelbinsareperformedinasingle stepinthe simulta-neousfit.Thebinmigrationeffectsduetothedetectorresolution

(6)

Table 3

ListanddescriptionofalltheinputvariablesusedintheBDTanalysisfortheWZ SR. Variable Definition

mjj Massoftheleadingandtrailingjetssystem

|ηjj| Absolutedifferenceinrapidityoftheleadingandtrailingjets jj Absolutedifferenceinazimuthalanglesoftheleadingandtrailingjets pj1T pToftheleadingjet

pj2T pTofthetrailingjet

ηj1 Pseudorapidityoftheleadingjet

|ηW−ηZ| AbsolutedifferencebetweentherapiditiesoftheZ bosonandthe chargedleptonfromthedecayoftheW boson

zi(i=1−3) Zeppenfeldvariableofthethreeselectedleptons

z∗3 Zeppenfeldvariableofthevectorsumofthethreeleptons Rj1,Z R betweentheleadingjetandtheZ boson

| pT tot

|/ip i

T Transversecomponentofthevectorsumofthebosonsandtagging jetsmomenta,normalizedtotheirscalarpTsum

Fig. 3. Distributionsofmjj (upperleft)andm(upperright)intheW±W± SR,andthedistributionsofmjj(lowerleft)andBDTscore(lowerright)intheWZ SR.The predictedyieldsareshownwiththeirbestfitnormalizationsfromthesimultaneousfit.Verticalbarsondatapointsrepresentthestatisticaluncertaintyinthedata.The contributionoftheQCDW±W± processisincludedtogetherwiththeEWW±W±process.ThehistogramsfortVx backgroundsincludethecontributionsfromtt V and tZq processes.ThehistogramsforotherbackgroundsincludethecontributionsfromdoublepartonscatteringandVVV processes.Thehistogramsforwrong-signbackground includethecontributionsfromoppositelychargeddileptonfinalstatesfromtt ,tW,W+W−,andDrell–Yanprocesses.Theoverflowisincludedinthelastbin.Thebottom panelineachfigureshowstheratioofthenumberofeventsobservedindatatothatofthetotalSMprediction.Thegraybandsrepresenttheuncertaintiesinthepredicted yields.

(7)

Table 4

ExpectedyieldsfromSMprocessesandobserveddataeventsinW±W±andWZ SRs.Thecombinationofthe statisticalandsystematicuncertaintiesisshown.Theexpectedyieldsareshownwiththeirbestfit normaliza-tionsfromthesimultaneousfittotheAsimovdatasetandtothedata.ThesignalyieldsdonotincludetheQCD andEWNLOcorrections.

Process W±W±SR WZ SR

Asimov data set Data Asimov data set Data

EW W±W± 209±26 210±26 — — QCD W±W± 13.8±1.6 13.7±2.2 — — Interference W±W± 8.4±2.3 8.7±2.3 — — EW WZ 14.1±4.0 17.8±3.9 54±15 69±15 QCD WZ 43±6.7 42.7±7.4 118±17 117±17 Interference WZ 0.3±0.1 0.3±0.2 2.2±0.9 2.7±1.0 ZZ 0.7±0.2 0.7±0.2 6.1±1.7 6.0±1.8 Nonprompt 211±43 193±40 14.6±7.4 14.4±6.7 tVx 7.8±1.9 7.4±2.2 15.1±2.7 14.3±2.8 Wγ 9.0±1.8 9.1±2.9 1.1±0.3 1.1±0.4 Wrong-sign 13.5±6.5 13.9±6.5 1.6±0.5 1.7±0.7 Other background 5.0±1.3 5.2±2.1 3.3±0.6 3.3±0.7 Total SM 535±52 522±49 216±21 229±23 Data 524 229 Table 5

ThemeasuredinclusivecrosssectionsfortheEWW±W±,EW+QCDW±W±,EWWZ,EW+QCDWZ,andQCD WZ processesandthetheoreticalpredictionswith MadGraph5_amc@nlo atLO.TheEWprocessesincludethe correspondinginterferencecontributions.Thetheoreticaluncertaintiesincludestatistical,PDF,andscale uncer-tainties.Predictionswithapplyingthe

O(

αSα

6

)and

O(

α7)correctionstothe MadGraph5_amc@nlo LOcross sections,asdescribedinthetext,arealsoshown.ThepredictionsoftheQCDW±W±andWZ processesdonot includeadditionalcorrections.Allreportedvaluesareinfb.

Process σB(fb) Theoreticalprediction withoutNLOcorrections(fb)

Theoreticalprediction withNLOcorrections(fb) EW W±W± 3.98±0.45 3.93±0.57 3.31±0.47 0.37 (stat)±0.25 (syst) EW+QCD W±W± 4.42±0.47 4.34±0.69 3.72±0.59 0.39 (stat)±0.25 (syst) EW WZ 1.81±0.41 1.41±0.21 1.24±0.18 0.39 (stat)±0.14 (syst) EW+QCD WZ 4.97±0.46 4.54±0.90 4.36±0.88 0.40 (stat)±0.23 (syst) QCD WZ 3.15±0.49 3.12±0.70 3.12±0.70 0.45 (stat)±0.18 (syst)

are negligible. The measurement is compared with the Mad-Graph5_amc@nlo predictions at LO. The MadGraph5_amc@nlo predictions including the

O(

α

S

α

6

)

and

O(

α

7

)

corrections in the EW W±W± andWZ processesare also includedin Table 5. The measuredabsoluteandnormalizedW±W± differential cross sec-tionsinbinsofmjj,m,andleadinglepton pT (p

max

T )are shown

in Fig. 4. The absolute cross sections are shown in fb per GeV, whilethe normalizedcross sections areshown inunits of1/bin. The pmaxT differential cross section measurements are performed

byreplacingthem variableby the pmaxT variableinthe W±W± SRinthesimultaneousfit.Themeasuredabsoluteandnormalized WZ differential crosssections inbins ofmjj are shown inFig.5. Themjj differentialcross section measurements are estimatedby

replacingthe BDT variableby the mjj variable with8bins ([500,

650,800,1000,1200,1500,1800,2300,

] GeV)intheWZ SRin thesimultaneousfit.Themeasuredcrosssectionvaluesagreewith thetheoreticalpredictionswithintheuncertainties.

8.2.Limitsonanomalousquarticgaugecouplings

The eventsin the W±W± and WZ SRsare used to constrain aQGCs in the effective field theory (EFT) framework [77]. Nine independentcharge-conjugate andparityconserving dimension-8 effectiveoperators are considered [14]. The S0 andS1 operators

areconstructedfromthecovariantderivativeoftheHiggsdoublet. TheT0,T1,andT2operatorsareconstructedfromtheSUL(2)gauge

fields.ThemixedoperatorsM0,M1,M6,andM7involvetheSUL(2) gaugefieldsandtheHiggsdoublet.

AnonzeroaQGCenhancestheproductioncrosssectionatlarge masses ofthe W±W± andWZ systems with respect to the SM prediction.Thedibosontransversemass,definedas

mT

(

VV

)

=





iEi



2



ipz,i



2

,

(2)

whereEiandpz,iaretheenergiesandlongitudinalcomponentsof themomenta oftheleptonsandneutrinosfromthedecayofthe gaugebosonsintheevent,isusedinthefitforbothW±W±and WZ processes.Thefour-momentumoftheneutrinosystemis de-finedusingthe



pmissT ,assumingthatthevaluesofthelongitudinal

componentofthemomentumandtheinvariantmassarezero. Atwo-dimensionaldistributionisusedinthefitfortheW±W± processwith5binsinmT

(

WW

)

([0,350,650,850,1050,

] GeV)

and 4 bins in mjj ([500, 800, 1200, 1800,

] GeV). The SM WZ contribution is considered to be background. Similarly, a two-dimensionaldistributionisusedinthefitfortheWZ processwith 5binsinmT

(

WZ

)

([0,400,750,1050,1350,

] GeV)and2binsin mjj([500,1200,

] GeV).Themjjdistributionisusedforthe non-promptlepton,tZq,andZZ CRsinbothfitswith4bins([500,800,

(8)

Fig. 4. Themeasuredabsolute(left)andnormalized(right)W±W± crosssectionmeasurementsinbinsofmjj (upper),m(middle),andp

max

T (lower).Theratiosofthe predictionstothedataarealsoshown.Themeasurementsarecomparedwiththepredictionsfrom MadGraph5_amc@nlo atLO.Theshadedbandsaroundthedatapoints correspondtothemeasurementuncertainty.Theerrorbarsaroundthepredictionscorrespondtothecombinedstatistical,PDF,andscaleuncertainties.Predictionswith applyingthe

O(

αSα

6

)and

O(

α7)correctionstothe MadGraph5_amc@nlo LOcrosssections,asdescribedinthetext,arealsoshown(dashedblue).

1200, 1800,

] GeV). Thedistributions ofmT

(

VV

)

inthe W±W± andWZ SRsareshowninFig.6.

NoexcessofeventswithrespecttotheSMbackground predic-tionsisobserved.Theobservedandexpected95% confidencelevel (CL)lowerandupperlimitsontheaQGCparameters f

/

4,where f isthe dimensionlesscoefficientof thegivenoperatorand

is theenergyscaleofnewphysics,arederived fromamodified fre-quentistapproachwiththeCLscriterion [73,74] andasymptotic

re-sultsfortheteststatistic [76].Theexpectedcrosssectiondepends quadraticallyonaQGC,thereforetheexpectedyieldsarecalculated from aparabolic interpolation fromthediscrete coupling param-etersofthesimulatedsignals.Table 6showstheindividuallower and upper limits for the coefficients of the T0, T1, T2, M0, M1, M6,M7,S0,andS1operatorsobtainedbysettingall otheraQGCs parameters to zero for the W±W± and WZ channels, andtheir combination.Theresultsaresensitivetothenumberofdataevents

(9)

Fig. 5. Themeasuredabsolute(left)andnormalized(right)WZ crosssectionmeasurementsinbinsofmjj.Theratiosofthepredictionstothedataarealsoshown.The measurementsarecomparedwiththepredictionsfrom MadGraph5_amc@nlo atLO.Theshadedbandsaroundthedatapointscorrespondtothemeasurementuncertainty. Theerrorbarsaroundthepredictionscorrespondtothecombinedstatistical,PDF,andscaleuncertainties.Predictionswithapplyingthe

O(

αSα

6

)and

O(

α7)correctionsto the MadGraph5_amc@nlo LOcrosssections,asdescribedinthetext,areshown(dashedblue).The MadGraph5_amc@nlo predictionsintheEWtotalcrosssectionsarealso shown(darkcyan).

Table 6

Observedandexpectedlowerandupper95%CL limitsontheparametersofthequarticoperatorsT0,T1,T2,M0,M1,M6,M7,S0,andS1inW±W±andWZ channels, obtainedwithoutusinganyunitarizationprocedure.ThelasttwocolumnsshowtheobservedandexpectedlimitsforthecombinationoftheW±W± andWZ channels. ResultsareobtainedbysettingallotheraQGCsparameterstozero.

Observed (W±W±) Expected (W±W±) Observed (WZ) Expected (WZ) Observed Expected (TeV−4) (TeV−4) (TeV−4) (TeV−4) (TeV−4) (TeV−4) fT0/ 4 [-0.28, 0.31] [-0.36, 0.39] [-0.62, 0.65] [-0.82, 0.85] [-0.25, 0.28] [-0.35, 0.37] fT1/ 4 [-0.12, 0.15] [-0.16, 0.19] [-0.37, 0.41] [-0.49, 0.55] [-0.12, 0.14] [-0.16, 0.19] fT2/ 4 [-0.38, 0.50] [-0.50, 0.63] [-1.0 , 1.3] [-1.4, 1.7] [-0.35, 0.48] [-0.49, 0.63] fM0/ 4 [-3.0, 3.2] [-3.7, 3.8] [-5.8, 5.8] [-7.6, 7.6] [-2.7, 2.9] [-3.6, 3.7] fM1/ 4 [-4.7, 4.7] [-5.4, 5.8] [-8.2, 8.3] [-11, 11] [-4.1, 4.2] [-5.2, 5.5] fM6/ 4 [-6.0, 6.5] [-7.5, 7.6] [-12, 12] [-15, 15] [-5.4, 5.8] [-7.2, 7.3] fM7/ 4 [-6.7, 7.0] [-8.3, 8.1] [-10, 10] [-14, 14] [-5.7, 6.0] [-7.8, 7.6] fS0/ 4 [-6.0, 6.4] [-6.0, 6.2] [-19, 19] [-24, 24] [-5.7, 6.1] [-5.9, 6.2] fS1/ 4 [-18, 19] [-18, 19] [-30, 30] [-38, 39] [-16, 17] [-18, 18] Table 7

Observedandexpectedlowerandupper95%CL limitsontheparametersofthequarticoperatorsT0,T1,T2,M0,M1,M6,M7,S0,andS1inW±W±andWZ channelsby cuttingtheEFTexpansionattheunitaritylimit.ThelasttwocolumnsshowtheobservedandexpectedlimitsforthecombinationoftheW±W±andWZ channels.Results areobtainedbysettingallotheraQGCsparameterstozero.

Observed (W±W±) Expected (W±W±) Observed (WZ) Expected (WZ) Observed Expected (TeV−4) (TeV−4) (TeV−4) (TeV−4) (TeV−4) (TeV−4) fT0/ 4 [-1.5, 2.3] [-2.1, 2.7] [-1.6, 1.9] [-2.0, 2.2] [-1.1, 1.6] [-1.6, 2.0] fT1/ 4 [-0.81, 1.2] [-0.98, 1.4] [-1.3, 1.5] [-1.6, 1.8] [-0.69, 0.97] [-0.94, 1.3] fT2/ 4 [-2.1, 4.4] [-2.7, 5.3] [-2.7, 3.4] [-4.4, 5.5] [-1.6, 3.1] [-2.3, 3.8] fM0/ 4 [-13, 16] [-19, 18] [-16, 16] [-19, 19] [-11, 12] [-15, 15] fM1/ 4 [-20, 19] [-22, 25] [-19, 20] [-23, 24] [-15, 14] [-18, 20] fM6/ 4 [-27, 32] [-37, 37] [-34, 33] [-39, 39] [-22, 25] [-31, 30] fM7/ 4 [-22, 24] [-27, 25] [-22, 22] [-28, 28] [-16, 18] [-22, 21] fS0/ 4 [-35, 36] [-31, 31] [-83, 85] [-88, 91] [-34, 35] [-31, 31] fS1/ 4 [-100, 120] [-100, 110] [-110, 110] [-120, 130] [-86, 99] [-91, 97]

withlargemT

(

VV

)

values.Theseresultsareaboutafactoroftwo morerestrictive than theprevious analyses of theleptonic decay modesoftheW±W±andWZ processes [21,24].However,the re-sultsare less restrictive than theanalysis usingthe semileptonic final states [28]. No unitarization procedure is applied to obtain theseresults.

TheEFTis notacompletemodelandthepresenceofnonzero aQGCswill violate tree-levelunitarity atsufficiently highenergy. Morephysical limitscan be obtainedby cutting theEFT integra-tion at the unitarity limit and adding the expected SM

contri-bution forgenerated eventswith VV invariantmasses above the unitaritylimit [78].The unitaritylimitsforeach aQGC parameter, typically about1.5 TeV, are calculated using vbfnlo 1.4.0 [79–81] after applying the appropriate Wilson coefficient conversion fac-tors. Table 7 shows the individual lower and upper limits for the coefficients of the T0, T1, T2, M0, M1, M6, M7, S0, and S1 operators by cutting off the EFT expansion at the unitar-ity limit. These limits are significantly less stringent compared with the limits in Table 6, where the unitarity violation is not considered.

(10)

Fig. 6. DistributionsofmT(WW)(upper)intheW±W±SRandmT(WZ)(lower)in theWZ SR.Thegraybandsincludeuncertaintiesfromthepredictedyields.TheSM predictedyieldsareshownwiththeirbestfitnormalizationsfromthe correspond-ingfits.ThecontributionoftheQCDW±W±processisincludedtogetherwiththe EWW±W±process.Theoverflowisincludedinthelastbin.Thebottompanelin eachfigureshowstheratioofthenumberofeventsobservedindatatothetotal SMprediction.ThesolidlinesshowthesignalpredictionsfortwoillustrativeaQGC parameters.

9. Summary

The productioncross sectionsof WZ andsame-sign WW bo-son pairs in association with two jets are measured in proton-proton collisions at a center-of-mass energy of 13 TeV. The data sample corresponds to an integratedluminosity of 137 fb−1, col-lectedwiththeCMSdetectorduring 2016–18.Themeasurements are performed in the leptonic decay modes W±Z

→ 

±

ν

 ±



 ∓ and W±W±

→ 

±

ν

 ±

ν

, where

,





=

e,

μ

. An observation of electroweak production of WZ boson pairs is reported with an observed (expected)significance of 6.8 (5.3) standard deviations. Differential crosssections asfunctionsoftheinvariant massesof the jet and charged lepton pairs, as well as the leading-lepton transversemomentum, are measured forW±W± productionand arecomparedtothestandardmodelpredictions.Differentialcross

sectionsasafunctionoftheinvariantmassofthejetpairarealso measuredforWZ production.Stringentlimitsaresetinthe frame-work of effectivefield theory, withandwithout consideration of tree-levelunitarityviolation,onthedimension-8operatorsT0, T1, T2,M0,M1,M6,M7,S0,andS1.

Declarationofcompetinginterest

Theauthorsdeclarethattheyhavenoknowncompeting finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

Acknowledgements

WecongratulateourcolleaguesintheCERNaccelerator depart-ments for the excellent performance of the LHC and thank the technical andadministrativestaffs atCERNand atother CMS in-stitutes for their contributions to the success of the CMS effort. Inaddition,wegratefullyacknowledgethecomputingcentersand personneloftheWorldwideLHCComputingGridfordeliveringso effectively thecomputinginfrastructure essentialto our analyses. Finally, we acknowledge the enduring support for the construc-tion andoperationofthe LHCandtheCMSdetectorprovided by the followingfundingagencies: BMBWFandFWF(Austria);FNRS and FWO (Belgium); CNPq, CAPES,FAPERJ, FAPERGS, andFAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, PUT and ERDF (Estonia); AcademyofFinland,MEC,andHIP(Finland);CEAandCNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NK-FIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy);MSIPandNRF(RepublicofKorea);MES(Latvia);LAS (Lithuania);MOEandUM(Malaysia);BUAP,CINVESTAV,CONACYT, LNS,SEP,andUASLP-FAI(Mexico);MOS(Montenegro);MBIE(New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portu-gal); JINR(Dubna); MON, RosAtom,RAS, RFBR, andNRC KI (Rus-sia);MESTD(Serbia);SEIDI,CPAN,PCTI,andFEDER(Spain);MoSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter,IPST,STAR, andNSTDA(Thailand);TUBITAKandTAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOEand NSF (USA).

Individuals have received support from the Marie-Curie pro-gramandtheEuropeanResearchCouncilandHorizon2020Grant, contract Nos. 675440, 752730, and 765710 (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexan-der von Humboldt Foundation; the Belgian Federal Science Pol-icy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS andFWO(Belgium) under the“Excellence of Sci-ence – EOS” – be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic;theDeutscheForschungsgemeinschaft(DFG)under Ger-many’s Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306; the Lendület (“Momentum”) Program and the János Bolyai Research Scholarship of the Hungarian Academy of Sci-ences, the New National Excellence Program ÚNKP, the NK-FIA research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional DevelopmentFund, theMobilityPlusprogram of the Ministry of Science and Higher Education, the National Sci-ence Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543,2014/15/B/ST2/03998,and2015/19/B/

(11)

ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priori-tiesResearchProgramby QatarNationalResearchFund;the Min-istryofScienceandEducation,grantno.14.W03.31.0026(Russia); the Tomsk Polytechnic University Competitiveness Enhancement Programand“Nauka”ProjectFSWW-2020-0008(Russia);the Pro-gramaEstataldeFomento de laInvestigación CientíficayTécnica de Excelencia María de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis andAristeiaprograms cofinancedbyEU-ESFandtheGreekNSRF; theRachadapisekSompotFundforPostdoctoralFellowship, Chula-longkornUniversity andthe ChulalongkornAcademicintoIts 2nd Century Project Advancement Project (Thailand); the Kavli Foun-dation;the Nvidia Corporation; the SuperMicro Corporation; the WelchFoundation,contractC-1845;andtheWestonHavens Foun-dation(USA).

References

[1] ATLASCollaboration,Observationofanewparticleinthesearchforthe stan-dardmodelHiggsbosonwiththeATLASdetectorattheLHC,Phys.Lett.B716 (2012)1,https://doi.org/10.1016/j.physletb.2012.08.020,arXiv:1207.7214. [2] CMSCollaboration, Observationofanewbosonat amassof125GeVwith

theCMSexperimentattheLHC,Phys.Lett.B716(2012)30,https://doi.org/10. 1016/j.physletb.2012.08.021,arXiv:1207.7235.

[3] CMSCollaboration,Observationofanewbosonwithmassnear125GeVin ppcollisionsat√s =7and8TeV,J.HighEnergyPhys.06(2013)081,https:// doi.org/10.1007/JHEP06(2013)081,arXiv:1303.4571.

[4] F.Englert,R.Brout,Brokensymmetryandthemassofgaugevectormesons, Phys.Rev.Lett.13(1964)321,https://doi.org/10.1103/PhysRevLett.13.321. [5] P.W.Higgs,Brokensymmetries,masslessparticlesandgaugefields,Phys.Lett.

12(1964)132,https://doi.org/10.1016/0031-9163(64)91136-9.

[6] P.W.Higgs,Brokensymmetriesandthemassesofgaugebosons,Phys.Rev.Lett. 13(1964)508,https://doi.org/10.1103/PhysRevLett.13.508.

[7] G.S.Guralnik,C.R.Hagen,T.W.B.Kibble,Globalconservationlawsandmassless particles,Phys.Rev.Lett.13(1964)585,https://doi.org/10.1103/PhysRevLett.13. 585.

[8] P.W.Higgs,Spontaneoussymmetrybreakdownwithoutmasslessbosons,Phys. Rev.145(1966)1156,https://doi.org/10.1103/PhysRev.145.1156.

[9] T.W.B.Kibble,Symmetrybreakinginnon-Abeliangaugetheories,Phys.Rev.155 (1967)1554,https://doi.org/10.1103/PhysRev.155.1554.

[10] D.Espriu,B.Yencho,LongitudinalWWscatteringinlightoftheHiggsboson discovery,Phys.Rev.D87(2013)055017,https://doi.org/10.1103/PhysRevD.87. 055017,arXiv:1212.4158.

[11] J.Chang,K.Cheung, C.-T.Lu,T.-C.Yuan,WWscatteringintheeraof post-Higgs-bosondiscovery,Phys.Rev.D87(2013)093005,https://doi.org/10.1103/ PhysRevD.87.093005,arXiv:1303.6335.

[12] B.W.Lee,C.Quigg,H.B.Thacker,Thestrengthofweakinteractionsatvery high-energiesandthe Higgsboson mass,Phys. Rev.Lett.38(1977)883,https:// doi.org/10.1103/PhysRevLett.38.883.

[13] B.W.Lee,C.Quigg,H.B.Thacker,Weakinteractionsatveryhigh-energies:the roleoftheHiggsbosonmass,Phys.Rev.D16(1977)1519,https://doi.org/10. 1103/PhysRevD.16.1519.

[14] O.J.P. Éboli, M.C. Gonzalez-Garcia, J.K. Mizukoshi, pp → jj e±μ±νν and jj e±μννat

O(

α6em)and

O(

α

4 emα

2

s)forthestudyofthequarticelectroweak gaugeboson vertexat CERN LHC,Phys. Rev. D74 (2006)073005, https:// doi.org/10.1103/PhysRevD.74.073005,arXiv:hep-ph/0606118.

[15] CMSCollaboration,CMSluminositymeasurementforthe2016data-taking pe-riod,CMSPhysicsAnalysisSummaryCMS-PAS-LUM-17-001,https://cds.cern.ch/ record/2138682,2017.

[16] CMSCollaboration,CMSluminositymeasurementforthe2017data-taking pe-riodat √s=13TeV, CMSPhysicsAnalysis SummaryCMS-PAS-LUM-17-004, https://cds.cern.ch/record/2621960,2017.

[17] CMSCollaboration,CMSluminositymeasurementforthe2018data-taking pe-riodat √s=13TeV, CMSPhysicsAnalysis SummaryCMS-PAS-LUM-18-002, https://cds.cern.ch/record/2676164,2018.

[18] CMSCollaboration,TheCMSexperimentattheCERNLHC,J.Instrum.3(2008) S08004,https://doi.org/10.1088/1748-0221/3/08/S08004.

[19] CMSCollaboration,Studyofvectorbosonscatteringandsearchfornewphysics ineventswithtwosame-signleptonsandtwojets,Phys.Rev.Lett.114(2015) 051801,https://doi.org/10.1103/PhysRevLett.114.051801,arXiv:1410.6315. [20] ATLASCollaboration,EvidenceforelectroweakproductionofW±W±jjinpp

collisionsat√s=8 TeVwiththeATLASdetector,Phys.Rev.Lett.113(2014) 141803,https://doi.org/10.1103/PhysRevLett.113.141803,arXiv:1405.6241. [21] CMSCollaboration, Observationof electroweak production of same-signW

bosonpairsinthetwojet andtwosame-signlepton finalstatein proton-protoncollisionsat√s=13TeV,Phys.Rev.Lett.120(2018)081801,https:// doi.org/10.1103/PhysRevLett.120.081801,arXiv:1709.05822.

[22] ATLASCollaboration,Observationofelectroweakproductionofasame-signW bosonpairinassociationwithtwojetsinppcollisionsat√s=13 TeVwith theATLASdetector,Phys.Rev.Lett.123(2019)161801,https://doi.org/10.1103/ PhysRevLett.123.161801,arXiv:1906.03203.

[23] ATLASCollaboration,MeasurementsofW±Z productioncrosssectionsinpp collisions at √s=8TeV withthe ATLAS detector andlimits on anomalous gaugebosonself-couplings,Phys.Rev.D93(2016)092004,https://doi.org/10. 1103/PhysRevD.93.092004,arXiv:1603.02151.

[24] CMS Collaboration,Measurement ofelectroweak WZ bosonproduction and searchfornewphysicsinWZ+twojetseventsinppcollisionsat√s=13TeV, Phys. Lett. B 795 (2019) 281, https://doi.org/10.1016/j.physletb.2019.05.042, arXiv:1901.04060.

[25] ATLASCollaboration,ObservationofelectroweakW±Z bosonpairproduction inassociationwithtwojetsinppcollisionsat√s=13TeVwiththeATLAS detector,Phys.Lett.B793(2019)469,https://doi.org/10.1016/j.physletb.2019. 05.012,arXiv:1812.09740.

[26] ATLASCollaboration,Searchfortheelectroweakdibosonproductionin associa-tionwithahigh-massdijetsysteminsemileptonicfinalstatesinpp collisions at √s=13 TeVwith theATLAS detector,Phys. Rev.D100(2019)032007, https://doi.org/10.1103/PhysRevD.100.032007,arXiv:1905.07714.

[27] ATLAS Collaboration, Search for anomalous electroweak production of WW/WZ inassociation with ahigh-massdijetsystem inpp collisionsat √

s=8TeV withtheATLASdetector,Phys.Rev.D95(2017)032001,https:// doi.org/10.1103/PhysRevD.95.032001,arXiv:1609.05122.

[28] CMS Collaboration, Search for anomalous electroweak production ofvector boson pairsinassociation with two jetsin proton-protoncollisions at 13 TeV,Phys. Lett.B798(2019)134985,https://doi.org/10.1016/j.physletb.2019. 134985,arXiv:1905.07445.

[29] CMS Collaboration, The CMStrigger system, J. Instrum. 12 (2017) P01020, https://doi.org/10.1088/1748-0221/12/01/P01020,arXiv:1609.02366. [30] J. Alwall, R. Frederix,S. Frixione, V.Hirschi, F.Maltoni, O. Mattelaer, H.S.

Shao, T. Stelzer,P. Torrielli, M. Zaro, The automated computation of tree-levelandnext-to-leadingorderdifferentialcrosssections,andtheirmatching to partonshower simulations,J. HighEnergy Phys. 07(2014)079, https:// doi.org/10.1007/JHEP07(2014)079,arXiv:1405.0301.

[31] J.Alwall,M.Herquet,F.Maltoni,O.Mattelaer,T.Stelzer,MadGraph5:going be-yond,J.HighEnergyPhys.06(2011)128,https://doi.org/10.1007/JHEP06(2011) 128,arXiv:1106.0522.

[32] R.Frederix, S. Frixione, Merging meetsmatching in MC@NLO, J. High En-ergyPhys.12(2012)061,https://doi.org/10.1007/JHEP12(2012)061,arXiv:1209. 6215.

[33] P.Artoisenet,V.Lemaitre,F.Maltoni,O.Mattelaer,Automationofthematrix elementreweightingmethod,J.HighEnergyPhys.12(2010)068,https://doi. org/10.1007/JHEP12(2010)068,arXiv:1007.3300.

[34] J.Alwall,S.Höche,F.Krauss,N.Lavesson,L.Lönnblad,F.Maltoni,M.L.Mangano, M.Moretti,C.G.Papadopoulos,F.Piccinini,S.Schumann,M.Treccani,J.Winter, M.Worek,Comparativestudyofvariousalgorithmsforthemergingofparton showersandmatrixelementsinhadroniccollisions,Eur.Phys.J.C53(2008) 473,https://doi.org/10.1140/epjc/s10052-007-0490-5,arXiv:0706.2569. [35] M.Grazzini,S.Kallweit,D.Rathlev,M.Wiesemann,W±Z productionathadron

collidersinNNLOQCD,Phys.Lett.B761(2016)179,https://doi.org/10.1016/j. physletb.2016.08.017,arXiv:1604.08576.

[36] B. Biedermann,A.Denner, M.Pellen, Largeelectroweakcorrections to vec-torbosonscatteringatthelargehadroncollider,Phys.Rev.Lett.118(2017) 261801,https://doi.org/10.1103/PhysRevLett.118.261801,arXiv:1611.02951. [37] B.Biedermann,A.Denner,M.Pellen,CompleteNLOcorrectionstoW+W+

scat-teringanditsirreduciblebackgroundattheLHC,J.HighEnergyPhys.10(2017) 124,https://doi.org/10.1007/JHEP10(2017)124,arXiv:1708.00268.

[38] A.Denner,S. Dittmaier,P.Maierhöfer, M.Pellen,C.Schwan,QCD and elec-troweakcorrectionstoWZscatteringattheLHC,J.HighEnergyPhys.06(2019) 067,https://doi.org/10.1007/JHEP06(2019)067,arXiv:1904.00882.

[39] A.Ballestrero,etal.,Precisepredictionsforsame-signW-bosonscatteringat theLHC,Eur.Phys.J.C78(2018)671,https://doi.org/10.1140/epjc/s10052-018 -6136-y,arXiv:1803.07943.

[40] S.Frixione,B.R.Webber,MatchingNLOQCDcomputationsandpartonshower simulations,J.HighEnergyPhys.06(2002)029,https://doi.org/10.1088/1126 -6708/2002/06/029,arXiv:hep-ph/0204244.

[41] P.Nason,AnewmethodforcombiningNLOQCD withshowerMonteCarlo algorithms,J.HighEnergyPhys.11(2004)040,https://doi.org/10.1088/1126 -6708/2004/11/040,arXiv:hep-ph/0409146.

[42] S.Frixione,P.Nason,C.Oleari,MatchingNLOQCDcomputationswithparton showersimulations:thePOWHEGmethod,J.HighEnergyPhys.11(2007)070, https://doi.org/10.1088/1126-6708/2007/11/070,arXiv:0709.2092.

[43] S.Alioli,P.Nason,C.Oleari,E.Re,NLOvector-bosonproductionmatchedwith shower inPOWHEG,J. HighEnergyPhys. 07(2008)060,https://doi.org/10. 1088/1126-6708/2008/07/060,arXiv:0805.4802.

[44] S.Alioli, P. Nason, C.Oleari,E. Re,A general framework for implementing NLOcalculationsinshowerMonteCarloprograms:thePOWHEGBOX,J.High Energy Phys. 06(2010)043,https://doi.org/10.1007/JHEP06(2010)043,arXiv: 1002.2581.

(12)

[45] CMSCollaboration,Measurementoftheassociatedproductionofasingletop quarkandaZbosoninppcollisionsat√s=13 TeV,Phys.Lett.B779(2018) 358,https://doi.org/10.1016/j.physletb.2018.02.025,arXiv:1712.02825. [46] T.Sjöstrand, S.Ask,J.R.Christiansen,R.Corke, N.Desai,P.Ilten,S.Mrenna,

S.Prestel,C.O.Rasmussen,P.Z.Skands,AnintroductiontoPYTHIA8.2, Com-put.Phys.Commun.191(2015)159,https://doi.org/10.1016/j.cpc.2015.01.024, arXiv:1410.3012.

[47] R.D. Ball, et al., NNPDF, Parton distributions for the LHC Run II, J. High Energy Phys.04 (2015)040,https://doi.org/10.1007/JHEP04(2015)040,arXiv: 1410.8849.

[48] R.D.Ball,etal.,NNPDF,Partondistributionsfromhigh-precisioncolliderdata, Eur.Phys.J.C77(2017)663,https://doi.org/10.1140/epjc/s10052-017-5199-5, arXiv:1706.00428.

[49] P. Skands,S. Carrazza, J. Rojo,Tuning PYTHIA 8.1:the Monash2013 tune, Eur.Phys.J.C74(2014)3024,https://doi.org/10.1140/epjc/s10052-014-3024-y, arXiv:1404.5630.

[50] CMSCollaboration,Eventgeneratortunesobtainedfromunderlyingeventand multipartonscatteringmeasurements,Eur.Phys.J.C76(2016)155,https:// doi.org/10.1140/epjc/s10052-016-3988-x,arXiv:1512.00815.

[51] CMSCollaboration,Extraction andvalidationofanewsetofCMSPYTHIA8 tunesfromunderlying-eventmeasurements,Eur.Phys.J.C80(2020)4,https:// doi.org/10.1140/epjc/s10052-019-7499-4,arXiv:1903.12179.

[52] S.Agostinelli,et al., Geant4,Geant4 —a simulationtoolkit, Nucl.Instrum. MethodsPhys.Res.,Sect.A,Accel.Spectrom.Detect.Assoc.Equip.506(2003) 250,https://doi.org/10.1016/S0168-9002(03)01368-8.

[53] CMSCollaboration, Particle-flowreconstructionand globaleventdescription withtheCMSdetector,J.Instrum.12(2017)P10003,https://doi.org/10.1088/ 1748-0221/12/10/P10003,arXiv:1706.04965.

[54] M.Cacciari,G.P.Salam,G.Soyez,Theanti-kT jetclusteringalgorithm,J.High Energy Phys. 04(2008) 063,https://doi.org/10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

[55] CMSCollaboration,JetenergyscaleandresolutionintheCMSexperimentin ppcollisionsat8TeV,J.Instrum.12(2017)P02014,https://doi.org/10.1088/ 1748-0221/12/02/P02014,arXiv:1607.03663.

[56] CMSCollaboration,Jetenergyscaleandresolutionperformancewith13 TeV data collectedbyCMS in2016-2018, CMSDetector PerformanceSummary CMS-DP-2020-019,https://cds.cern.ch/record/2715872,2020.

[57]CMSCollaboration,PileupmitigationatCMSin13TeVdata,2020,acceptedfor publicationinJINST,arXiv:2003.00503.

[58] CMSCollaboration,Performanceofmissingtransversemomentum reconstruc-tion inproton-protoncollisions at √s=13TeV using the CMSdetector, J. Instrum. 14(2019)P07004, https://doi.org/10.1088/1748-0221/14/07/P07004, arXiv:1903.06078.

[59] M.Cacciari,G.P.Salam,G.Soyez,FastJetusermanual,Eur.Phys.J.C72(2012) 1896,https://doi.org/10.1140/epjc/s10052-012-1896-2,arXiv:1111.6097. [60] CMSCollaboration,Identificationofheavy-flavourjetswiththeCMSdetectorin

ppcollisionsat13TeV,J.Instrum.13(2018)P05011,https://doi.org/10.1088/ 1748-0221/13/05/P05011,arXiv:1712.07158.

[61] CMSCollaboration,Performanceofelectronreconstructionandselectionwith the CMSdetector in proton-protoncollisions at √s=8TeV, J. Instrum.10 (2015) P06005, https://doi.org/10.1088/1748-0221/10/06/P06005, arXiv:1502. 02701.

[62] CMSCollaboration,PerformanceoftheCMSmuondetectorandmuon recon-structionwithproton-protoncollisionsat √s=13TeV,J.Instrum.13(2018) P06015,https://doi.org/10.1088/1748-0221/13/06/P06015,arXiv:1804.04528. [63] CMSCollaboration,MeasurementsofpropertiesoftheHiggsbosondecayingto

aWbosonpairinppcollisionsat√s=13TeV,Phys.Lett.B791(2019)96, https://doi.org/10.1016/j.physletb.2018.12.073,arXiv:1806.05246.

[64] CMS Collaboration,Performance ofCMSmuon reconstructionincosmic-ray events,J.Instrum.5(2010)T03022, https://doi.org/10.1088/1748-0221/5/03/ T03022,arXiv:0911.4994.

[65] CMS Collaboration, Performance of the reconstruction and identification of high-momentum muons in proton-proton collisions at √s= 13 TeV, J. Instrum.15 (2020)P02027, https://doi.org/10.1088/1748-0221/15/02/P02027, arXiv:1912.03516.

[66] ParticleDataGroup,M.Tanabashi,etal.,Reviewofparticlephysics,Phys.Rev. D98(2018)030001,https://doi.org/10.1103/PhysRevD.98.030001.

[67] D.L.Rainwater,R.Szalapski,D.Zeppenfeld,Probingcolorsingletexchangein Z +twojeteventsatthe CERNLHC,Phys. Rev.D54(1996)6680,https:// doi.org/10.1103/PhysRevD.54.6680,arXiv:hep-ph/9605444.

[68] CMS Collaboration, Electron and photonperformance inCMS with thefull 2017datasampleandadditional2016highlightsfortheCALOR2018 confer-ence,CMSDetectorPerformanceSummaryCMS-DP-2018-017,https://cds.cern. ch/record/2320638,2018.

[69] ATLASCollaboration,Measurementoftheinelasticproton-protoncrosssection at√s=13 TeVwiththeATLASdetectorattheLHC,Phys.Rev.Lett.117(2016) 182002,https://doi.org/10.1103/PhysRevLett.117.182002,arXiv:1606.02625. [70] CMSCollaboration,Measurementoftheinelasticproton-protoncrosssection

at√s=13 TeV,J.HighEnergyPhys.07(2018)161,https://doi.org/10.1007/ JHEP07(2018)161,arXiv:1802.02613.

[71] CMSCollaboration,MeasurementsofdifferentialZbosonproductioncross sec-tionsinproton-protoncollisionsat√s =13TeV,J.HighEnergyPhys.12(2019) 061,https://doi.org/10.1007/JHEP12(2019)061,arXiv:1909.04133.

[72] J.Butterworth,S.Carrazza,A.Cooper-Sarkar,A.DeRoeck,J.Feltesse,J.Forte, StefanoGao,S.Glazov,J.Huston,Z.Kassabov,PDF4LHCrecommendationsfor LHCRunII,J.Phys.G43(2016)023001,https://doi.org/10.1088/0954-3899/43/ 2/023001,arXiv:1510.03865.

[73] T.Junk,Confidencelevelcomputationforcombiningsearcheswithsmall statis-tics,Nucl.Instrum.MethodsPhys.Res.,Sect.A,Accel.Spectrom.Detect. As-soc. Equip. 434(1999) 435, https://doi.org/10.1016/S0168-9002(99)00498-2, arXiv:hep-ex/9902006.

[74] A.L.Read,Presentationofsearchresults:theCLstechnique,J.Phys.G28(2002)

2693,https://doi.org/10.1088/0954-3899/28/10/313.

[75]H.Voss, A.Höcker,J.Stelzer,F.Tegenfeldt,TMVA,thetoolkitfor multivari-atedata analysiswith ROOT,in: XIthInternationalWorkshop onAdvanced ComputingandAnalysisTechniquesinPhysicsResearch(ACAT),2007,p. 40, arXiv:physics/0703039,PoS(ACAT)040.

[76] G.Cowan,K.Cranmer,E.Gross,O.Vitells,Asymptoticformulaefor likelihood-based testsofnew physics, Eur.Phys. J.C71 (2011)1554, https://doi.org/ 10.1140/epjc/s10052-011-1554-0,arXiv:1007.1727,Erratum:https://doi.org/10. 1140/epjc/s10052-013-2501-z.

[77] C.Degrande,N.Greiner,W.Kilian,O.Mattelaer,H.Mebane,T.Stelzer,S. Wil-lenbrock,C.Zhang,Effectivefieldtheory:amodernapproachtoanomalous couplings,Ann.Phys.335(2013)21,https://doi.org/10.1016/j.aop.2013.04.016, arXiv:1205.4231.

[78] J.Kalinowski,P.Kozow,S.Pokorski,J.Rosiek,M.Szleper,S.Tkaczyk,Same-sign WWscatteringattheLHC:canwediscoverBSMeffectsbeforediscoveringnew states?,Eur.Phys.J.C78(2018)403,https://doi.org/10.1140/epjc/s10052-018 -5885-y,arXiv:1802.02366.

[79] K.Arnold,etal.,VBFNLO:apartonlevelMonteCarloforprocesseswith elec-troweakbosons,Comput.Phys.Commun.180(2009)1661,https://doi.org/10. 1016/j.cpc.2009.03.006,arXiv:0811.4559.

[80]J.Baglio,etal.,VBFNLO:apartonlevelMonteCarloforprocesseswith elec-troweakbosons–manualforversion2.7.0,arXiv:1107.4038,2011.

[81]J.Baglio,J.Bellm,F.Campanario,B.Feigl,J.Frank,T.Figy,M.Kerner,L.D.Ninh, S.Palmer,M.Rauch,R.Roth,F.Schissler,O.Schlimpert,D.Zeppenfeld,Release note–VBFNLO2.7.0,arXiv:1404.3940,2014.

TheCMSCollaboration

A.M. Sirunyan

,

A. Tumasyan

YerevanPhysicsInstitute,Yerevan,Armenia

W. Adam,

F. Ambrogi,

T. Bergauer,

M. Dragicevic,

J. Erö,

A. Escalante Del Valle,

R. Frühwirth

1

,

M. Jeitler

1

,

N. Krammer,

L. Lechner,

D. Liko,

T. Madlener,

I. Mikulec,

F.M. Pitters,

N. Rad,

J. Schieck

1

,

R. Schöfbeck,

M. Spanring,

S. Templ,

W. Waltenberger,

C.-E. Wulz

1

,

M. Zarucki

(13)

V. Chekhovsky,

A. Litomin,

V. Makarenko,

J. Suarez Gonzalez

InstituteforNuclearProblems,Minsk,Belarus

M.R. Darwish

2

,

E.A. De Wolf,

D. Di Croce,

X. Janssen,

T. Kello

3

,

A. Lelek,

M. Pieters,

H. Rejeb Sfar,

H. Van Haevermaet,

P. Van Mechelen,

S. Van Putte,

N. Van Remortel

UniversiteitAntwerpen,Antwerpen,Belgium

F. Blekman,

E.S. Bols,

S.S. Chhibra,

J. D’Hondt,

J. De Clercq,

D. Lontkovskyi,

S. Lowette,

I. Marchesini,

S. Moortgat,

A. Morton,

Q. Python,

S. Tavernier,

W. Van Doninck,

P. Van Mulders

VrijeUniversiteitBrussel,Brussel,Belgium

D. Beghin,

B. Bilin,

B. Clerbaux,

G. De Lentdecker,

H. Delannoy,

B. Dorney,

L. Favart,

A. Grebenyuk,

A.K. Kalsi,

I. Makarenko,

L. Moureaux,

L. Pétré,

A. Popov,

N. Postiau,

E. Starling,

L. Thomas,

C. Vander Velde,

P. Vanlaer,

D. Vannerom,

L. Wezenbeek

UniversitéLibredeBruxelles,Bruxelles,Belgium

T. Cornelis,

D. Dobur,

I. Khvastunov

4

,

M. Niedziela,

C. Roskas,

K. Skovpen,

M. Tytgat,

W. Verbeke,

B. Vermassen,

M. Vit

GhentUniversity,Ghent,Belgium

G. Bruno,

F. Bury,

C. Caputo,

P. David,

C. Delaere,

M. Delcourt,

I.S. Donertas,

A. Giammanco,

V. Lemaitre,

K. Mondal,

J. Prisciandaro,

A. Taliercio,

M. Teklishyn,

P. Vischia,

S. Wuyckens,

J. Zobec

UniversitéCatholiquedeLouvain,Louvain-la-Neuve,Belgium

G.A. Alves,

G. Correia Silva,

C. Hensel,

A. Moraes

CentroBrasileirodePesquisasFisicas,RiodeJaneiro,Brazil

W.L. Aldá Júnior,

E. Belchior Batista Das Chagas,

W. Carvalho,

J. Chinellato

5

,

E. Coelho,

E.M. Da Costa,

G.G. Da Silveira

6

,

D. De Jesus Damiao,

S. Fonseca De Souza,

H. Malbouisson,

J. Martins

7

,

D. Matos Figueiredo,

M. Medina Jaime

8

,

M. Melo De Almeida,

C. Mora Herrera,

L. Mundim,

H. Nogima,

P. Rebello Teles,

L.J. Sanchez Rosas,

A. Santoro,

S.M. Silva Do Amaral,

A. Sznajder,

M. Thiel,

E.J. Tonelli Manganote

5

,

F. Torres Da Silva De Araujo,

A. Vilela Pereira

UniversidadedoEstadodoRiodeJaneiro,RiodeJaneiro,Brazil

C.A. Bernardes

a

,

L. Calligaris

a

,

T.R. Fernandez Perez Tomei

a

,

E.M. Gregores

b

,

D.S. Lemos

a

,

P.G. Mercadante

b

,

S.F. Novaes

a

,

Sandra

S. Padula

a

a

UniversidadeEstadualPaulista,SãoPaulo,Brazil b

UniversidadeFederaldoABC,SãoPaulo,Brazil

A. Aleksandrov,

G. Antchev,

I. Atanasov,

R. Hadjiiska,

P. Iaydjiev,

M. Misheva,

M. Rodozov,

M. Shopova,

G. Sultanov

InstituteforNuclearResearchandNuclearEnergy,BulgarianAcademyofSciences,Sofia,Bulgaria

M. Bonchev,

A. Dimitrov,

T. Ivanov,

L. Litov,

B. Pavlov,

P. Petkov,

A. Petrov

UniversityofSofia,Sofia,Bulgaria

W. Fang

3

,

Q. Guo,

H. Wang,

L. Yuan

BeihangUniversity,Beijing,China

M. Ahmad,

Z. Hu,

Y. Wang

Şekil

Fig. 2. Representative Feynman diagrams of the QCD-induced production of W ± W ± (left) and WZ (right) boson pairs decaying to leptons, and two jets.
Fig. 3. Distributions of m jj (upper left) and m  (upper right) in the W ± W ± SR, and the distributions of m jj (lower left) and BDT score (lower right) in the WZ SR
Fig. 4. The measured absolute (left) and normalized (right) W ± W ± cross section measurements in bins of m jj (upper), m  (middle), and p max T (lower)
Fig. 5. The measured absolute (left) and normalized (right) WZ cross section measurements in bins of m jj
+2

Referanslar

Benzer Belgeler

genitals of the terrible mother; he saw this head as representing the woman’s lack of penis, even as the penis is represented through her sneaky hair.’ (3). Her feelings for

38 State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People’s Republic of China 39 Sun Yat-Sen University, Guangzhou 510275, People’s Republic

gösterilmelidir. Ancak ebeveyn bağlanma stili, ebeveyn çocuk yetiĢtirme tutumu ve çocuklarda görülen davranıĢ problemleri arasındaki iliĢkilerin; iliĢki

Çünkü özerk bölgelere ayrılan İspanya, Katalanların ayrılmasıyla kendi içinde bir domino etkisi yaratarak özerk bölgelerin bağımsızlık

Conclusion: These results support the validity of the Dokuz Eylul Cognitive State total score for the purpose of detecting and monitoring the progression of receiver

(2018) ‘Computational investigation of the velocity and temperature fields in corrugated heat exchanger channels using RANS based turbulence models with experimental

Kamu hizmetlerinin sunumunda kamu sektörü, özel sektör ve kâr amac gütmeyen sektör örgütlerinin ortakl na ili kin yeni bir örgütlenme modeli olarak önerilen kamu yarar

Analiz sonucunda beta değeri p&lt;O.Ol anlamlılık düzeyinde 0.352 olarak hesaplanmıştır. Bu sonuçlar, pozitif duygusallığın algılanan dağıtım adaleti üzerinde pozitif