• Sonuç bulunamadı

GENERALIZATION OF CEBYSEV TYPE INEQUALITIES FOR FIRST DIFFERENTIABLE MAPPINGS

N/A
N/A
Protected

Academic year: 2021

Share "GENERALIZATION OF CEBYSEV TYPE INEQUALITIES FOR FIRST DIFFERENTIABLE MAPPINGS"

Copied!
10
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Miskolc Mathematical Notes HU e-ISSN 1787-2413 Vol. 12 (2011), No. 2, pp. 245–253

A GENERALIZATION OF ˇCEBY ˇSEV TYPE INEQUALITIES FOR

FIRST DIFFERENTIABLE MAPPINGS

ERHAN SET, MEHMET ZEKI SARIKAYA, AND FAROOQ AHMAD

Received February 16, 2011

Abstract. In this paper, we improve and further generalize some ˇCebyˇsev type inequalities in-volving functions whose derivatives belong to Lpspaces via certain integral identities.

2000 Mathematics Subject Classification: 26D07, 26D15, 26D20 Keywords: ˇCebyˇsev type inequalities, Lpspaces

1. INTRODUCTION

In 1882, P. L. ˇCebyˇsev proved the following important integral inequality [13],[9, p.207]: T .f; g/ 1 12.b a/ 2 f0 1 g0 1; (1.1)

where f; gW Œa; b ! R are absolutely continuous functions whose derivatives f0; g02 L1Œa; b and T .f; g/D 1 b a Z b a f .x/g.x/dx 1 b a Z b a f .x/dx ! 1 b a Z b a g.x/dx ! ; (1.2) which is called the ˇCebyˇsev functional, provided the integrals in (1.2) exist.

During the past few years many researchers have given considerable attention to the inequality of (1.1). Various generalizations, extensions and variants of this in-equality have appeared in the literature, see ([1–13]) and the references cited therein. Recently, Pachpatte [8] established a new ˇCebyˇsev type inequality involving func-tions whose derivatives belong to Lp spaces:

Theorem 1. Letf; gW Œa; b ! R are absolutely continuous functions whose de-rivativesf0; g02 LpŒa; b, p > 1: Then, we have inequalities

T .f; g/ 1 .b a/3 f0 p g0 p Z b a .B.x//2qdx; c

(2)

and T .f; g/ 1 2 .b a/2 Z b a h g.x/ f0 pC f .x/ g0 p i .B.x//q1dx; (1.3) where B.x/D.x a/ qC1C .b x/qC1 qC 1 ;

forx2 Œa; b and p1C1qD 1:

Motivated by the results of Pachpatte, in the present paper we establish some new ˇ

Cebyˇsev type inequalities forp1C1q D 1. The analysis used in the proofs is

element-ary and our results provide new estimates for these types of inequalities. 2. MAIN RESULTS

Let Œa; b R, a < bI and as usual for any function h 2 LpŒa; b ; p > 1, we define

khkp D  Rb a jh.t/j p dt 1 p

: We use the following notation to simplify the details of presentation. For suitable functions f; gW Œa; b ! R and  2 Œ0; 1 ; we set

T.f; g/ D 1 b a  1  2  Z b a f .x/g.x/dx  4.b a/2 ( Z b a Œ.x b/ f .b/ .x a/ f .a/ g.x/dx C Z b a Œ.x b/ g.b/ .x a/ g.a/ f .x/dx ) 1 b a Z b a f .x/dx ! 1 b a Z b a g.x/dx ! : Now, let us state our main results.

Theorem 2. Letf; gW Œa; b ! R be absolutely continuous functions whose deriv-ativesf0; g02 LpŒa; b, p > 1: Then, the following inequality holds:

jT.f; g/j  1 2 .b a/2 Z b a h g.x/ f0 pC f .x/ g0 p i .Z.x//q1dx; (2.1) where Z.x/D .x a/ qC1C .b x/qC1 qC 1   2 qC1 C  1  2 qC1! ; forx2 Œa; b ; p1Cq1D 1 and  2 Œ0; 1 :

(3)

Proof. From the hypotheses, we can write the following identities, 1 b a Z b a p.x; t /f0.t /dt D  1  2  f .x/ .x b/ f .b/ .x a/ f .a/ 2.b a/ 1 b a Z b a f .t /dt; (2.2) and 1 b a Z b a p.x; t /g0.t /dt D  1  2  g.x/ .x b/ g.b/ .x a/ g.a/ 2.b a/ 1 b a Z b a g.t /dt; (2.3) for x2 Œa; b ;  2 Œ0; 1 ; where

p.x; t /D 8 ˆ < ˆ : t aC x a 2  ; a t  x t  b b x 2  ; x < t b :

A simple proof of equalities of (2.2) and (2.3) can be done by integrating in the left hand side and using the identity of p.x; t /: The details are left for the interested reader.

Multiplying both sides of (2.2) and (2.3) by g.x/ and f .x/ respectively and adding the resulting identities, we get

1 b ag.x/ Z b a p.x; t /f0.t /dtC 1 b af .x/ Z b a p.x; t /g0.t /dt (2.4) D 2  1  2  f .x/g.x/ .x b/ f .b/ .x a/ f .a/ 2.b a/ g.x/ .x b/ g.b/ .x a/ g.a/ 2.b a/ f .x/ 1 b ag.x/ Z b a f .t /dt 1 b af .x/ Z b a g.t /dt: Multiplying both sides of (2.4) by b a1 ; we get

2 b a  1  2  f .x/g.x/ (2.5) .x b/ f .b/ .x a/ f .a/ 2.b a/2 g.x/  .x b/ g.b/ .x a/ g.a/ 2.b a/2 f .x/ 1 .b a/2g.x/ Z b a f .t /dt 1 .b a/2f .x/ Z b a g.t /dt

(4)

D 1 .b a/2g.x/ Z b a p.x; t /f0.t /dtC 1 .b a/2f .x/ Z b a p.x; t /g0.t /dt: Integrating both sides of (2.5) with respect to x over Œa; b, we get

2 b a  1  2  Z b a f .x/g.x/dx (2.6)  2.b a/2 ( Z b a Œ.x b/ f .b/ .x a/ f .a/ g.x/dx C Z b a Œ.x b/ g.b/ .x a/ g.a/ f .x/dx ) 2 1 b a Z b a g.x/dx ! 1 b a Z b a f .x/dx ! D 1 .b a/2 Z b a g.x/ Z b a p.x; t /f0.t /dt ! dx C 1 .b a/2 Z b a f .x/ Z b a p.x; t /g0.t /dt ! dx: After the rewriting of the equality of (2.5), we obtain

T.f; g/D 1 2.b a/2 Z b a " g.x/ Z b a p.x; t /f0.t /dtC f .x/ Z b a p.x; t /g0.t /dt # dx: (2.7) From (2.7) and using the properties of modulus, H¨older’s integral inequality, we have

jT.f; g/j (2.8)  1 2.b a/2 Z b a " jg.x/j Z b a jp.x; t/j ˇ ˇf0.t /ˇˇdtC jf .x/j Z b a jp.x; t/j ˇ ˇg0.t /ˇˇdt # dx  1 2.b a/2 Z b a 2 4jg.x/j Z b a jp.x; t/j qdt !1q Z b a ˇ ˇf0.t /ˇˇ p dt !p1 C jf .x/j Z b a jp.x; t/j q dt !q1 Z b a ˇ ˇg0.t / ˇ ˇ p dt !p13 5dx D 1 2 .b a/2 Z b a h g.x/ f0 pC f .x/ g0 p i Z b a jp.x; t/j q dt !q1 dx:

(5)

A simple calculation shows that Z b a jp.x; t/j q dt (2.9) D Z x a ˇ ˇ ˇt  aC x a 2 ˇ ˇ ˇ q dtC Z b x ˇ ˇ ˇ ˇ t  b b x 2 ˇ ˇ ˇ ˇ q dt D .x a/q Z x a ˇ ˇ ˇ ˇ t a x a  2 ˇ ˇ ˇ ˇ q dtC .b x/q Z b x ˇ ˇ ˇ ˇ t b b x  2 ˇ ˇ ˇ ˇ q dt D .x a/ qC1C .b x/qC1 qC 1   2 qC1 C  1  2 qC1! D Z.x/:

Using (2.8) and (2.9), we get the required inequality in (2.1). The proof is complete.  Remark1. If we choose D 0 in (2.1), then we get (1.3).

Corollary 1. Letf W Œa; b ! R be an absolutely continuous function whose de-rivativef02 LpŒa; b, p > 1: Then, the following inequality holds:

ˇ ˇ ˇ ˇ ˇ  1  2  f .x/ .x b/ f .b/ .x a/ f .a/ 2.b a/ 1 b a Z b a f .t /dt ˇ ˇ ˇ ˇ ˇ  1 b a f0 p.Z.x// 1 q: (2.10)

Proof. From (2.2) using the properties of modulus and applying H¨older’s integral inequalty, we have ˇ ˇ ˇ ˇ ˇ  1  2  f .x/ .x b/ f .b/ .x a/ f .a/ 2.b a/ 1 b a b R a f .t /dt ˇ ˇ ˇ ˇ ˇ  1 b a b R a jf 0.t /jp dt !p1 b R ajp.x; t/j qdt !q1 D 1 b akf 0k p.Z.x// 1 q:  Remark2. i) If we choose D 1 in (2.10), then we get

ˇ ˇ ˇ ˇ ˇ 1 2f .x/ .x b/ f .b/ .x a/ f .a/ 2.b a/ 1 b a Z b a f .t /dt ˇ ˇ ˇ ˇ ˇ

(6)

 1 2 .b a/ .x a/qC1C .b x/qC1 .qC 1/ !1q f0 p: ii) For D 0 in (2.10), we have,

ˇ ˇ ˇ ˇ ˇ f .x/ 1 b a Z b a f .t /dt ˇ ˇ ˇ ˇ ˇ  .b1a/ .x a/ qC1C .b x/qC1 .qC 1/ !1q f0 p: Theorem 3. Let f; g W Œa; b ! R be absolutely continuous functions whose de-rivativesf0; g02 L Œa; b : If jf0jq andjg0jq is convex onŒa; b ; p > 1; p1Cq1 D 1: Then, the following inequality holds:

jT .f; g/j  1 2 Z b a 8 < : 2 4jf .x/j  jg0.a/jqC jg0.b/jq 2  1 q C jg.x/j jf 0.a/jq C jf0.b/jq 2  1 q 3 5M 1 p.x/ 9 = ; dx (2.11) where M.x/D.b x/ pC1C .x a/pC1 .b a/pC1.pC 1/ :

Proof. From the hypotheses, we can write the following identities, f .x/D 1 b a Z b a f .x/dxC .b a/ Z 1 0 P .x; t /f0.t aC .1 t/b/dt; (2.12) and g.x/D 1 b a Z b a g.x/dxC .b a/ Z 1 0 P .x; t /g0.t aC .1 t/b/dt; (2.13) for x2 Œa; b ; where

P .x; t /D (

t; 0 t b xb a t 1; b xb a < t 1 :

A simple proof of equalities of (2.12) and (2.13) can be obtained by integrating in the right hand side and using the identity of p.x; t /: The details are left for the interested reader.

Multiplying both sides of (2.12) and (2.13) by g.x/ and f .x/ respectively and adding the resulting identities, we get

(7)

D g.x/ b a Z b a f .x/dxC .b a/g.x/ Z 1 0 P .x; t /f0.t aC .1 t/b/dt Cf .x/ b a Z b a g.x/dxC .b a/f .x/ Z 1 0 P .x; t /g0.t aC .1 t/b/dt: Integrating both sides of (2.14) with respect to x over Œa; b and dividing both sides of the resulting identity .b a/; we get

2 b a Z b a f .x/g.x/dx (2.15) D 2 1 b a Z b a g.x/dx ! 1 b a Z b a f .x/dx ! C Z b a g.x/ Z 1 0 P .x; t /f0.t aC .1 t/b/dt  dx C Z b a f .x/ Z 1 0 P .x; t /g0.t aC .1 t/b/dt  dx: Rewriting the identity (2.15), we get

T .f; g/ D 1 2 Z b a g.x/ Z 1 0 P .x; t /f0.t aC .1 t/b/dt  dx (2.16) C1 2 Z b a f .x/ Z 1 0 P .x; t /g0.t aC .1 t/b/dt  dx: From (2.16), using the properties of modulus and rearranging the terms, we get

jT .f; g/j  1 2 Z b a jf .x/j Z 1 0 jP .x; t/j ˇ ˇg0.t aC .1 t/b/ˇˇdt  dx C1 2 Z b a jg.x/j Z 1 0 jP .x; t/j ˇ ˇf0.t aC .1 t/b/ˇ ˇdt  dx:

Applying H¨older’s integral inequality and the convexity ofjf0jqandjg0jq; we obtain

jT .f; g/j  1 2 Z b a 2 4jf .x/j Z 1 0 jP .x; t/j p dt  1 p Z 1 0 ˇ ˇg0.t aC .1 t/b/ ˇ ˇ q dt  1 q C jg.x/j Z 1 0 jP .x; t/j p dt  1 pZ 1 0 ˇ ˇf0.t aC .1 t/b/ˇˇ q dt  1 q 3 5dx

(8)

D 12 Z b a 8 < : 2 4jf .x/j  jg0.a/jqC jg0.b/jq 2  1 q (2.17) C jg.x/j jf 0.a/jq C jf0.b/jq 2 q1 3 5 Z 1 0 jP .x; t/j p dt  1 p 9 = ; dx:

A simple computation gives Z 1 0 jP .x; t/j p dt D Z bb xa 0 tpdtC Z 1 b x b a .t 1/pdt (2.18) D .b x/ pC1C .x a/pC1 .b a/pC1.pC 1/ D M.x/:

Using (2.18) in (2.18), we get the required inequality in (2.11).  Corollary 2. If in theorem3we require thatjf0.x/j  K; K > 0 and jg0.x/j  N; N > 0, then the following inequality holds

jT .f; g/j 1 2 Z b a Œjf .x/j N C jg.x/j K Mp1.x/dx ! ; where p1C1q D 1: REFERENCES

[1] F. Ahmad, N. S. Barnett, and S. S. Dragomir, “New weighted Ostrowski and ˇCebyˇsev type in-equalities,” Nonlinear Anal., vol. 71, no. 12, pp. e1408–e1412, 2009.

[2] F. Ahmad, P. Cerone, S. S. Dragomir, and N. A. Mir, “On some bounds of Ostrowski and ˇCebyˇsev type,” J. Math. Inequal., vol. 4, no. 1, pp. 53–65, 2010.

[3] F. Ahmad, A. Rafiq, and N. A. Mir, “Weighted Ostrowski-Gr¨uss type inequality for differentiable mappings,” Glob. J. Pure Appl. Math., vol. 2, no. 2, pp. 147–154, 2006.

[4] H. P. Heinig and L. Maligranda, “Chebyshev inequality in function spaces,” Real Anal. Exchange, vol. 17, no. 1, pp. 211–247, 1991/92.

[5] D. S. Mitrinovi´c, J. E. Peˇcari´c, and A. M. Fink, Classical and new inequalities in analysis, ser. Math. Appl. (East European Ser.). Dordrecht: Kluwer Academic Publishers Group, 1993, vol. 61. [6] B. G. Pachpatte, “On trapezoid and Gr¨uss-like integral inequalities,” Tamkang J. Math., vol. 34,

no. 4, pp. 365–369, 2003.

[7] B. G. Pachpatte, “On Ostrowski-Gr¨uss- ˇCebyˇsev type inequalities for functions whose modulus of derivatives are convex,” JIPAM. J. Inequal. Pure Appl. Math., vol. 6, no. 4, p. 15, 2005.

[8] B. G. Pachpatte, “On Chebyshev type inequalities involving functions whose derivatives belong to lpspaces,” JIPAM. J. Inequal. Pure Appl. Math., vol. 7, no. 2, pp. Article 58, 6, 2006.

[9] J. E. Peˇcari´c, F. Proschan, and Y. L. Tong, Convex functions, partial orderings, and statistical applications, ser. Math. Sci. Engrg. Boston, MA: Academic Press, Inc., 1992, vol. 187. [10] A. Rafiq and F. Ahmad, “Another weighted Ostrowski-Gr¨uss type inequality for twice

(9)

[11] A. Rafiq, N. A. Mir, and F. Ahmad, “Weighted ˇCebyˇsev-Ostrowski type inequalities,” Appl. Math. Mech. (English Ed.), vol. 28, no. 7, pp. 901–906, 2007.

[12] M. Z. Sarikaya, A. Saglam, and H. Yildirim, “On generalization of ˇCebyˇsev type inequalities,” Iran. J. Math. Sci. Inform., vol. 5, no. 1, pp. 41–48, 2010.

[13] P. L. ˇCebyˇsev, “Sur les expressions approximatives des integrales par les auters prises entre les memes limites,” Proc. Math. Soc. Charkov, vol. 2, pp. 93–98, 1882.

Authors’ addresses

Erhan Set

Department of Mathematics, Faculty of Science and Arts, D¨uzce University, D¨uzce-TURKEY E-mail address: erhanset@yahoo.com

Mehmet Zeki Sarikaya

Department of Mathematics, Faculty of Science and Arts, D¨uzce University, D¨uzce-TURKEY E-mail address: sarikayamz@gmail.com

Farooq Ahmad

Center for Advanced Studies in Pure and Applied Mathematics, B. Z. U., Multan, Pakistan (Presently at Mathematics Department, Govt. Post Graduate College Bhakkar 30000, Punjab, Pakistan)

(10)

and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright

holder's express written permission. However, users may print, download, or email articles for individual use.

Referanslar

Benzer Belgeler

In his last novel ( for Forster wrote more fiction), A Passage To India (1924) he es the relations between the English relations, between the English and Indians in India in the

As call to the constructor of General class made several time, each instance of General class creates its own instances referred to the Gauges and Timer classes. Return to

We use the theory of Hilbert spaces of analytic functions on bounded symmetric domains in CN to obtain information on the 1/N + 1st power of the Bergman kernel of the ball.. This

In diabetic aorta, the relaxation response to acetyl- choline (Ach) was found to be significantly decreased compared with control subjects, and resveratrol treatment reversed this;

The mini- open carpal tunnel release surgery, which can be performed proximal or distal to the distal wrist crease, is a preferable method, however, the reliability of mini

Sayısal örnek için seçilen bir taşıyıcı sistem modeli, x ve y yönünde dört açıklıklı, zemin+dört katlı üç boyutlu çerçeve sistem olup,

Betonun mekaniksel özelliklerinin çarpma dayanımına etkisinin incelenmesi konusundaki çalıĢmada; 30x15 cm ve 20x10 cm boyutlarında standart silindir ile 10x10x50 cm´

Yabani kufllar, insanlara yeni grip virüslerinin tafl›nmas›nda ve bu virüsün insan- larda dolaflan insan gribi virüsleriyle etkileflip tama- men yeni bir grip virüsü