• Sonuç bulunamadı

Search For Dijet Resonances Using Events With Three Jets İn Proton-Proton Collisions At Root S=13 Tev

N/A
N/A
Protected

Academic year: 2021

Share "Search For Dijet Resonances Using Events With Three Jets İn Proton-Proton Collisions At Root S=13 Tev"

Copied!
24
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Research Collection

Journal Article

Search for dijet resonances using events with three jets in

proton-proton collisions at s=13TeV

Author(s):

CMS Collaboration; Sirunyan, Albert M.; Backhaus, Malte; Berger, Pirmin; Chernyavskaya, Nadezda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dorfer, Christian; Gomez Espinosa, Tirso Alejandro; Grab, Christophorus; Hits, Dmitry; Lustermann, Werner; Manzoni, Riccardo A.; Meinhard, Maren T.; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Pigazzini, Simone; Ratti, Maria G.; Reichmann, Michael; Reissel, Christina; Reitenspiess, Thomas; Ristic, Branislav; Ruini, Daniele; Sanz Becerra, Diego A.; Schönenberger, Myriam; Shchutska, Lesya; Vesterbacka Olsson, Minna L.; Wallny, Rainer; Zhu, De H.; et al.

Publication Date:

2020-06-10

Permanent Link:

https://doi.org/10.3929/ethz-b-000412724

Originally published in:

Physics Letters B 805, http://doi.org/10.1016/j.physletb.2020.135448

Rights / License:

Creative Commons Attribution 4.0 International

This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use.

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Search

for

dijet

resonances

using

events

with

three

jets

in

proton-proton

collisions

at

s

=

13 TeV

.TheCMS Collaboration

CERN,Switzerland

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received9November2019

Receivedinrevisedform16April2020

Accepted19April2020

Availableonline24April2020

Editor:M.Doser Keywords: CMS Physics Dijets Resonances

Asearchforanarrowresonancewithamassbetween350and700 GeV,and decayingintoapairof jets, isperformedusingproton-protoncollisionevents containingatleast threejets. Thedata sample correspondstoanintegratedluminosityof18.3 fb−1recordedats=13 TeV withthe CMSdetector. Dataare collectedwithatechniqueknownas “datascouting”, inwhichthe eventsare reconstructed, selected, and recordedatahigh rate inacompact formbythe high-leveltrigger. The three-jet final stateprovidessensitivitytolowerresonancemassesthaninprevioussearchesusingthedata scouting technique. The spectrum of the dijet invariant mass, calculated from the two jets with the largest transversemomentaintheevent,isusedtosearchforaresonance.Nosignificantexcessoverasmoothly fallingbackgroundisfound.Limitsat95%confidencelevelaresetontheproductioncrosssectionofa narrowdijetresonanceandcomparedwiththecrosssectionofavectordarkmattermediatorcouplingto darkmatterparticlesandquarks.Translatingtoamodelwherethenarrowresonanceinteractsonlywith quarks,upperlimits onthiscouplingrangebetween0.10and 0.15,dependingontheresonancemass. Theseresultsrepresent themoststringentupper limits inthe massrangebetween350and 450 GeV obtainedwithaflavor-inclusivedijetresonancesearch.

©2020TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Manymodelsofnewphysicspredicttheexistenceofnew mas-siveparticlescoupledtoquarks.Theproductionanddecayofthese particles into two jets, known asdijets, have been searched for since the first high-energy hadron colliders came into operation [1–9].Insomemodels,theseparticlesactasmediatorslinkingthe standardmodel(SM)tonewphysicssectorscontainingdark mat-ter (DM)particle candidates [10–13]. New mediators interacting withbothquarksandDMparticles(χ)havebeensearchedfor us-ingdifferentmethods:inthedirectsearchesforDM,bymeasuring therecoil ofan SM particlecaused by the scatteringwith aDM particle (χq→χq, t-channel) [14–24]; with astrophysics detec-tors, by looking for SM particles produced through the annihila-tionofDMparticles(χ χ→qq,s-channel)[25–39];andathadron colliders,bydetecting the momentumimbalance duetothe pro-ductionofDMparticles(qq→χ χ,s-channel)[40–46].Thesearch fordijetresonancesat hadroncolliders (qq→qq, s-channel)can be compared with such DM searches and the results are partic-ularlysensitivefor modelswhere thedecayof themediator into DMparticlesisforbiddenforkinematicreasons.Thesearchfor

di- E-mailaddress:cms-publication-committee-chair@cern.ch.

jet resonances is also sensitive to the signals predicted by other models[47–57].

Experiments at the CERN LHC have used various techniques to search for resonances in the dijet invariant mass spectrum. From searches where both jetsare individually resolved, the AT-LAS andCMS Collaborations have set limits for resonances with masses above 450 and 600 GeV, respectively, in √s=13 TeV proton-protoncollisions[58–60],andabove 250and500 GeV, re-spectively, in8 TeV collisions[61,62]. Inthe sub-TeVmassrange, another search by the ATLAS Collaboration at 13 TeV for dijet resonances, produced in association with a photon from initial-state radiation, has set limits in the mass region between 225 and1100 GeV [63]. A search by the CMS Collaborationat 8 TeV for resonances decaying into two bottom quarks, experimentally identified as b-tagged jets, has set limits in the mass range of 325–1200 GeV [64]. Finally, the ATLAS and CMS Collaborations havesetlimitsinthemassrangebelow220and450 GeV, respec-tively,fromsearchesforLorentz-boostedresonancesdecayinginto aquark-antiquarkpairreconstructedasasinglejet[65–67].

Thispaperpresents asearch fora dijetresonanceinthree-jet eventsthat issensitive tonarrowresonances withmassbetween 350and700 GeV.The searchisbasedon datafrompp collisions at√s=13 TeV collected in2016,corresponding toan integrated luminosityof18.3 fb−1.Toobtainalargetriggerefficiencyinthe https://doi.org/10.1016/j.physletb.2020.135448

0370-2693/©2020TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby

(3)

massrangeof 350–700 GeV,we selecta three-jetfinal state and utilizeaspecialhigh-ratetriggerwithlow jet pT thresholds.This trigger uses a technique known as “data scouting” described in Section3.Thissearchislimitedtodatacollectedintheyear2016 in orderto take advantage of the low trigger thresholds usedin thatdataperiod.After2016,thesethresholdswereraisedinorder to limit the triggerrate increase dueto the larger instantaneous luminosityandpileup.

2. TheCMSdetector

AdetaileddescriptionoftheCMSdetector,togetherwitha def-inition ofthe coordinatesystemusedand therelevantkinematic variables,canbefoundinRef. [68].ThecentralfeatureoftheCMS apparatusisasuperconductingsolenoidof6 minternal diameter, providing a magnetic field of 3.8 T. Withinthe solenoid volume area siliconpixel andstriptracker,a lead tungstatecrystal elec-tromagneticcalorimeter(ECAL),andabrassandscintillatorhadron calorimeter (HCAL), each composed of a barrel and two endcap sections.Muons are detected in gas-ionization chambers embed-dedinthesteelflux-returnyokeoutsidethesolenoid.

The jets used by thisanalysis are calorimeter-based jets that are reconstructed from the energy deposits in the calorimeter towers, clusteredusing the anti-kT algorithm [69,70] witha dis-tanceparameterof0.4.Inthisprocess,thecontributionfromeach calorimetertowerisassignedamomentum,theabsolutevalueand thedirectionofwhicharefoundfromtheenergymeasuredinthe tower,andthecoordinatesofthegeometricalcenterofthetower. Therawjetenergyisobtainedfromthesumofthetowerenergies, andtheraw jet momentumfrom thevectorialsumof thetower momenta. The rawjet energies are then corrected to establisha uniformrelative response ofthe calorimeter inpseudorapidity η and a calibrated absoluteresponse in transverse momentum pT. The calorimetricjet energyresolution is typically 40% ata pT of 10 GeV, 12% at 100 GeV,and 5% at 1 TeV,resulting in a calori-metric dijet mass resolution of about 10% for resonance masses between350 and 700 GeV. Events of interest are selected using atwo-tieredtriggersystem [71].Thefirst level(L1),composed of customhardware processors,usesinformationfromthe calorime-ters and muon detectors to select events at a rate of around 100 kHzwithinatimeintervaloflessthan4 μs.Thesecondlevel, known asthe high-level trigger(HLT), consistsof a farmof pro-cessorsrunningaversionofthefulleventreconstructionsoftware optimizedforfastprocessing,andreducestheeventratetoaround 1 kHzbeforedatastorage.

3. Dataandsimulatedeventsamples

We selected events requiring HT>240 GeV at the L1 trigger and HT>250 GeV attheHLT, where HT is thescalar pT sumof jetswith pT>40 GeV and|η|<2.5.The rateofthistriggerwas about4 kHz ataninstantaneousluminosity of1×1034 cm−2s−1. The amount of data generated by such a high-rate trigger alone using the standard data-taking format would have saturated the computingand storage systems of the CMSexperiment. For this reason, we useda specialdata-taking technique, which consisted ofsavingonlythecalorimeter-basedjetsreconstructedbytheHLT, insteadofthefull detectorreadout.Thesize ofthisreduceddata formatisabout0.5%ofthefulleventsize.Thistechniqueisknown as“datascouting”andwas usedinprevious CMSdijetresonance searches[60,62].

Data scouting allows the analysisof a very large rate ofdata passingtheHLT trigger,onlylimitedbytheoverall rateoftheL1 trigger. Tokeep a constant rate, theL1 trigger HT thresholdwas raised from 240to 360 GeV as the instantaneous luminosity in-creased.Thissearch islimitedtodata collectedin 2016withthe

lower L1trigger threshold HT>240 GeV, in orderto obtain the maximum sensitivityforlow mass resonances.From a sample of eventscollectedwithaminimum-biastriggerandpassingthe se-lection discussed below, we measured a trigger efficiency larger than99%foradijetinvariantmassgreaterthan290 GeV.

Signal events correspondingto a narrowvector resonance de-cayingintoquark-antiquark pairswere generatedusingthe Mad-Graph5_amc@nloversion2.2.2generatoratleadingorder[72,73], withthe pythia 8.205generator[74] incorporatingtheCUETP8M1 underlyingeventtune[75] providingthedescriptionof fragmenta-tionandhadronization.Thegeneratedresonancewidthis negligi-blecompared tothe experimentaldijetmassresolution, whichis about10%. Thedetailedsimulation oftheCMS detectorresponse is performed using the Geant4 package [76]. The simulated sig-naleventsincludemultipleoverlappingpp interactionsperbunch crossing (pileup)asobservedinthe data.Additionally, toprovide a framework for interpreting the results in terms of a DM me-diator, signalcrosssectionswere computedatleading orderwith MadGraphforavectorbosondecayingintoaquark-antiquarkpair, withcouplingtoquarksgq=0.25,couplingtoDMparticles gDM= 1.0, andthe mass of DM particles 1 GeV. The NNPDF2.3LO [77] partondistributionfunctionswereused.

4. Eventreconstructionandselection

Thediscriminatingvariableinthisanalysisistheinvariantmass ofthetwojetsoriginatingfromtheresonancedecay.Thisvariable iscalculatedusingjets, reconstructedattheHLTfromenergy de-posits inthe calorimeter, andpassing the selection pT>30 GeV and |η|<2.5. Spurious jets originating from instrumental noise are rejected by requiring each jet to be detected by both ECAL and HCAL, with at least 5% of the jet energy in each of the two types of calorimeter.We form “wide jets”, by clusteringthe jetsalreadyreconstructedbytheHLT,usingtheanti-kT algorithm withadistanceparameterof1.1.Thisalgorithmimprovesthedijet mass resolution and the resonance search sensitivity, by recom-bining jets from hard final-state radiation to obtain a reduced number of wide jets. A similar algorithm using a merging dis-tance of R=√(η)2+ (ϕ)2<1.1 wasemployed inprevious CMSsearches[60,62],butitonlyreconstructed twowidejetsper event.Thewide-jetcalibrationsforthe2016datascoutingsample were already obtainedin the low-mass dijet search of Ref. [60], andthereforeweapply thesamecalibrations.Werequireatleast three widejets, eachwith pT>72 GeV,inordertoselectevents that have large HT and pass the trigger selections. This require-ment is particularly effective in selecting events with low dijet invariant mass,whichwouldberejectedifonlytwojetswere re-quired.Applying a commonthresholdto the pT ofthe threejets enabled us to minimize the value of the lowest resonance mass to which we are sensitive. The pT thresholdof the three-jet se-lection has been chosen with a method that is explained in the nextsection.Finally,thetwoleadingwidejetsarerequiredtohave |η1−η2|<1.1 toreduce thequantum chromodynamics multijet background,whichisdominatedbyt-channelproductionofjets.

Since we require at least three wide jets in the event, there are multiplewaystoselectthedijetsystem, i.e.,the pairofwide jets originatingfromthe resonance decay. We selectasthe dijet the two wide jets withthe largest andthe next-to-largest pT in theevent. Thisselectioniscorrectin70 (50)%ofsimulatedsignal eventswitharesonancemassof700(350) GeV.Wrong combina-tions arisebecauseeitheranenergeticinitial-stateradiationjetis includedinthedijetselection,oranenergeticjetfromfinal-state radiationisemittedwithadistanceR>1.1 fromtheleadingjets andthereforeexcludedfromthereconstructionofthetwoleading wide jets. We investigated alternative criteriato selectthe dijet,

(4)

Fig. 1. Dijetmassspectrum(points)comparedtoafittedparameterizationofthe background(solidcurve).Thebackgroundfitisperformedintherange290<mjj<

1000 GeV.Thehorizontal barsshowthe widths ofeach binindijetmass. The

dashedlinesrepresentthedijetmassdistributionfrom400,550,and700 GeV

res-onancesignalsexpectedtobeexcludedat95%CLbythisanalysis.Thelowerpanel

showsthedifferencebetweenthedataandthefittedparametrization,dividedby

thestatisticaluncertaintyofthedata.

suchaschoosingthe jetpairwiththelargestnorm ofthe vecto-rialsumpT.Wefoundthatsuchalternativecriteriadohavebetter performanceiftheresonancepT isgreaterthanhalfthemass,but worse performance forthis search. This is because, foraccepted events,the pT of the resonanceis about 150 GeV, which is less thanhalftheresonancemassconsideredinthissearch.

5. Dijetmassspectrumfit

Fig.1showsthedijetmass(mjj)spectrum. Thebackgroundis modeledwiththefollowinganalyticfunction,

dσ dmjj=

p0(p2x−1)

xp1+p3log x+p4log2x

, (1)

wherex isdefinedasmjj/s,and p0, p1, p2, p3,and p4 arefree parametersofthefit.Thisfunctionissimilar tothatusedby pre-viousdijetsearches[58–62],withamodificationtothenumerator. Thenew parameterizationbetter fits theshape ofthe dijetmass spectrumforthree-jetevents,whichincludestheeffectofasmall inefficiency topass thetrigger forevents atthelowest valuesof dijet mass. The function has been chosen from a pool of func-tions using a Fisher test [78] with a 95% confidence level (CL). Thepool offunctionsis obtainedbychangingthe numberof de-greesoffreedom ofthepolylogarithmicfunction intheexponent of the denominator of Eq. (1). We perform a maximum likeli-hoodfitof thefunction inEq. (1) toour datainthe massrange 290<mjj<1000 GeV . The chi-squareper numberof degreesof freedom of the fit is χ2/NDF=19.3/13, corresponding to a p-valueof 0.11.Fig.1 alsoshowstheexpecteddijetmass distribu-tionsofaresonancesignalforthreedifferentvaluesofresonance mass.Thedatadistributioniswellmodeledbythebackground pa-rameterizationandthereisnoevidenceforadijetresonance.

ThedijetmassbinwidthsinFig.1arethesameasinthe pre-viousdijetsearches,exceptforthefirstbinwhichismorenarrow, startingatadijetmassvalueof290 GeV.Thislowerboundofthe fitrange and the jet pT threshold forthe three-jet selection are determinedinthefollowing way.Wemeasure thedistributionof

thedijetmassinasignal-depletedregiondefinedbyreplacingthe requirement|η1−η2| <1.1 withtherequirement|η1+η2| <1.1. The dijet mass in the signal-depleted region is calculated after flipping the sign of η ofthe second jet—the sign of the z

com-ponent of the momentum of the subleading jet is reversed and then the dijetmass is calculated. Forbackground events,the di-jet mass distribution inthe signal-depleted region, so calculated, is closely similar to the dijet mass distribution in the signal re-gionbecausethevariables η1−η2 inthesignalregionand η1+η2 in the signal-depleted region have approximately the same uni-form distribution between −1.1 and 1.1. The signal-depleted re-gion contains aboutthe same numberof backgroundevents and 50% fewer signal events, and 35% of the observed events in the signal-depleted region are also in the signal region. Small data-driven corrections, which changethe observed numberof events by lessthan 5%,are applied to thedijetmass distributionin the signal-depletedregiontomakeitthesameasthebackground dis-tributioninthesignalregion.Thesecorrections,whichareapplied as a function of the product of the two largest values of jet pT inthe event,are obtainedby fittingananalytic function describ-ing this product to the ratio of the numbers of events passing the signal selection to the number of events passing the signal-depleted selection. The lower edge of dijetmass included inthe search, 290 GeV, has been chosen to be the lowest value ofthe corrected dijet mass in the signal-depleted region for which the fitofthebackgroundparameterizationhasaKolmogorov–Smirnov (KS)probability [79–81] largerthan33%. The pT thresholdofthe three-jet selection,72 GeV, hasbeenchosen toobtainthelowest possible value forthecorrected dijetmassin thesignal-depleted region that could be included in the fitand satisfy the sameKS test. We verified that an injected signal with a strength corre-spondingtothe95% CLexpectedupperlimit doesnotchangethe choiceofthefitrangeandthethree-jetselection.

6. Systematicuncertainties

The asymptotic approximation [82] of the modified frequen-tist CLs method [83,84] is utilized to set upper limits on signal cross sections, following the prescription described in Ref. [85]. We use the profiled likelihood ratio as test statistic. The likeli-hood is the product of the Poisson probabilities for each of the bins in Fig. 1.The expected background yield of each binis de-terminedfromtheanalytic functiondescribed inEq. (1).The five parameters of the analytic function are profiled andtheir uncer-tainties from the fitto dataare thedominant uncertainties. The shapesofthedijetmassdistributionsforsignalsareobtainedfrom simulations.Thesystematicuncertaintiesaffectingthesignalshape andnormalizationhaveaminorimpactandareincorporatedinto the likelihood function via nuisance parameters with log-normal probability distributions.We accountforthe uncertaintyof2% in the jet energy scale[86] by shifting the dijetmass ofthe signal distributionby±2%.Theeffectofthejetenergyresolution uncer-tainty is includedby varying thewidth ofthe signal distribution by ±10% [86].The signalacceptancedependssignificantlyon the presenceofajetfrominitial-stateorfinal-stateradiation.We esti-matedtheuncertaintyofthesimulationrelatedtothisdependence bymodifyingbyafactoroftwoboththerenormalization(μR)and

thefactorizationscales(μF) oftheinitial-stateandfinal-state

ra-diation usingthe methoddescribed in Ref. [87].This uncertainty has a negligible effect on the shape of the dijet mass distribu-tion of the signal, and changes the normalization by 10%. The uncertainty in the integrated luminosity is 2.5% [88] and affects directly the signal normalization. The systematicuncertainty due to the choice of the backgroundfunction has been estimatedby measuring the signal yield in pseudo-data spectra generated us-ing alternative backgroundfunctions. The measured crosssection

(5)

Table 1

Acceptanceforavector resonancedecayinginto adijetas afunctionofthe resonancemass. The

acceptance iscalculatedusingsignalsimulationsfortheanalysisselection,namelythreewidejets

with pT>72 GeV and|η| <2.5,and|η1−η2| <1.1.Theerrorsaredominatedbytheuncertainty

relatedtothemodelingofthejetradiationusedinsignalsimulations.Weestimatedthisuncertainty

bymodifyingbyafactoroftwoboththerenormalization(μR)andthefactorizationscales(μF)of

theinitial-stateandfinal-stateradiation[87].

Resonance mass 300 GeV 400 GeV 500 GeV 600 GeV 800 GeV

Acceptance (4.0±0.4)% (6.7±0.7)% (9.2±0.9)% (10.9±1.1)% (13.6±1.4)%

Fig. 2. Upperlimitsat95%CLontheproductofthecrosssection,branching

frac-tion,andacceptanceasafunctionofresonancemassforanarrowvectorresonance

decayingintoapairofquarkjets.Theacceptanceiscalculatedfortheanalysis

se-lection,namelythreewidejetswithpT>72 GeV and|η|<2.5,and|η1−η2| <1.1.

Theobservedlimits(solidcurve),expectedlimits(dashedcurve)andtheirvariation

atthe1and2standarddeviationlevels(shadedbands)areshown.The

dashed-dottedcurveshowstheexpectedcrosssectiontimesacceptanceforaDMmediator

(seetext).

in each caseis the same as that of the injected signal, and this systematicuncertaintyisfoundtobenegligible.Wetestedthe ca-pabilityofthealternativefunctionstofitthemultijetbackground by fitting the signal-depleted region described in Section 5. The systematicuncertaintiesrelatedtopileup,partondistribution func-tions,underlyingevents,andpartonshowermodelsarealsofound tobenegligible.

7. Results

Fig.2shows,asafunctionofresonancemass,observedand ex-pectedupperlimitsat95%CLontheproductofthecrosssection, branching fraction, and acceptance ofa narrow vector resonance decaying to jets. Table 1 shows the acceptance calculated using signalsimulations. Limitsarepresentedforresonancemasses be-tween350and700 GeV,forwhichtheacceptanceofthedijetmass requirement290<mjj<1000 GeV islargeenoughtoconductthe search.Fig.3showsthatthe95% CLupperlimitsonthecoupling

gq of a vector resonancethat decays only toquarks, defined ac-cordingtotheconvention ofRef. [89],arebetween0.10and0.15. Figs.2and3comparetheupperlimitsonthecrosssectionandthe coupling gq,respectively, withthepredictions ofa modelwitha DMmediator that decaysto DMparticles withmassesof1 GeV, and also decays to quarks. This analysis excludes a benchmark modelofsuch aDMmediator withcouplingtoquarks gq=0.25 and coupling to DM particles gDM=1, over the complete mass range 350to 700 GeV. In our notation, gq is the coupling fora modelin which the resonancecouples to quarksonly, and gq is the couplingto quarksfor a model in which the resonancealso

Fig. 3. Upper limitsat95%CLontheuniversalquarkcoupling gq,asafunction

ofresonancemass,foranarrowvectorresonancethatonlycouplestoquarks.The

observedlimits(solidcurve),expectedlimits(dashedcurve)andtheirvariationat

the1and2standarddeviationlevels(shadedbands)areshown.Thedashed-dotted

curveshowsthecouplingstrengthforwhichthecrosssectionfordijetproduction

inthismodelisthesameasforaDMmediator(seetext).

couples toDMparticles.Weconvert gq into gq usingthe follow-ingrelationship

gq = gq

1+1/3Nq(Mmed)g2q

 (2)

whereNq(Mmed)istheeffectivenumberofquarks

Nq(Mmed)=  q  1−4 m 2 q Mmed2 1/2 1+2 m 2 q M2med  (3)

andtheindexq runsoverthequarkflavors(u,d,s,c,b,t)having

mq<Mmed/2 [11,60]. 8. Summary

A search fora narrow vectorresonance ofmass between350 and700 GeV decayingintotwojetshasbeenperformedinevents containing atleastthreejetsusingproton-protoncollisiondataat √

s=13 TeV atthe LHCcorresponding toan integrated luminos-ityof18.3 fb−1.Thedijetmassdistributionofthetwoleadingjets issmooth, andthereisno evidencefora resonance.Upperlimits at 95% confidence level are set on the product of the cross sec-tion,branchingfraction,andacceptanceasafunctionofresonance mass. Thissearch excludesasimplified modelofinteractions be-tweenquarksanddarkmatterparticlesofmass1 GeV,wherethe interactions aremediatedbya vectorparticlewithmassbetween 350and700 GeV,forcouplingstrengthsofgq=0.25 andgDM=1. Upperlimitsbetween0.10and0.15arealsosetonthecouplingto quarks gqforavectorparticleinteractingonlywithquarks.These resultsrepresentthemoststringentupperlimitsinthemassrange

(6)

between350 and 450 GeV obtained witha flavor-inclusive dijet resonancesearch.

Declarationofcompetinginterest

Theauthorsdeclarethattheyhavenoknowncompeting finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

Acknowledgements

WecongratulateourcolleaguesintheCERNaccelerator depart-ments for the excellent performance of the LHC and thank the technicalandadministrativestaffs atCERN andatother CMS in-stitutes for their contributions to the success of the CMS effort. Inaddition,wegratefullyacknowledgethecomputingcentersand personneloftheWorldwideLHCComputingGridfordeliveringso effectivelythecomputinginfrastructure essential toour analyses. Finally, we acknowledge the enduring support for the construc-tionandoperationofthe LHCandtheCMSdetectorprovided by thefollowingfundingagencies: BMBWFandFWF(Austria);FNRS andFWO (Belgium); CNPq, CAPES, FAPERJ,FAPERGS, andFAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, PUT and ERDF (Estonia); AcademyofFinland,MEC,andHIP(Finland);CEAandCNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NK-FIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN(Italy);MSIPandNRF(RepublicofKorea);MES(Latvia);LAS (Lithuania);MOEandUM(Malaysia); BUAP,CINVESTAV,CONACYT, LNS,SEP,andUASLP-FAI(Mexico);MOS(Montenegro);MBIE(New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portu-gal);JINR(Dubna);MON,ROSATOM, RAS,RFBR,andNRCKI (Rus-sia);MESTD(Serbia);SEIDI,CPAN,PCTI,andFEDER(Spain);MoSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter,IPST,STAR, andNSTDA(Thailand);TUBITAKandTAEK (Turkey);NASU (Ukraine); STFC (United Kingdom); DOE andNSF (USA).

Individuals have received support from the Marie-Curie pro-gramandtheEuropeanResearchCouncilandHorizon2020Grant, contract Nos. 675440, 752730, and 765710 (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexan-der von Humboldt Foundation; the Belgian Federal Science Pol-icy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); theF.R.S.-FNRS andFWO (Belgium)under the “Excellenceof Sci-ence – EOS” – be.h project n. 30820817; the Beijing Munici-pal Science & Technology Commission, No. Z181100004218003; The Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Lendület (“Momentum”) Program and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NK-FIA research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science andIndustrial Research,India;the HOMING PLUSprogramofthe Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/ 02861,Sonata-bis2012/07/E/ST2/01406;theNationalPriorities Re-searchProgramby Qatar NationalResearchFund;theMinistryof Science and Education, grant no. 3.2989.2017 (Russia); the Pro-gramaEstataldeFomento de laInvestigación CientíficayTécnica de Excelencia María de Maeztu, grant MDM-2015-0509 and the

Programa Severo Ochoa del Principado de Asturias; the Thalis andAristeiaprogramscofinancedbyEU-ESF andtheGreek NSRF; theRachadapisekSompotFundforPostdoctoralFellowship, Chula-longkornUniversityandtheChulalongkornAcademic intoIts2nd Century Project Advancement Project (Thailand); the Nvidia Cor-poration;TheWelchFoundation,contractC-1845;andtheWeston HavensFoundation(USA).

References

[1] C.Albajar,etal.,UA1,Two-jetmassdistributionsattheCERNproton-antiproton collider, Phys.Lett. B209(1988) 127,https://doi.org/10.1016/0370-2693(88) 91843-6.

[2] J.Alitti,etal.,UA2,AmeasurementoftwojetdecaysoftheW andZ bosons

at the CERN p p collider,¯ Z. Phys. C 49 (1991) 17, https://doi.org/10.1007/ BF01570793.

[3] J.Alitti,etal.,UA2,Asearchfornewintermediatevectormesonsandexcited

quarksdecayingtotwojetsattheCERN¯p p collider,Nucl.Phys.B400(1993)

3,https://doi.org/10.1016/0550-3213(93)90395-6.

[4] F.Abe,etal.,CDF,Thetwojetinvariantmassdistributionat√s=1.8 TeV,

Phys.Rev.D41(1990)1722,https://doi.org/10.1103/PhysRevD.41.1722.

[5] F.Abe,etal.,CDF,Searchforquarkcompositeness,axigluonsandheavy

par-ticlesusingthedijetinvariantmassspectrumobservedinpp collisions,¯ Phys. Rev.Lett.71(1993)2542,https://doi.org/10.1103/PhysRevLett.71.2542.

[6] F.Abe, et al.,CDF, Searchfor newparticlesdecaying todijetsin pp colli-¯

sionsat√s=1.8 TeV,Phys.Rev.Lett.74(1995)3538,https://doi.org/10.1103/ PhysRevLett.74.3538,arXiv:hep-ex/9501001.

[7] F.Abe,etal., CDF,SearchfornewparticlesdecayingtodijetsatCDF,Phys.

Rev.D55(1997)5263,https://doi.org/10.1103/PhysRevD.55.R5263,arXiv:hep

-ex/9702004.

[8] T.Aaltonen,etal.,CDF,Searchfornewparticlesdecayingintodijetsin

proton-antiprotoncollisionsat√s=1.96TeV,Phys.Rev.D79(2009)112002,https://

doi.org/10.1103/PhysRevD.79.112002,arXiv:0812.4036.

[9] V.M.Abazov,etal.,D0,Searchfornewparticlesinthetwojetdecaychannel

withtheD0detector,Phys.Rev.D69(2004)111101,https://doi.org/10.1103/ PhysRevD.69.111101,arXiv:hep-ex/0308033.

[10] D. Abercrombie,etal., Darkmatterbenchmarkmodels forearlyLHCrun-2

searches:Report ofthe ATLAS/CMSdarkmatterforum,Phys. DarkUniv.26

(2019)100371,https://doi.org/10.1016/j.dark.2019.100371,arXiv:1507.00966.

[11] G. Busoni,etal., Recommendationson presentingLHCsearchesfor missing

transverse energysignals usingsimplified s-channelmodels ofdarkmatter,

Physics of the Dark Universe (2019) 100365, https://doi.org/10.1016/j.dark.

2019.100365,arXiv:1603.04156.

[12] M.Chala,F.Kahlhoefer,M.McCullough,G.Nardini,K.Schmidt-Hoberg,

Con-strainingdarksectorswithmonojetsanddijets,JHEP07(2015)089,https://

doi.org/10.1007/JHEP07(2015)089,arXiv:1503.05916.

[13] J.Abdallah,etal.,SimplifiedmodelsfordarkmattersearchesattheLHC,Phys.

Dark Univ. 9–10 (2015) 8, https://doi.org/10.1016/j.dark.2015.08.001, arXiv: 1506.03116.

[14] E. Aprile, et al., XENON100, Dark matter results from 225 live days of

XENON100data, Phys.Rev.Lett.109(2012)181301,https://doi.org/10.1103/

PhysRevLett.109.181301,arXiv:1207.5988.

[15] E.Aprile,etal.,XENON100,XENON100darkmatterresultsfroma

combina-tionof477livedays,Phys.Rev.D94(2016)122001,https://doi.org/10.1103/ PhysRevD.94.122001,arXiv:1609.06154.

[16] E.Aprile,etal.,XENON,Darkmattersearchresultsfromaoneton-year

expo-sureofXENON1T,Phys.Rev.Lett.121(2018)111302,https://doi.org/10.1103/ PhysRevLett.121.111302,arXiv:1805.12562.

[17] X. Cui,et al., PandaX-II, Darkmatter results from 54-ton-day exposure of

PandaX-IIexperiment,Phys.Rev.Lett.119(2017)181302,https://doi.org/10.

1103/PhysRevLett.119.181302,arXiv:1708.06917.

[18] A.Tan,etal.,PandaX-II,Darkmatterresultsfromfirst98.7daysofdatafrom

thePandaX-IIexperiment,Phys.Rev.Lett.117(2016)121303,https://doi.org/

10.1103/PhysRevLett.117.121303,arXiv:1607.07400.

[19] D.S.Akerib,et al.,LUX, Resultsfrom asearchfor darkmatterinthe

com-plete LUX exposure, Phys. Rev.Lett. 118 (2017)021303, https://doi.org/10.

1103/PhysRevLett.118.021303,arXiv:1608.07648.

[20] D.S.Akerib,etal.,LUX,Limitsonspin-dependentWIMP-nucleoncrosssection

obtainedfromthecompleteLUXexposure,Phys.Rev.Lett.118(2017)251302,

https://doi.org/10.1103/PhysRevLett.118.251302,arXiv:1705.03380.

[21] P.Agnes,etal.,DarkSide,Resultsfromthefirstuseoflowradioactivityargonin adarkmattersearch,Phys.Rev.D93(2016)081101,https://doi.org/10.1103/ PhysRevD.93.081101,arXiv:1510.00702.

[22] R. Agnese, et al., SuperCDMS, Improved WIMP-search reach of the CDMS

II germaniumdata, Phys.Rev.D 92(2015)072003, https://doi.org/10.1103/

PhysRevD.92.072003,arXiv:1504.05871.

[23] R.Agnese,etal.,SuperCDMS,Newresultsfromthesearchforlow-massweakly

(7)

experi-ment,Phys.Rev.Lett.116(2016)071301,https://doi.org/10.1103/PhysRevLett. 116.071301,arXiv:1509.02448.

[24] R.Agnese,etal.,SuperCDMS,ProjectedsensitivityoftheSuperCDMSSNOLAB

experiment,Phys.Rev.D95(2017)082002,https://doi.org/10.1103/PhysRevD. 95.082002,arXiv:1610.00006.

[25] M.Aguilar,et al.,AMS, Antiprotonflux,antiproton-to-protonflux ratio,and

propertiesofelementaryparticlefluxesinprimarycosmicraysmeasuredwith

thealphamagneticspectrometerontheinternationalspacestation,Phys.Rev.

Lett.117(2016)091103,https://doi.org/10.1103/PhysRevLett.117.091103.

[26] M.Aguilar,etal.,AMS,Observationofcomplextimestructuresinthe

cosmic-rayelectronandpositronfluxeswiththealphamagneticspectrometeronthe

internationalspacestation,Phys.Rev.Lett.121(2018)051102,https://doi.org/ 10.1103/PhysRevLett.121.051102.

[27] M. Aguilar, et al., AMS, Towards understanding the origin of

cosmic-ray positrons, Phys. Rev. Lett. 122 (2019) 041102, https://doi.org/10.1103/

PhysRevLett.122.041102.

[28] M.G. Aartsen, et al., IceCube, Search for annihilating dark matter in the

sun with 3 years ofIceCube data, Eur. Phys. J. C 77 (2017) 146, https://

doi.org/10.1140/epjc/s10052-017-4689-9, arXiv:1612.05949, Erratum:https:// doi.org/10.1140/epjc/s10052-019-6702-y.

[29] O.Adriani,etal.,PAMELA,PAMELAresultsonthecosmic-rayantiprotonflux

from60MeVto180GeVinkineticenergy,Phys.Rev.Lett.105(2010)121101,

https://doi.org/10.1103/PhysRevLett.105.121101,arXiv:1007.0821.

[30] O. Adriani, et al., PAMELA,Cosmic-ray positronenergy spectrummeasured

by PAMELA, Phys. Rev. Lett. 111 (2013) 081102, https://doi.org/10.1103/

PhysRevLett.111.081102,arXiv:1308.0133.

[31] R.Bernabei,etal.,FirstmodelindependentresultsfromDAMA/LIBRA-phase2,

Nucl. Phys.At.Energy 19(2018) 307,https://doi.org/10.15407/jnpae2018.04.

307,arXiv:1805.10486.

[32] E.BarbosadeSouza,etal.,DM-Ice,Firstsearchforadarkmatterannual

mod-ulation signalwith NaI(Tl) inthesouthern hemisphere byDM-Ice17,Phys.

Rev.D95(2017)032006,https://doi.org/10.1103/PhysRevD.95.032006,arXiv: 1602.05939.

[33] M.Ackermann,etal.,Fermi-LAT,Searchingfordarkmatterannihilationfrom

Milky Way dwarf spheroidal galaxies with six years of Fermi Large Area

Telescope data, Phys. Rev.Lett. 115(2015) 231301, https://doi.org/10.1103/

PhysRevLett.115.231301,arXiv:1503.02641.

[34] S.Abdollahi,etal.,Fermi-LAT,Cosmic-rayelectron-positronspectrumfrom7

GeVto2TeVwiththe FermiLargeAreaTelescope,Phys.Rev.D95(2017)

082007,https://doi.org/10.1103/PhysRevD.95.082007,arXiv:1704.07195.

[35] M.Ackermann,etal.,Fermi-LAT,TheFermigalacticcenterGeVexcessand

im-plicationsfordarkmatter,Astrophys.J.840(2017)43,https://doi.org/10.3847/ 1538-4357/aa6cab,arXiv:1704.03910.

[36] K.Choi,etal.,Super-Kamiokande, Searchforneutrinosfrom annihilationof

captured low-mass darkmatterparticlesinthe SunbySuper-Kamiokande,

Phys. Rev.Lett. 114 (2015) 141301, https://doi.org/10.1103/PhysRevLett.114. 141301,arXiv:1503.04858.

[37] F.Aharonian,etal.,ProbingtheATICpeakinthecosmic-rayelectronspectrum

withH.E.S.S,Astron.Astrophys.508(2009)561,https://doi.org/10.1051/0004 -6361/200913323,arXiv:0905.0105.

[38] F. Aharonian, H.E.S.S.,Spectrum and variability ofthe galactic center VHE

gamma-raysourceHESSJ1745-290,Astron.Astrophys.503(2009)817,https://

doi.org/10.1051/0004-6361/200811569,arXiv:0906.1247.

[39] F.Acero,H.E.S.S.,Localisingthe VHEgamma-raysourceatthe galactic

cen-tre,Mon.Not.Roy.Astron.Soc.402(2010)1877,https://doi.org/10.1111/j.1365 -2966.2009.16014.x,arXiv:0911.1912.

[40] ATLASCollaboration,Search fordarkmatterat √s=13 TeVinfinalstates

containinganenergeticphotonandlargemissingtransversemomentumwith

theATLASdetector,Eur.Phys.J.C77(2017)393,https://doi.org/10.1140/epjc/ s10052-017-4965-8,arXiv:1704.03848.

[41] ATLASCollaboration, Search fordark matterand othernewphenomena in

eventswithanenergeticjetandlargemissingtransversemomentumusingthe

ATLASdetector,JHEP01(2018)126,https://doi.org/10.1007/JHEP01(2018)126, arXiv:1711.03301.

[42] ATLASCollaboration,CombinationofsearchesforinvisibleHiggsbosondecays

withtheATLASexperiment,Phys.Rev.Lett.122(2019)231801,https://doi.org/ 10.1103/PhysRevLett.122.231801,arXiv:1904.05105.

[43] ATLASCollaboration,Searchfordarkmatterineventswithahadronically

de-caying vector bosonand missing transversemomentum in pp collisionsat

s=13 TeVwiththeATLASdetector,JHEP10(2018)180,https://doi.org/10.

1007/JHEP10(2018)180,arXiv:1807.11471.

[44] CMSCollaboration,Searchfornewphysicsinfinalstateswithanenergeticjet

orahadronicallydecayingWorZbosonandtransverse momentum

imbal-anceat√s=13 TeV,Phys.Rev.D97(2018)092005,https://doi.org/10.1103/ PhysRevD.97.092005,arXiv:1712.02345.

[45] CMSCollaboration,Searchfornewphysicsinfinalstateswithasingle

pho-tonand missingtransversemomentuminproton-protoncollisionsat √s=

13TeV,JHEP02(2019)074,https://doi.org/10.1007/JHEP02(2019)074,arXiv:

1810.00196.

[46] CMSCollaboration,Searchfornewphysicsineventswithaleptonically

de-cayingZbosonandalargetransversemomentumimbalanceinproton–proton

collisionsat√s =13TeV,Eur.Phys.J.C78(2018)291,https://doi.org/10.1140/ epjc/s10052-018-5740-1,arXiv:1711.00431.

[47] L.A.Anchordoqui,H.Goldberg,D.Lüst,S.Nawata,S.Stieberger,T.R.Taylor,Dijet

signalsfor lowmassstringsattheLHC,Phys.Rev.Lett.101(2008)241803,

https://doi.org/10.1103/PhysRevLett.101.241803,arXiv:0808.0497.

[48] S.Cullen,M.Perelstein,M.E.Peskin,TeVstringsandcolliderprobesoflarge

extra dimensions, Phys. Rev. D 62 (2000) 055012, https://doi.org/10.1103/

PhysRevD.62.055012,arXiv:hep-ph/0001166.

[49] J.L. Hewett, T.G. Rizzo, Low-energy phenomenology of superstring inspired

E(6)models,Phys.Rept.183(1989)193,https://doi.org/10.1016/0370-1573(89) 90071-9.

[50] U. Baur, I. Hinchliffe, D. Zeppenfeld, Excited quark production at hadron

colliders, Int. J. Mod. Phys. A 2 (1987) 1285, https://doi.org/10.1142/

S0217751X87000661.

[51] U.Baur,M.Spira,P.M.Zerwas,Excitedquarkandleptonproductionathadron

colliders,Phys.Rev.D42(1990)815,https://doi.org/10.1103/PhysRevD.42.815.

[52] P.H.Frampton,S.L.Glashow,Chiralcolor:Analternativetothestandardmodel,

Phys.Lett.B190(1987)157,https://doi.org/10.1016/0370-2693(87)90859-8.

[53] R.S.Chivukula,E.H.Simmons,A.Farzinnia,J.Ren,Hadroncolliderproduction

ofmassivecolor-octetvectorbosonsatnext-to-leadingorder,Phys.Rev.D87

(2013)094011,https://doi.org/10.1103/PhysRevD.87.094011,arXiv:1303.1120.

[54] E.H.Simmons,Coloronphenomenology,Phys.Rev.D55(1997)1678,https://

doi.org/10.1103/PhysRevD.55.1678,arXiv:hep-ph/9608269.

[55] T.Han,I.Lewis,Z.Liu,ColoredresonantsignalsattheLHC:Largestrateand

simplesttopology,JHEP12(2010) 085,https://doi.org/10.1007/JHEP12(2010)

085,arXiv:1010.4309.

[56] E.Eichten,I.Hinchliffe,K.D.Lane,C.Quigg,Supercolliderphysics,Rev.Mod. Phys.56(1984)579,https://doi.org/10.1103/RevModPhys.56.579.

[57] L. Randall, R. Sundrum,An alternative to compactification,Phys. Rev.Lett.

83 (1999) 4690, https://doi.org/10.1103/PhysRevLett.83.4690, arXiv:hep-th/ 9906064.

[58] ATLASCollaboration,Searchfornewphenomenaindijeteventsusing37fb−1

ofpp collisiondatacollectedat√s=13TeVwiththeATLASdetector,Phys. Rev.D96(2017)052004,https://doi.org/10.1103/PhysRevD.96.052004, arXiv: 1703.09127.

[59] ATLAS Collaboration, Search for low-mass dijet resonances using

trigger-leveljets with the ATLAS detector in pp collisions at √s=13 TeV, Phys.

Rev.Lett.121(2018)081801,https://doi.org/10.1103/PhysRevLett.121.081801,

arXiv:1804.03496.

[60] CMSCollaboration,Searchfornarrowandbroaddijetresonancesin

proton-protoncollisionsat√s=13 TeVandconstraintsondarkmattermediatorsand

othernewparticles,JHEP08(2018)130,https://doi.org/10.1007/JHEP08(2018) 130,arXiv:1806.00843.

[61] ATLASCollaboration,Searchfornewphenomenainthedijetmassdistribution

usingp-p collisiondataat√s=8 TeVwiththeATLASdetector,Phys.Rev.D91

(2015)052007,https://doi.org/10.1103/PhysRevD.91.052007,arXiv:1407.1376.

[62] CMSCollaboration,Searchfornarrowresonancesindijetfinalstatesat√s=8

TeVwiththenovelCMStechniqueofdatascouting,Phys.Rev.Lett.117(2016)

031802,https://doi.org/10.1103/PhysRevLett.117.031802,arXiv:1604.08907.

[63] ATLASCollaboration,Searchforlow-mass resonancesdecayinginto twojets

andproducedinassociationwithaphotonusingpp collisionsat√s=13 TeV

withtheATLASdetector,Phys.Lett.B795(2019)56,https://doi.org/10.1016/j. physletb.2019.03.067,arXiv:1901.10917.

[64] CMSCollaboration,Searchfornarrowresonancesintheb-taggeddijetmass

spectruminproton-protoncollisionsat√s=8TeV,Phys.Rev.Lett.120(2018)

201801,https://doi.org/10.1103/PhysRevLett.120.201801,arXiv:1802.06149.

[65] ATLASCollaboration, Searchfor lightresonancesdecaying toboostedquark

pairsandproducedinassociationwithaphotonorajetinproton-proton

col-lisionsat√s=13 TeVwiththeATLASdetector,Phys.Lett.B788(2019)316,

https://doi.org/10.1016/j.physletb.2018.09.062,arXiv:1801.08769.

[66] CMSCollaboration,Searchforlowmassvectorresonancesdecayinginto

quark-antiquark pairs inproton-proton collisions at √s= 13 TeV, Phys. Rev. D.

100(2019)112007,https://doi.org/10.1103/PhysRevD.100.112007,arXiv:1909. 04114.

[67] CMSCollaboration,Searchforlow-massquark-antiquarkresonancesproduced

inassociationwith a photon at √s= 13 TeV, Phys. Rev.Lett. 123(2019)

231803,https://doi.org/10.1103/PhysRevLett.123.231803,arXiv:1905.10331.

[68] CMS Collaboration, The CMSexperiment at the CERN LHC,JINST 3(2008)

S08004,https://doi.org/10.1088/1748-0221/3/08/S08004.

[69] M.Cacciari,G.P.Salam,G.Soyez,Theanti-kTjetclusteringalgorithm,JHEP04

(2008)063,https://doi.org/10.1088/1126-6708/2008/04/063,arXiv:0802.1189. [70] M.Cacciari,G.P.Salam,G.Soyez,FastJetusermanual,Eur.Phys.J.C72(2012)

1896,https://doi.org/10.1140/epjc/s10052-012-1896-2,arXiv:1111.6097.

[71] CMSCollaboration,TheCMStriggersystem,JINST12(2017)P01020,https://

doi.org/10.1088/1748-0221/12/01/P01020,arXiv:1609.02366.

[72] J.Alwall,R.Frederix,S.Frixione,V.Hirschi,F.Maltoni,O.Mattelaer,H.-S.Shao,

T.Stelzer,P.Torrielli,M.Zaro,Theautomated computationoftree-leveland

next-to-leadingorderdifferentialcrosssections,andtheirmatchingtoparton

showersimulations,JHEP07(2014)079,https://doi.org/10.1007/JHEP07(2014)

(8)

[73] M.Backovic,K.Kong,M.McCaskey,MadDMv.1.0:Computationofdarkmatter

relicabundanceusingMadGraph5,Phys.DarkUniv.5–6(2014)18,https://doi.

org/10.1016/j.dark.2014.04.001,arXiv:1308.4955.

[74] T.Sjöstrand,S. Ask,J.R.Christiansen,R.Corke,N. Desai,P.Ilten, S.Mrenna,

S.Prestel,C.O.Rasmussen,P.Z.Skands,AnintroductiontoPYTHIA8.2,

Com-put.Phys.Commun.191(2015)159,https://doi.org/10.1016/j.cpc.2015.01.024, arXiv:1410.3012.

[75] CMSCollaboration,Eventgeneratortunesobtainedfromunderlyingeventand

multipartonscatteringmeasurements,Eur.Phys.J.C76(2016)155,https://

doi.org/10.1140/epjc/s10052-016-3988-x,arXiv:1512.00815.

[76] S.Agostinelli, etal., GEANT4, GEANT4—asimulationtoolkit, Nucl.Instrum.

Meth.A506(2003)250,https://doi.org/10.1016/S0168-9002(03)01368-8. [77] R.D.Ball,V.Bertone,S.Carrazza,C.S.Deans,L.DelDebbio,S.Forte,A.Guffanti,

N.P.Hartland,J.I.Latorre,J.Rojo,M.Ubiali,PartondistributionswithLHCdata, Nucl.Phys.B867(2013)244,https://doi.org/10.1016/j.nuclphysb.2012.10.003, arXiv:1207.1303.

[78] R.A.Fisher,Ontheinterpretationofχ2fromcontingencytables,andthe

cal-culationofP,J.Roy.Statis.85(1922)87,https://doi.org/10.2307/2340521. [79]A.N.Kolmogorov,Sulladeterminazioneempiricadiunaleggedidistribuzione,

Giornaledell’InstitutoItalianodegliAttuari4(1933)83.

[80]N.V.Smirnov,Estimateofdeviationbetweenempiricaldistributionfunctionsin twoindependentsamples,Bull.MoscowUniv.2(1939)3616.

[81] N.V.Smirnov,Tableforestimatingthegoodnessoffitofempiricaldistributions, Ann.Math.Stat.19(1948)279,https://doi.org/10.1214/aoms/1177730256.

[82] G.Cowan,K.Cranmer,E.Gross,O.Vitells,Asymptoticformulaefor

likelihood-based tests ofnewphysics, Eur.Phys. J.C 71(2011) 1554,https://doi.org/

10.1140/epjc/s10052-011-1554-0,arXiv:1007.1727,Erratum:https://doi.org/10. 1140/epjc/s10052-013-2501-z.

[83] T. Junk, Confidence level computation for combining searches with small

statistics,Nucl.Instr.Meth.A434(1999)435,https://doi.org/10.1016/S0168 -9002(99)00498-2,arXiv:hep-ex/9902006.

[84] A.L.Read,Presentationofsearchresults:theC Lstechnique,J.Phys.G28(2002) 2693,https://doi.org/10.1088/0954-3899/28/10/313.

[85] ATLASandCMSCollaborations,andtheLHCHiggsCombinationGroup,

Pro-cedurefortheLHCHiggsbosonsearchcombinationinSummer2011,

Techni-calReportCMS-NOTE-2011-005,ATL-PHYS-PUB-2011-11,CERN,2011,https://

cds.cern.ch/record/1379837.

[86] CMSCollaboration,JetenergyscaleandresolutionintheCMSexperimentin

ppcollisionsat8TeV,JINST12(2017)P02014,https://doi.org/10.1088/1748 -0221/12/02/P02014,arXiv:1607.03663.

[87] S.Mrenna, P.Skands,Automatedparton-showervariationsinPythia8,Phys.

Rev.D94(2016)074005,https://doi.org/10.1103/PhysRevD.94.074005,arXiv: 1605.08352.

[88] CMSCollaboration,CMSLuminosityMeasurementsfor the2016DataTaking

Period, CMSPhysicsAnalysisSummaryCMS-PAS-LUM-17-001,2017, https://

cds.cern.ch/record/2257069.

[89] B.A.Dobrescu,F.Yu,Coupling-massmappingofdijetpeaksearches,Phys.Rev.

D88(2013)035021,https://doi.org/10.1103/PhysRevD.88.035021,arXiv:1306. 2629,Erratum:https://doi.org/10.1103/PhysRevD.90.079901.

TheCMSCollaboration

A.M. Sirunyan†,A. Tumasyan

YerevanPhysicsInstitute,Yerevan,Armenia

W. Adam, F. Ambrogi, T. Bergauer,M. Dragicevic, J. Erö,A. Escalante Del Valle, M. Flechl, R. Frühwirth1,

M. Jeitler1,N. Krammer, I. Krätschmer,D. Liko, T. Madlener, I. Mikulec,N. Rad, J. Schieck1,R. Schöfbeck,

M. Spanring,D. Spitzbart, W. Waltenberger, C.-E. Wulz1,M. Zarucki

InstitutfürHochenergiephysik,Wien,Austria

V. Drugakov,V. Mossolov,J. Suarez Gonzalez

InstituteforNuclearProblems,Minsk,Belarus

M.R. Darwish,E.A. De Wolf, D. Di Croce, X. Janssen,A. Lelek, M. Pieters,H. Rejeb Sfar,

H. Van Haevermaet,P. Van Mechelen,S. Van Putte, N. Van Remortel

UniversiteitAntwerpen,Antwerpen,Belgium

F. Blekman, E.S. Bols,S.S. Chhibra,J. D’Hondt, J. De Clercq, D. Lontkovskyi, S. Lowette,I. Marchesini,

S. Moortgat, Q. Python, K. Skovpen, S. Tavernier,W. Van Doninck, P. Van Mulders

VrijeUniversiteitBrussel,Brussel,Belgium

D. Beghin,B. Bilin, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, L. Favart, A. Grebenyuk,

A.K. Kalsi,A. Popov, N. Postiau,E. Starling, L. Thomas, C. Vander Velde, P. Vanlaer, D. Vannerom

UniversitéLibredeBruxelles,Bruxelles,Belgium

T. Cornelis,D. Dobur, I. Khvastunov2, M. Niedziela, C. Roskas, M. Tytgat, W. Verbeke,B. Vermassen,

M. Vit

GhentUniversity,Ghent,Belgium

O. Bondu,G. Bruno,C. Caputo, P. David,C. Delaere, M. Delcourt,A. Giammanco, V. Lemaitre,

J. Prisciandaro, A. Saggio, M. Vidal Marono, P. Vischia, J. Zobec

(9)

F.L. Alves,G.A. Alves, G. Correia Silva,C. Hensel, A. Moraes,P. Rebello Teles CentroBrasileirodePesquisasFisicas,RiodeJaneiro,Brazil

E. Belchior Batista Das Chagas, W. Carvalho,J. Chinellato3,E. Coelho, E.M. Da Costa, G.G. Da Silveira4,

D. De Jesus Damiao,C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson,

J. Martins5,D. Matos Figueiredo, M. Medina Jaime6,M. Melo De Almeida, C. Mora Herrera,L. Mundim,

H. Nogima,W.L. Prado Da Silva, L.J. Sanchez Rosas, A. Santoro, A. Sznajder,M. Thiel,

E.J. Tonelli Manganote3,F. Torres Da Silva De Araujo, A. Vilela Pereira

UniversidadedoEstadodoRiodeJaneiro,RiodeJaneiro,Brazil

C.A. Bernardesa,L. Calligarisa, T.R. Fernandez Perez Tomeia,E.M. Gregoresb,D.S. Lemos,

P.G. Mercadanteb,S.F. Novaesa,Sandra S. Padulaa

aUniversidadeEstadualPaulista,SãoPaulo,Brazil bUniversidadeFederaldoABC,SãoPaulo,Brazil

A. Aleksandrov, G. Antchev, R. Hadjiiska,P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova,G. Sultanov

InstituteforNuclearResearchandNuclearEnergy,BulgarianAcademyofSciences,Sofia,Bulgaria

M. Bonchev, A. Dimitrov,T. Ivanov, L. Litov, B. Pavlov,P. Petkov

UniversityofSofia,Sofia,Bulgaria

W. Fang7, X. Gao7,L. Yuan

BeihangUniversity,Beijing,China

M. Ahmad, Z. Hu, Y. Wang

DepartmentofPhysics,TsinghuaUniversity,Beijing,China

G.M. Chen, H.S. Chen,M. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, A. Spiezia,J. Tao, E. Yazgan,

H. Zhang, S. Zhang8,J. Zhao

InstituteofHighEnergyPhysics,Beijing,China

A. Agapitos, Y. Ban, G. Chen, A. Levin, J. Li,L. Li, Q. Li,Y. Mao, S.J. Qian, D. Wang,Q. Wang

StateKeyLaboratoryofNuclearPhysicsandTechnology,PekingUniversity,Beijing,China M. Xiao

ZhejiangUniversity,Hangzhou,China

C. Avila,A. Cabrera, C. Florez, C.F. González Hernández, M.A. Segura Delgado

UniversidaddeLosAndes,Bogota,Colombia

J. Mejia Guisao,J.D. Ruiz Alvarez,C.A. Salazar González, N. Vanegas Arbelaez

UniversidaddeAntioquia,Medellin,Colombia

D. Giljanovi ´c,N. Godinovic, D. Lelas, I. Puljak, T. Sculac

UniversityofSplit,FacultyofElectricalEngineering,MechanicalEngineeringandNavalArchitecture,Split,Croatia

Z. Antunovic, M. Kovac

UniversityofSplit,FacultyofScience,Split,Croatia

V. Brigljevic,D. Ferencek, K. Kadija,B. Mesic, M. Roguljic, A. Starodumov9,T. Susa

(10)

M.W. Ather,A. Attikis, E. Erodotou, A. Ioannou,M. Kolosova, S. Konstantinou, G. Mavromanolakis,

J. Mousa,C. Nicolaou, F. Ptochos, P.A. Razis,H. Rykaczewski, D. Tsiakkouri

UniversityofCyprus,Nicosia,Cyprus

M. Finger10,M. Finger Jr.10,A. Kveton, J. Tomsa

CharlesUniversity,Prague,CzechRepublic E. Ayala

EscuelaPolitecnicaNacional,Quito,Ecuador E. Carrera Jarrin

UniversidadSanFranciscodeQuito,Quito,Ecuador

Y. Assran11,12, S. Elgammal12

AcademyofScientificResearchandTechnologyoftheArabRepublicofEgypt,EgyptianNetworkofHighEnergyPhysics,Cairo,Egypt

S. Bhowmik, A. Carvalho Antunes De Oliveira,R.K. Dewanjee, K. Ehataht,M. Kadastik, M. Raidal,

C. Veelken

NationalInstituteofChemicalPhysicsandBiophysics,Tallinn,Estonia

P. Eerola,L. Forthomme, H. Kirschenmann,K. Osterberg, M. Voutilainen

DepartmentofPhysics,UniversityofHelsinki,Helsinki,Finland

F. Garcia, J. Havukainen, J.K. Heikkilä, V. Karimäki, M.S. Kim,R. Kinnunen, T. Lampén, K. Lassila-Perini,

S. Laurila, S. Lehti,T. Lindén, P. Luukka, T. Mäenpää,H. Siikonen, E. Tuominen, J. Tuominiemi

HelsinkiInstituteofPhysics,Helsinki,Finland T. Tuuva

LappeenrantaUniversityofTechnology,Lappeenranta,Finland

M. Besancon,F. Couderc, M. Dejardin, D. Denegri,B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud,

P. Gras, G. Hamel de Monchenault,P. Jarry, C. Leloup,B. Lenzi, E. Locci, J. Malcles,J. Rander,

A. Rosowsky,M.Ö. Sahin, A. Savoy-Navarro13, M. Titov, G.B. Yu

IRFU,CEA,UniversitéParis-Saclay,Gif-sur-Yvette,France

S. Ahuja,C. Amendola, F. Beaudette, P. Busson, C. Charlot,B. Diab, G. Falmagne, R. Granier de Cassagnac,

I. Kucher, A. Lobanov, C. Martin Perez,M. Nguyen, C. Ochando, P. Paganini, J. Rembser,R. Salerno,

J.B. Sauvan, Y. Sirois,A. Zabi, A. Zghiche

LaboratoireLeprince-Ringuet,CNRS/IN2P3,EcolePolytechnique,InstitutPolytechniquedeParis,France

J.-L. Agram14,J. Andrea, D. Bloch,G. Bourgatte, J.-M. Brom, E.C. Chabert,C. Collard, E. Conte14,

J.-C. Fontaine14,D. Gelé, U. Goerlach,M. Jansová, A.-C. Le Bihan, N. Tonon,P. Van Hove

UniversitédeStrasbourg,CNRS,IPHCUMR7178,Strasbourg,France S. Gadrat

CentredeCalculdel’InstitutNationaldePhysiqueNucleaireetdePhysiquedesParticules,CNRS/IN2P3,Villeurbanne,France

S. Beauceron,C. Bernet, G. Boudoul,C. Camen, A. Carle, N. Chanon, R. Chierici, D. Contardo, P. Depasse,

H. El Mamouni,J. Fay, S. Gascon, M. Gouzevitch, B. Ille, Sa. Jain, F. Lagarde, I.B. Laktineh,H. Lattaud,

A. Lesauvage,M. Lethuillier, L. Mirabito,S. Perries, V. Sordini, L. Torterotot,G. Touquet,

M. Vander Donckt, S. Viret

(11)

G. Adamov

GeorgianTechnicalUniversity,Tbilisi,Georgia

Z. Tsamalaidze10

TbilisiStateUniversity,Tbilisi,Georgia

C. Autermann, L. Feld, K. Klein, M. Lipinski,D. Meuser, A. Pauls, M. Preuten, M.P. Rauch,J. Schulz,

M. Teroerde,B. Wittmer

RWTHAachenUniversity,I.PhysikalischesInstitut,Aachen,Germany

M. Erdmann,B. Fischer, S. Ghosh, T. Hebbeker,K. Hoepfner, H. Keller, L. Mastrolorenzo,

M. Merschmeyer,A. Meyer, P. Millet, G. Mocellin,S. Mondal, S. Mukherjee, D. Noll, A. Novak, T. Pook,

A. Pozdnyakov,T. Quast, M. Radziej, Y. Rath, H. Reithler, J. Roemer, A. Schmidt, S.C. Schuler, A. Sharma,

S. Wiedenbeck, S. Zaleski

RWTHAachenUniversity,III.PhysikalischesInstitutA,Aachen,Germany

G. Flügge, W. Haj Ahmad15,O. Hlushchenko, T. Kress, T. Müller,A. Nowack, C. Pistone,O. Pooth, D. Roy,

H. Sert, A. Stahl16

RWTHAachenUniversity,III.PhysikalischesInstitutB,Aachen,Germany

M. Aldaya Martin,P. Asmuss, I. Babounikau, H. Bakhshiansohi,K. Beernaert, O. Behnke,

A. Bermúdez Martínez, D. Bertsche, A.A. Bin Anuar, K. Borras17,V. Botta, A. Campbell, A. Cardini,

P. Connor,S. Consuegra Rodríguez, C. Contreras-Campana, V. Danilov,A. De Wit, M.M. Defranchis,

C. Diez Pardos,D. Domínguez Damiani,G. Eckerlin, D. Eckstein, T. Eichhorn, A. Elwood, E. Eren,

E. Gallo18,A. Geiser, A. Grohsjean, M. Guthoff,M. Haranko, A. Harb,A. Jafari, N.Z. Jomhari, H. Jung,

A. Kasem17, M. Kasemann,H. Kaveh, J. Keaveney, C. Kleinwort,J. Knolle,D. Krücker, W. Lange, T. Lenz,

J. Lidrych, K. Lipka,W. Lohmann19, R. Mankel, I.-A. Melzer-Pellmann,A.B. Meyer, M. Meyer, M. Missiroli,

J. Mnich, A. Mussgiller, V. Myronenko,D. Pérez Adán,S.K. Pflitsch, D. Pitzl, A. Raspereza,A. Saibel,

M. Savitskyi,V. Scheurer, P. Schütze, C. Schwanenberger, R. Shevchenko,A. Singh, H. Tholen, O. Turkot,

A. Vagnerini,M. Van De Klundert, R. Walsh, Y. Wen,K. Wichmann, C. Wissing, O. Zenaiev, R. Zlebcik

DeutschesElektronen-Synchrotron,Hamburg,Germany

R. Aggleton,S. Bein, L. Benato,A. Benecke, V. Blobel, T. Dreyer, A. Ebrahimi, F. Feindt, A. Fröhlich,

C. Garbers,E. Garutti, D. Gonzalez, P. Gunnellini, J. Haller, A. Hinzmann, A. Karavdina,G. Kasieczka,

R. Klanner, R. Kogler,N. Kovalchuk, S. Kurz, V. Kutzner, J. Lange,T. Lange, A. Malara, J. Multhaup,

C.E.N. Niemeyer,A. Perieanu, A. Reimers, O. Rieger,C. Scharf, P. Schleper, S. Schumann,J. Schwandt,

J. Sonneveld,H. Stadie, G. Steinbrück, F.M. Stober,B. Vormwald, I. Zoi

UniversityofHamburg,Hamburg,Germany

M. Akbiyik, C. Barth,M. Baselga, S. Baur, T. Berger,E. Butz, R. Caspart,T. Chwalek, W. De Boer,

A. Dierlamm, K. El Morabit,N. Faltermann, M. Giffels,P. Goldenzweig, A. Gottmann,M.A. Harrendorf,

F. Hartmann16,U. Husemann, S. Kudella, S. Mitra, M.U. Mozer,D. Müller, Th. Müller, M. Musich,

A. Nürnberg, G. Quast, K. Rabbertz,M. Schröder, I. Shvetsov, H.J. Simonis,R. Ulrich, M. Wassmer,

M. Weber, C. Wöhrmann, R. Wolf

KarlsruherInstitutfuerTechnologie,Karlsruhe,Germany

G. Anagnostou, P. Asenov, G. Daskalakis,T. Geralis,A. Kyriakis, D. Loukas, G. Paspalaki

InstituteofNuclearandParticlePhysics(INPP),NCSRDemokritos,AghiaParaskevi,Greece

M. Diamantopoulou,G. Karathanasis, P. Kontaxakis,A. Manousakis-katsikakis, A. Panagiotou,

I. Papavergou, N. Saoulidou, A. Stakia,K. Theofilatos, K. Vellidis,E. Vourliotis

(12)

G. Bakas, K. Kousouris,I. Papakrivopoulos,G. Tsipolitis NationalTechnicalUniversityofAthens,Athens,Greece

I. Evangelou,C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios,K. Manitara, N. Manthos,

I. Papadopoulos,J. Strologas, F.A. Triantis,D. Tsitsonis

UniversityofIoánnina,Ioánnina,Greece

M. Bartók20, R. Chudasama, M. Csanad, P. Major, K. Mandal, A. Mehta, M.I. Nagy, G. Pasztor, O. Surányi,

G.I. Veres

MTA-ELTELendületCMSParticleandNuclearPhysicsGroup,EötvösLorándUniversity,Budapest,Hungary

G. Bencze,C. Hajdu, D. Horvath21, F. Sikler,T.Á. Vámi, V. Veszpremi, G. Vesztergombi†

WignerResearchCentreforPhysics,Budapest,Hungary

N. Beni,S. Czellar, J. Karancsi20,J. Molnar, Z. Szillasi

InstituteofNuclearResearchATOMKI,Debrecen,Hungary

P. Raics,D. Teyssier, Z.L. Trocsanyi, B. Ujvari

InstituteofPhysics,UniversityofDebrecen,Debrecen,Hungary

T. Csorgo, W.J. Metzger, F. Nemes, T. Novak

EszterhazyKarolyUniversity,KarolyRobertCampus,Gyongyos,Hungary

S. Choudhury,J.R. Komaragiri, P.C. Tiwari

IndianInstituteofScience(IISc),Bangalore,India

S. Bahinipati22,C. Kar, G. Kole, P. Mal, V.K. Muraleedharan Nair Bindhu, A. Nayak23, D.K. Sahoo22,

S.K. Swain

NationalInstituteofScienceEducationandResearch,HBNI,Bhubaneswar,India

S. Bansal,S.B. Beri, V. Bhatnagar, S. Chauhan,R. Chawla, N. Dhingra, R. Gupta, A. Kaur, M. Kaur, S. Kaur,

P. Kumari,M. Lohan, M. Meena, K. Sandeep, S. Sharma, J.B. Singh, A.K. Virdi, G. Walia

PanjabUniversity,Chandigarh,India

A. Bhardwaj,B.C. Choudhary, R.B. Garg,M. Gola, S. Keshri, Ashok Kumar,M. Naimuddin, P. Priyanka,

K. Ranjan,Aashaq Shah, R. Sharma

UniversityofDelhi,Delhi,India

R. Bhardwaj24, M. Bharti24, R. Bhattacharya,S. Bhattacharya, U. Bhawandeep24, D. Bhowmik, S. Dutta,

S. Ghosh,B. Gomber25,M. Maity26,K. Mondal, S. Nandan, A. Purohit,P.K. Rout, G. Saha,S. Sarkar,

T. Sarkar26,M. Sharan, B. Singh24,S. Thakur24

SahaInstituteofNuclearPhysics,HBNI,Kolkata,India

P.K. Behera,P. Kalbhor, A. Muhammad, P.R. Pujahari,A. Sharma, A.K. Sikdar

IndianInstituteofTechnologyMadras,Madras,India

D. Dutta, V. Jha, V. Kumar, D.K. Mishra, P.K. Netrakanti, L.M. Pant, P. Shukla

BhabhaAtomicResearchCentre,Mumbai,India

T. Aziz,M.A. Bhat, S. Dugad, G.B. Mohanty, N. Sur, RavindraKumar Verma

(13)

S. Banerjee, S. Bhattacharya, S. Chatterjee,P. Das, M. Guchait, S. Karmakar,S. Kumar, G. Majumder,

K. Mazumdar,N. Sahoo, S. Sawant

TataInstituteofFundamentalResearch-B,Mumbai,India

S. Dube, B. Kansal,A. Kapoor, K. Kothekar, S. Pandey, A. Rane,A. Rastogi, S. Sharma

IndianInstituteofScienceEducationandResearch(IISER),Pune,India

S. Chenarani27, E. Eskandari Tadavani,S.M. Etesami27,M. Khakzad, M. Mohammadi Najafabadi,

M. Naseri, F. Rezaei Hosseinabadi

InstituteforResearchinFundamentalSciences(IPM),Tehran,Iran

M. Felcini,M. Grunewald

UniversityCollegeDublin,Dublin,Ireland

M. Abbresciaa,b, R. Alya,b,28,C. Calabriaa,b,A. Colaleoa,D. Creanzaa,c, L. Cristellaa,b,N. De Filippisa,c,

M. De Palmaa,b, A. Di Florioa,b, W. Elmetenaweea,b, L. Fiorea, A. Gelmia,b,G. Iasellia,c,M. Incea,b,

S. Lezkia,b,G. Maggia,c,M. Maggia, J.A. Merlin, G. Minielloa,b, S. Mya,b, S. Nuzzoa,b,A. Pompilia,b,

G. Pugliesea,c,R. Radognaa, A. Ranieria, G. Selvaggia,b, L. Silvestrisa, F.M. Simonea,b,R. Vendittia,

P. Verwilligena

aINFNSezionediBari,Bari,Italy bUniversitàdiBari,Bari,Italy cPolitecnicodiBari,Bari,Italy

G. Abbiendia,C. Battilanaa,b,D. Bonacorsia,b,L. Borgonovia,b,S. Braibant-Giacomellia,b,

R. Campaninia,b, P. Capiluppia,b,A. Castroa,b,F.R. Cavalloa, C. Cioccaa, G. Codispotia,b, M. Cuffiania,b,

G.M. Dallavallea,F. Fabbria, A. Fanfania,b, E. Fontanesia,b,P. Giacomellia,C. Grandia,L. Guiduccia,b,

F. Iemmia,b, S. Lo Meoa,29, S. Marcellinia, G. Masettia, F.L. Navarriaa,b,A. Perrottaa, F. Primaveraa,b,

A.M. Rossia,b, T. Rovellia,b, G.P. Sirolia,b,N. Tosia

aINFNSezionediBologna,Bologna,Italy bUniversitàdiBologna,Bologna,Italy

S. Albergoa,b,30,S. Costaa,b,A. Di Mattiaa, R. Potenzaa,b,A. Tricomia,b,30,C. Tuvea,b

aINFNSezionediCatania,Catania,Italy bUniversitàdiCatania,Catania,Italy

G. Barbaglia, A. Cassese,R. Ceccarelli, V. Ciullia,b, C. Civininia, R. D’Alessandroa,b,F. Fioria,E. Focardia,b,

G. Latinoa,b, P. Lenzia,b, M. Meschinia, S. Paolettia,G. Sguazzonia,L. Viliania

aINFNSezionediFirenze,Firenze,Italy bUniversitàdiFirenze,Firenze,Italy

L. Benussi, S. Bianco, D. Piccolo

INFNLaboratoriNazionalidiFrascati,Frascati,Italy

M. Bozzoa,b,F. Ferroa,R. Mulargiaa,b,E. Robuttia, S. Tosia,b

aINFNSezionediGenova,Genova,Italy bUniversitàdiGenova,Genova,Italy

A. Benagliaa, A. Beschia,b,F. Brivioa,b,V. Cirioloa,b,16, M.E. Dinardoa,b,P. Dinia, S. Gennaia,

A. Ghezzia,b, P. Govonia,b, L. Guzzia,b,M. Malbertia,S. Malvezzia,D. Menascea, F. Montia,b, L. Moronia,

M. Paganonia,b,D. Pedrinia,S. Ragazzia,b, T. Tabarelli de Fatisa,b,D. Valsecchia,b, D. Zuoloa,b

aINFNSezionediMilano-Bicocca,Milano,Italy bUniversitàdiMilano-Bicocca,Milano,Italy

S. Buontempoa, N. Cavalloa,c, A. De Iorioa,b,A. Di Crescenzoa,b, F. Fabozzia,c,F. Fiengaa, G. Galatia,

(14)

aINFNSezionediNapoli,Napoli,Italy bUniversitàdiNapoli‘FedericoII’,Napoli,Italy cUniversitàdellaBasilicata,Potenza,Italy dUniversitàG.Marconi,Roma,Italy

P. Azzia, N. Bacchettaa, D. Biselloa,b, A. Bolettia,b, A. Bragagnoloa,b,R. Carlina,b, P. Checchiaa,

P. De Castro Manzanoa,T. Dorigoa, U. Dossellia,F. Gasparinia,b,U. Gasparinia,b,A. Gozzelinoa,

S.Y. Hoha,b, P. Lujana,M. Margonia,b,A.T. Meneguzzoa,b,J. Pazzinia,b,M. Presillab, P. Ronchesea,b,

R. Rossina,b, F. Simonettoa,b,A. Tikoa, M. Tosia,b,M. Zanettia,b,P. Zottoa,b,G. Zumerlea,b

aINFNSezionediPadova,Padova,Italy bUniversitàdiPadova,Padova,Italy cUniversitàdiTrento,Trento,Italy

A. Braghieria, D. Fiorinaa,b,P. Montagnaa,b, S.P. Rattia,b,V. Rea,M. Ressegottia,b,C. Riccardia,b, P. Salvinia, I. Vaia, P. Vituloa,b

aINFNSezionediPavia,Pavia,Italy bUniversitàdiPavia,Pavia,Italy

M. Biasinia,b,G.M. Bileia,D. Ciangottinia,b, L. Fanòa,b,P. Laricciaa,b,R. Leonardia,b, E. Manonia,

G. Mantovania,b, V. Mariania,b,M. Menichellia,A. Rossia,b,A. Santocchiaa,b, D. Spigaa

aINFNSezionediPerugia,Perugia,Italy bUniversitàdiPerugia,Perugia,Italy

K. Androsova, P. Azzurria, G. Bagliesia, V. Bertacchia,c,L. Bianchinia,T. Boccalia,R. Castaldia,

M.A. Cioccia,b,R. Dell’Orsoa, S. Donatoa, G. Fedia,L. Gianninia,c, A. Giassia,M.T. Grippoa, F. Ligabuea,c,

E. Mancaa,c,G. Mandorlia,c, A. Messineoa,b, F. Pallaa,A. Rizzia,b, G. Rolandi31,S. Roy Chowdhury,

A. Scribanoa,P. Spagnoloa, R. Tenchinia,G. Tonellia,b, N. Turini,A. Venturia, P.G. Verdinia

aINFNSezionediPisa,Pisa,Italy bUniversitàdiPisa,Pisa,Italy

cScuolaNormaleSuperiorediPisa,Pisa,Italy

F. Cavallaria,M. Cipriania,b, D. Del Rea,b,E. Di Marcoa, M. Diemoza, E. Longoa,b, P. Meridiania,

G. Organtinia,b,F. Pandolfia, R. Paramattia,b,C. Quarantaa,b,S. Rahatloua,b,C. Rovellia,

F. Santanastasioa,b, L. Soffia,b

aINFNSezionediRoma,Rome,Italy bSapienzaUniversitàdiRoma,Rome,Italy

N. Amapanea,b,R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c,N. Bartosika,R. Bellana,b,A. Bellora,

C. Biinoa, A. Cappatia,b,N. Cartigliaa,S. Comettia,M. Costaa,b, R. Covarellia,b,N. Demariaa, B. Kiania,b,

F. Legger, C. Mariottia, S. Masellia,E. Migliorea,b, V. Monacoa,b, E. Monteila,b, M. Montenoa,

M.M. Obertinoa,b, G. Ortonaa,b, L. Pachera,b, N. Pastronea,M. Pelliccionia,G.L. Pinna Angionia,b,

A. Romeroa,b,M. Ruspaa,c, R. Salvaticoa,b, V. Solaa,A. Solanoa,b,D. Soldia,b,A. Staianoa,D. Trocinoa,b

aINFNSezionediTorino,Torino,Italy bUniversitàdiTorino,Torino,Italy

cUniversitàdelPiemonteOrientale,Novara,Italy

S. Belfortea,V. Candelisea,b, M. Casarsaa,F. Cossuttia,A. Da Rolda,b,G. Della Riccaa,b,F. Vazzolera,b,

A. Zanettia

aINFNSezionediTrieste,Trieste,Italy bUniversitàdiTrieste,Trieste,Italy

B. Kim, D.H. Kim,G.N. Kim, J. Lee, S.W. Lee, C.S. Moon, Y.D. Oh,S.I. Pak, S. Sekmen, D.C. Son,Y.C. Yang

KyungpookNationalUniversity,Daegu,RepublicofKorea

H. Kim,D.H. Moon, G. Oh

(15)

B. Francois, T.J. Kim, J. Park HanyangUniversity,Seoul,RepublicofKorea

S. Cho,S. Choi, Y. Go, S. Ha,B. Hong, K. Lee, K.S. Lee,J. Lim, J. Park, S.K. Park,Y. Roh, J. Yoo

KoreaUniversity,Seoul,RepublicofKorea J. Goh

KyungHeeUniversity,DepartmentofPhysics,RepublicofKorea H.S. Kim

SejongUniversity,Seoul,RepublicofKorea

J. Almond, J.H. Bhyun, J. Choi,S. Jeon, J. Kim, J.S. Kim, H. Lee,K. Lee, S. Lee, K. Nam,M. Oh, S.B. Oh,

B.C. Radburn-Smith, U.K. Yang,H.D. Yoo, I. Yoon

SeoulNationalUniversity,Seoul,RepublicofKorea

D. Jeon, J.H. Kim, J.S.H. Lee, I.C. Park, I.J. Watson

UniversityofSeoul,Seoul,RepublicofKorea

Y. Choi,C. Hwang, Y. Jeong, J. Lee, Y. Lee, I. Yu

SungkyunkwanUniversity,Suwon,RepublicofKorea

V. Veckalns32

RigaTechnicalUniversity,Riga,Latvia

V. Dudenas, A. Juodagalvis,A. Rinkevicius, G. Tamulaitis, J. Vaitkus

VilniusUniversity,Vilnius,Lithuania

Z.A. Ibrahim, F. Mohamad Idris33, W.A.T. Wan Abdullah,M.N. Yusli, Z. Zolkapli

NationalCentreforParticlePhysics,UniversitiMalaya,KualaLumpur,Malaysia

J.F. Benitez, A. Castaneda Hernandez,J.A. Murillo Quijada, L. Valencia Palomo

UniversidaddeSonora(UNISON),Hermosillo,Mexico

H. Castilla-Valdez, E. De La Cruz-Burelo,I. Heredia-De La Cruz34,R. Lopez-Fernandez,

A. Sanchez-Hernandez

CentrodeInvestigacionydeEstudiosAvanzadosdelIPN,MexicoCity,Mexico

S. Carrillo Moreno, C. Oropeza Barrera, M. Ramirez-Garcia, F. Vazquez Valencia

UniversidadIberoamericana,MexicoCity,Mexico

J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

BenemeritaUniversidadAutonomadePuebla,Puebla,Mexico A. Morelos Pineda

UniversidadAutónomadeSanLuisPotosí,SanLuisPotosí,Mexico

J. Mijuskovic2,N. Raicevic

UniversityofMontenegro,Podgorica,Montenegro D. Krofcheck

(16)

S. Bheesette,P.H. Butler UniversityofCanterbury,Christchurch,NewZealand

A. Ahmad, M. Ahmad, Q. Hassan,H.R. Hoorani, W.A. Khan,M.A. Shah, M. Shoaib, M. Waqas

NationalCentreforPhysics,Quaid-I-AzamUniversity,Islamabad,Pakistan

V. Avati,L. Grzanka,M. Malawski

AGHUniversityofScienceandTechnologyFacultyofComputerScience,ElectronicsandTelecommunications,Krakow,Poland

H. Bialkowska,M. Bluj, B. Boimska,M. Górski, M. Kazana, M. Szleper, P. Zalewski

NationalCentreforNuclearResearch,Swierk,Poland

K. Bunkowski, A. Byszuk35,K. Doroba, A. Kalinowski, M. Konecki,J. Krolikowski, M. Olszewski,

M. Walczak

InstituteofExperimentalPhysics,FacultyofPhysics,UniversityofWarsaw,Warsaw,Poland

M. Araujo,P. Bargassa, D. Bastos, A. Di Francesco, P. Faccioli,B. Galinhas, M. Gallinaro,J. Hollar,

N. Leonardo,T. Niknejad,J. Seixas, K. Shchelina,G. Strong, O. Toldaiev, J. Varela

LaboratóriodeInstrumentaçãoeFísicaExperimentaldePartículas,Lisboa,Portugal

S. Afanasiev,P. Bunin, M. Gavrilenko,I. Golutvin, I. Gorbunov, A. Kamenev,V. Karjavine,A. Lanev,

A. Malakhov,V. Matveev36,37, P. Moisenz, V. Palichik,V. Perelygin, M. Savina, S. Shmatov, S. Shulha,

N. Skatchkov,V. Smirnov, N. Voytishin, A. Zarubin

JointInstituteforNuclearResearch,Dubna,Russia

L. Chtchipounov,V. Golovtcov, Y. Ivanov,V. Kim38,E. Kuznetsova39, P. Levchenko,V. Murzin,

V. Oreshkin,I. Smirnov, D. Sosnov,V. Sulimov, L. Uvarov, A. Vorobyev

PetersburgNuclearPhysicsInstitute,Gatchina(St.Petersburg),Russia

Yu. Andreev,A. Dermenev,S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov,N. Krasnikov,

A. Pashenkov,D. Tlisov, A. Toropin

InstituteforNuclearResearch,Moscow,Russia

V. Epshteyn,V. Gavrilov, N. Lychkovskaya,A. Nikitenko40,V. Popov, I. Pozdnyakov, G. Safronov,

A. Spiridonov,A. Stepennov, M. Toms,E. Vlasov,A. Zhokin

InstituteforTheoreticalandExperimentalPhysicsnamedbyA.I.AlikhanovofNRC‘KurchatovInstitute’,Moscow,Russia T. Aushev

MoscowInstituteofPhysicsandTechnology,Moscow,Russia

M. Chadeeva41, P. Parygin,D. Philippov,E. Popova, V. Rusinov

NationalResearchNuclearUniversity‘MoscowEngineeringPhysicsInstitute’(MEPhI),Moscow,Russia

V. Andreev,M. Azarkin, I. Dremin, M. Kirakosyan, A. Terkulov

P.N.LebedevPhysicalInstitute,Moscow,Russia

A. Baskakov,A. Belyaev, E. Boos,V. Bunichev, M. Dubinin42, L. Dudko, A. Ershov, V. Klyukhin,

O. Kodolova,I. Lokhtin,S. Obraztsov, M. Perfilov, V. Savrin

SkobeltsynInstituteofNuclearPhysics,LomonosovMoscowStateUniversity,Moscow,Russia

A. Barnyakov43, V. Blinov43, T. Dimova43,L. Kardapoltsev43, Y. Skovpen43

Şekil

Fig. 1. Dijet mass spectrum (points) compared to a fitted parameterization of the background (solid curve)
Fig. 2 shows, as a function of resonance mass, observed and ex- ex-pected upper limits at 95% CL on the product of the cross section, branching fraction, and acceptance of a narrow vector resonance decaying to jets

Referanslar

Benzer Belgeler

For patients presenting with abnormal HADS Depression scores (ie ≥11), multivariate analysis did not identify age, type of treatment or cancer, having experienced modifications

Kalite kavramının Ģirketler için üreteceği katma değer; kurumsal geliĢim, etkinlik ve verimlilik noktasında performansı arttıracak, zaman içerisinde iĢ odaklı kurum

We present the case of pneumorrhachis and pneumocephalus in a patient with lumbar spinal stenosis who was performed epidural steroid injection by using loss of resistance technique

En son 2009 yılında yapılan ve TGP tanısı almış 1337 hastayı içeren bir çalışmada tipik patojenlere bağlı gelişen TGP’li hastaların serum PKT, CRP

Can be used in symptomatic (NYHA Class II-IV) patients in sinus rhythm with systolic HF (EF &lt;35%) and a heart rate &gt;70/min despite treatment with ACEI, BB and MRA therapy..

The study aims to settle irrigation scheduling of crops and optimum crop pattern under adequate and limited water supply conditions at a small-scale farm in F ı rat

University of Science and Technology of China, Hefei 230026, People’s Republic of

However, there were also heterozygotes with high FXI levels (&gt;70 U/dL). There might be genetic and environmental factors affecting the mutant phenotype expression in