• Sonuç bulunamadı

A smartphone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection

N/A
N/A
Protected

Academic year: 2021

Share "A smartphone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection"

Copied!
7
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Sensors

and

Actuators

B:

Chemical

j ou rn a l h o m ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / s n b

A

smartphone

based

surface

plasmon

resonance

imaging

(SPRi)

platform

for

on-site

biodetection

Hasan

Guner

a

,

Erol

Ozgur

a

,

Guzin

Kokturk

b

,

Mehmet

Celik

c

,

Elif

Esen

b

,

Ahmet

E.

Topal

a

,

Sencer

Ayas

d

,

Yildiz

Uludag

b

,

Caglar

Elbuken

a

,

Aykutlu

Dana

a,∗

aUNAM,InstituteofMaterialsScienceandNanotechnology,BilkentUniversity,Ankara,06800,Turkey

bUEKAE-BILGEM,TheScientificandTechnologicalResearchCouncilofTurkey(TUBITAK),Gebze,Kocaeli,41470,Turkey

cDepartmentofComputerEngineering,MiddleEastTechnicalUniversity,Ankara,06800,Turkey

dCanaryCenteratStanfordforCancerEarlyDetection,DepartmentofRadiology,StanfordSchoolofMedicine,PaloAlto,CA94304,USA

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received2July2016

Receivedinrevisedform5August2016

Accepted10August2016

Availableonline10August2016

Keywords: Plasmonics

Surfaceplasmonresonanceimaging

Opticaldiscs

Mobilesensing

Biosensors

Opticalsensor

a

b

s

t

r

a

c

t

Wedemonstrateasurfaceplasmonresonanceimagingplatformintegratedwithasmartphonetobe usedinthefieldwithhigh-throughputbiodetection.InexpensiveanddisposableSPRsubstratesare pro-ducedbymetalcoatingofcommercialBlu-raydiscs.Acompactimagingapparatusisfabricatedusinga 3DprinterwhichallowstakingSPRmeasurementsfrommorethan20.000individualpixels.Real-time bulkrefractiveindexchangemeasurementsyieldnoiseequivalentrefractiveindexchangesaslowas 4.12×10−5RIUwhichiscomparablewiththedetectionperformanceofcommercialinstruments.Asa demonstrationofabiologicalassay,wehaveshowncaptureofmouseIgGantibodiesbyimmobilized layerofrabbitanti-mouse(RAM)IgGantibodywithnanomolarlevellimitofdetection.Ourapproach inminiaturizationofSPRbiosensinginacost-effectivemannercouldenablerealizationofportableSPR measurementsystemsandkitsforpoint-of-careapplications.

©2016PublishedbyElsevierB.V.

1. Introduction

Thewide useofmobilephonesallacrosstheworld created significantopportunitiesforhealthcareapplicationsusingmobile devices. Improvement of healthcare services requires democ-ratization of the services with higher quality and lower cost. Early diagnosis, close monitoring,patient comfort are some of theconcerns that healthcare providers are strivingto improve on.Thedevelopmentoflab-on-a-chip platformsin thelast two decades brought severalexamples of novel platforms that can beused for rapid diagnosisof widespreaddiseases. Portability, shortturn-around-time,cost-efficiencyandconnectivityaresome ofthecriticalassetsthatsuccessfuldevicesshouldpossess.The advancementsinsuchareasenabledtheuseoflab-on-a-chip sys-temsason-siteorpoint-of-caresystemsnotonlyforremoteor resource-limitedsettings,butalsoforhome-monitoringofelderly populationatdevelopedcountries.

Oneofthemainbottlenecksintransformingthelab-on-a-chip systemsintopoint-of-carediagnosticdevicesistherequirementto miniaturizeandcombineseveraloff-chipcomponents.The

mar-∗ Correspondingauthor.

E-mailaddress:aykutlu@unam.bilkent.edu.tr(A.Dana).

riageofthelab-on-a-chipsystemswithmobilephoneswasthe tippingpointthatyieldedaplethoraofintegratedscreeningand diagnosticdevices.MobilephonesprovidepowerfulCPUs,touch screen displays,advanced connectivityfeatures as wellas high pixel-count,sensitivecamerasandintegratedlightsources. There-fore,theuseofmobilephonesforapplicationsrequiringoptical detectionisaninterestingandrapidlydevelopingfieldofresearch. Forinstance,immunodiagnosticassays,lateralflowassays, micro-scopicimaging,flowcytometry,colorimetricdetection,photonic crystalandsurfaceplasmonresonance(SPR)basedbiosensinghave beendemonstratedusingmobilephoneplatforms[1–12].Inthis study,tothebestofourknowledgewepresentthefirstsurface plasmonresonanceimagingonasmartphone.

SPR biosensing is a popular method for quantitative anal-ysis and characterization of biomolecular interactions [13–15]. SPRprovideslabel-freeandreal-timedetectionofbindingevents withhighsensitivity.Surfaceplasmonsareelectromagneticwaves propagating along and evanescently decaying away from the metal/dielectric interface. This field confinement around the boundarymakesplasmonresonancecouplingconditionextremely sensitivetothelocalrefractiveindexchangescausedbyspecific adsorptionoftargetanalytesontothemolecularprobesresidingon themetalsurface.Recently,somestudieshavedemonstratedSPR sensingusingsmartphone. Preechaburanaetal.reported

angle-http://dx.doi.org/10.1016/j.snb.2016.08.061

(2)

572 H.Guneretal./SensorsandActuatorsB239(2017)571–577

resolvedSPRchemicaldetectionusinganSPRcouplerattachedon thesmartphonescreenutilizingtheilluminationfromthescreen [8].Inordertodevelopamorepracticalsystem,Liuetal.[9]and Bremeretal.[10]showedtheuseofopticalfibersforSPR detec-tiononcellphones.Bothofthesesystemsusedtheback-sideLED andcameraofthecellphoneasthelightsourceandthesensor, respectively.Rocheetal.demonstratedlocalizedSPRsensingon cellphonewithincreasedsensitivityusinggoldnanoparticlesand nanorods[11].Duttaetal.reportedlocalizedSPR(LSPR)sensing oncellphoneforbiomoleculardetectionandmeasuringsize vari-ationofmetalnanoparticles[12].Allofthesestudies,demonstrate single-spotor1DspatiallyresolvedSPRsensing,whichlimitstheir applicabilityforhigh-throughputandmultiplexeddetection.Inthis article,wedemonstrateSPRimagingor2DSPRsensingonacell phone,unveilingthepotentialofmulti-analytedetectionaswell asimplementationofarray-basedadvancedbiochemicalanalysis usingalow-cost,integratedplatform(SeeSupplementarymaterial TableS1fordetailedcomparisonwithpreviousstudies).

SPRimagingissuperiortosingle-spotSPRsinceitcanbeusedfor detectionofmultipleanalytesinasinglesampleforpanelassays. Thisleadstosignificantbenefitsintermsofcostandmeasurement time.Similarly,themultiplesensingpointsonthesensorcanbe usedfordetectionoftheanalyteatseveralsampledilutionswhich iscriticalforserialdilutionassays.Also,image-based bioanalyti-caldetectionhelpstheoperatortoviewtheresultsatonceand interpretthem moreeasily.Additionally, image-based2D sens-ingcanprovidereplicatedmeasurementsonthesamesensorchip togetherwithcontrolsthatleadstohigherreliability,precisionand on-chipself-calibration. On-chipcontrolandself-calibrationare especiallycriticalforpoint-of-caresensingapplicationsthat suf-ferfromhigherrorratesduetovaryingoperatingconditionsand thewide rangeof userlevels.We believethedemonstrationof suchadvancedbiochemicaltechniquesusingmobilephonesand cost-effectivesensorswillleadtoa paradigmshiftintheglobal healthcaremarket.Implementationofadvanceddetection appli-cationsoncontinuouslyimprovingfeature-richmobilephoneswill pavethewaytowardshighlysensitivediagnosistoolsreachingto thepeoplefromallsocio-economiclevels.

Here, we present surface plasmon resonance imaging on a smartphone.We have developedvery low-costgratingcoupled SPRsensor chipsusingoff-the-shelfopticalstorage discs. Addi-tionally,wedesignedacompactopticalsystem,usinga3D-printed apparatusthathoststheLEDsource,collimator,bandpassfilter, linearpolarizer,beamsplitterplateandanexternalimaginglens whichcanbeeasilyattachedtothesmartphone.Weemployeda silver/gold(Ag/Au)bilayerstructurecoatedontheperiodic cor-rugationsofBlu-raydiscsinordertoperformplasmonresonance imaging at thecentral regionof visible spectrum (␭r∼500nm)

undernormalincidenceilluminationinaqueousenvironment.This allowedtheoptimaluseoftheCMOSsensorofthesmartphone whilemaintaininghighsensitivity,chemicalstabilityandbiological affinity[16–20].Amicrofluidicchannelisplacedonthe bimetal-liclayerforcontrolledplumbingoftheliquids.TheuseofBlu-ray discsandstandardmetaldepositiontechniquestogetherwiththe low-costmicrofluidicchannelresultedinsignificantcost-reduction whichcanallowthesystemtobeusedforapplicationsrequiring disposableSPRsensors.

2. Materialsandmethods

2.1. Smartphoneattachmentforsurfaceplasmonresonance imaging

Anopticalattachmentwasdevelopedwhich converts smart-phone into a real-time surface plasmon resonance imaging

platformbasedonintensityinterrogationmechanism.ASamsung I8552Galaxy Win wasused asthe smartphone. Theprototype accessorywasfabricatedoutofpolylacticacid(PLA)filamentusing a 3D printer (MakerBot Replicator 2). Optical configuration of theimagingplatformisschematicallyillustratedinFig.1a.Light emittingfrom a 520nm LEDsource iscoupledto a multimode fiberopticcable (actingas a spatialfilter) and collimatedby a fiberopticcollimator.Abandpassinterferencefilter(␭c=520nm,

␭FWHM=10nm)isusedtonarrowthespectralbandwidthof

illu-mination.Collimatedbeamoflightbecomestransversemagnetic (TM)polarizedpassingthroughalinearpolarizingfiltersheetand isdirectedontothesensorsurfaceatnormalincidenceby reflect-ingfromabeamsplitterplate.Lightreflectingoffthesensorsurface passesthroughthebeamsplitterplateandisfocusedonthe smart-phone’scamerasensorbyanexternalplasticimaginglens(focal length=8mm).Imagingspotcoversapproximately160pixelsin diameterwhichcorrespondstomorethan20.000individual pix-els,althoughthecameraiscapableofvideorecordingat720×480 pixelsresolution.Imagingresolutioniscalculatedas12␮m/pixel. OnlygreenchannelofRGBimageisanalyzedsinceithasthehighest spectralresponsivityattheoperationwavelength.Theattachment measures143×75×44mm3 and weighs215gincluding2 AAA

batteries(Fig.1b).

An Android application software was developed to analyze imagedata,reportintensitychangesandestimateanalyte concen-trationinthefielduse(Fig.1c).Whentheappisinitiated,zoomed inviewoftheimagingspotisdisplayedcontinuouslyatthe back-ground.First,regionofinterests(ROI)onthesensorsurfaceare definedbytappingmenubuttonandenteringROIparametersin thesettingsmenu.Toestimateanalyteconcentrationsfrom inten-sitychanges,predeterminedcalibrationlineparametersaresetin slope,interceptandunitfields.Timeaveragingfeaturecanbe acti-vatedbyenteringthenumberofconsecutiveframestobeaveraged. “Reference”,“Dark”and“Baseline”buttonsareusedtotakeand storereference,darkandbaselineintensityvalues,respectively,as describedinSubsection2.3.Averagedintensitychangesand esti-matedanalyteconcentrationsforeachROIsegmentaredisplayed separatelyontherightsideofthescreenwhenthe“Start record-ing”boxischecked.Uncheckingthe“Startrecording”itemstops recordingandsavesmeasurementdatainatextfile.Screen cap-turesfromapplicationsoftwarearepresentedinSupplementary materialFig.S1.

2.2. DesignandfabricationofSPRisensorchips

Opticalstoragediscscanbeexploitedasgratingcoupled sur-faceplasmonresonancesensorsbymetalcoating,thankstothe periodic corrugations [21,22]. Depending on thedisc type and refractive index of the surrounding medium, surface plasmons canbe excitedatwavelengthsranging fromultravioletto near infraredspectral regions.SPR substratesproduced fromBlu-ray discs (BD)(gratingperiod =320nm, grating depthd=20nm) exhibitplasmonresonanceswithinthevisiblespectrumwhen illu-minatedatnormalincidenceinaqueousmedium,asindicatedby thereflectancespectracalculations(Fig.S2). Numerical calcula-tionsareperformedusingacommercialsoftware(PCGrate)which employsmodifiedintegralmethod(MIM)[23].PCGrateallows cal-culationof diffraction efficienciesof multilayered 1-D gratings. Calculationmodeshouldbeswitchedfromnormaltoresonance modefor SPR coupler simulations. Polarization of the incident beamissetasnon-polarizedinordertoexaminethereflectance spectraforbothtransverseelectric(TE)andtransversemagnetic (TM)polarizedilluminations.SurfaceprofileofthegratingonBDis definedassine-trapezoidalusingbuilt-ingeometricaltools. Com-plexrefractiveindices of gold andsilver are extrapolatedfrom previouslytakenexperimentaldata[24].Accordingtothe

(3)

simu-Fig.1. Surfaceplasmonresonanceimagingplatformintegratedwithasmartphone.(a)Schematicillustrationand(b)photographoftheimagingapparatus.(c)Custom

developedsmartphoneapplicationforreal-timeandon-sitemonitoringofmultiplesensingspots.

lationresults,silvercoatedBDexhibitssharpplasmonresonance around500nmwavelength,whereasgoldcoatedBDdoesnot dis-play surfaceplasmon resonant behaviorat normal incidenceof excitationduetoitsintrinsicabsorptioncharacteristicsatthis por-tionofthespectrum.However,goldhassuperiorpropertiesover silverintermsofchemicalstabilityandadequacyforfurthersurface functionalizationchemistryforbiosensingapplications.Inorderto overcomethisdichotomy,wecameupwithahybridsolutionin whichthick(>80nm)silvercoatingatthebottomactsasa plas-monexcitationlayerandthin(<10nm)goldfilmontopfunctions asa surfaceforthesubsequentsurfacemodification,aswellas extendingtheshelflifeofthesensorchip.ThethicknessesofAg andAulayersareoptimizedusingnumericalsimulations.Silver layerthicknessabove80nm isfoundtoyieldalmost sameSPR reflectancespectrawithsemi-infinitesilverlayerconfigurationas showninFig.S3.Asthethicknessofthetopgoldlayerisincreased, ontheotherhand,plasmonresonancecurvedegradesandloses itssharpnessasshowninFig.S4.Thus,goldcoatingthicknessis keptas2nminordertosatisfybothsensitivityandsurface chem-istryrequirements.Apartfromthepreviousstudieswhichusethe Ag/Aubimetallicstructuretoincreasesensitivity[16–20],weused thisconfigurationtoobtainaresponsebelow520nmwhichisnot possiblewiththecommonlyusedsinglegoldlayeredcouplers.

Blu-raydiscs(BD)areconvertedtoplasmonicsurfacesby peel-ingoffthetransparentthinprotectivecoatingontopofthediscwith tweezeraftercuttinganotchonthesideofthedisc,followedby metallizationusingthermalvacuumevaporation(VaksisThermal Evaporator).First,athingermaniumlayerisdepositedtoactasan adhesionlayeraswellastoreducethesurfaceroughnessof sub-sequentsilvercoating[25,26].Germanium(3nm),silver(80nm) andgold(2nm)metallayersaredepositedat0.4 ˚A/s,0.6–1.0 ˚A/s and0.2 ˚A/sgrowthrates,respectively,under0.005mTorrchamber pressure.SchematicillustrationandSEMimageofaAg/Aubilayer coatedBDstructureareshowninFig.2.

SensitivityperformanceofabimetallicBDbasedSPRsensoris investigatedusingnumericalsimulations.Thespectralbulk refrac-tiveindexsensitivity,S␭BCiscalculatedas316nm/RIU.Theratioof thechangeinresonancewavelengthtothechangeinthethickness oflayerformedbytheadsorptionofmoleculesontothesensor surfacegivesthespectralsurfacecoatingsensitivity,S␭SC,andit iscalculatedas0.7nm/nmforacoatingmaterialwithrefractive index,n=1.45.

Blu-raydiscs asdescribedherealloweasyreplicationof our workby otherswithoutneeding anyinfrastructure investment. Moreover,sensor surfacescanbeproducedat lowercostsona largescalefollowingthemanufacturingprocessesofBlu-raydiscs. Infactroll-to-rollprintingofgratingsisdemonstrated[27],which canbeusedasanalternativetoBlu-raydiscs.Itisimportantto notethatplanarsensorsurfacesthatarefabricatedusinganyofthe processesmentionedabovearecompletelycompatiblewithour opticalreadoutconfiguration.

Alow-costmicrofluidicchannelisfabricatedusinganextremely simple,yetveryeffectivemethodbasedonlasercuttingofa3mm thicktransparentacrylicplateandadoublesidedadhesivetape(3M 468MPAdhesiveTransferTape)(Fig.S5).Bothchannelgeometry andholesforinletandoutletaredefinedbyahighpowerCO2laser

cuttingsystem(EpilogZing24).Channelgeometryisdefinedon thedoublesidedtapeat8Wlaserpowerand100%scanningspeed. Channelframe,inlet andoutletholesaredefinedontheacrylic plateat30W laserpowerand15%scanningspeed.First,double sidedtapeisbondontotheacrylicplate.Then,acrylicplateand BDchiparebondtogethertightlybyapplyingmechanicalpressure forhalfaminute.Schematicillustrationofaflowcellintegrated SPRisensorchipisshowninFig.2.Tygontubings(Cole-Palmer) areconnectedtotheinletandoutletoftheflowcell.Epoxy adhe-sive(BisonEpoxy5Minutes)isusedtocompletelysealthetubings attheinletandoutletconnections.Thevolumeofaflowcellis8

(4)

574 H.Guneretal./SensorsandActuatorsB239(2017)571–577

Fig.2.GratingcoupledSPRisensorchip.(a)SchematicoftheSPRichipassemblyfabricatedbyintegratingabimetallicBlu-raydiscchipandadisposablefluidicchannel.(b)

Cross-sectionschematicviewand(c)SEMimageofabimetallicBDchip.Groovedepth,dis20nm,andpitchwidth,is320nm.FilmthicknessesofAgandAulayersare

80nmand2nm,respectively.

microliters(16×5x0.1mm3).Anexternalperistalticpumpisused

forcontrolledplumbingoftheliquidsthroughthechannel. 2.3. Measurementprotocol

Inatypicalmeasurement,anSPRisensorchipispluggedintothe sampleholderunit.Next,LEDlightsourceisturnedonand polariz-ingfilterisadjustedtotransverseelectric(TE)polarizationwhere electricfieldofthetransmittedlightisparalleltothegratinglines ofthesensorsurface.Inletportoftheflowcellisconnectedtothe pumpandoutletportisconnectedtoawastetube.Flowcellisfilled withtherunningbuffersolution.Orientationofthesamplewith respecttotheincidentlightbeamisfinelytunedbyadjustingset screwsbehindthesampleholdercoveruntiltheilluminationspot displayedonthetouchscreenhasacircularshapeandgetslocated atthecenterofthescreen.Havingthesampleproperlyaligned, surfaceimageisrecordedunderTEpolarizedilluminationtobe takenasnormalizationreference.Thenthelightsourceisturned offandscreenimageiscapturedasdarkreading.Fortherestofthe measurement,thelightsourceisturnedonandpolarizingfilter isadjustedtoTMpolarization.Beforeperformingtheassay proto-col,surfaceimageisrecordedtoestablishbaselinereadingwhile thesampleisinitsbarestateandsurroundedbybuffersolution. Intensitychangeateachpixeliscalculatedbytakingthedifference betweenactualandbaselineintensities.Timeandareaaveraging optionsareprovidedintheapplicationsoftwaretoobtainenhanced signalduringthecourseofthemeasurement.Fromsurface activa-tiontothecaptureofanalytemolecules,thewholeassayprotocol canbemonitoredinreal-time.

2.4. Experimentalsetupforwavelengthinterrogationofplasmon resonance

Reflectancespectraofsurfaceplasmonresonancesexcitedon thesensorchipsareprobedinreal-timeusinganormalincidence SPRspectroscopysetup(Fig.S6).Whitelightemittedfromahigh powerbroadbandLEDsourcedrivenbyastableDCcurrentsource (Keithley2400SourceMeter)iscoupledtoamultimodefiberoptic cableandcollimatedbyacollimationlensattheoutputofthefiber. Collimatedbeamoflightpassesthroughanadjustablelinear polar-izer,anadjustableiristonarrowdownthebeamdiameter,anda non-polarizingbeamsplittercube.Polarizedandnarrowedbeam isreflectedoffthesensorsurface,directedbythebeamsplitter towardsthespectrometerfiberopticcomponents,collectedbya fibercouplinglensandanalyzedbyaspectrometer(OceanOptics Maya2000Pro).Eachreflectancespectrummeasurementistaken at20msofintegrationtime.Thespectralpositionoftheresonance dipisprobedusingcentroidalgorithm[28].Resonancewavelength shiftnoiseofaspectrogramaveragedover75spectraiscalculated as1.5pm.Takingtheexperimentalspectralbulkrefractiveindex

sensitivity,S␭BEas356nm/RIUforBDSPRsensors,theminimum detectablebulkrefractiveindexchange,␴nBEisfoundas4.2×10−6

RIUforthewavelengthinterrogationsetup. 2.5. Optimizationoftheilluminationwavelength

Theilluminationwavelength(␭i)oftheimagingplatformwhich

yieldsthehighestintensitysensitivitywasidentifiedbymeasuring reflectancespectraforvaryingrefractiveindicesofthe surround-ingliquidmedium(Fig.S7).Liquidsolutionswithrefractiveindices rangingfrom1.335to1.365werepreparedbydissolvingglycerol (n=1.474)indeionizedwater(n=1.335)atvaryingconcentrations. Thehighestbulkrefractiveindexsensitivitywasfoundtobeabout 800%/RIUatthewavelengthof520nmforTDKBD-Rsubstrate. Bothresonancewavelengthshiftandintensitychange(␭i=520nm)

showlineardependenceontherefractiveindexchangewithinthe 1.335<nd<1.365range.

3. Resultsanddiscussion

3.1. MicroarrayimagingofAg/Aubimetallicsensingspots

WehaveperformedSPRimagingofAg/Aubimetallicmicrospot arrayunderbulkdielectricmediawithchangingrefractiveindices. Thebimetallicmicroarraystructurewasfabricatedusing conven-tionalopticallithographyprocessesinadditiontometaldeposition steps.Thediameterofeachspotis110␮mandthespacingbetween adjacentspotsis 130␮m.First, wehaverecorded videoof illu-minatedsensorsurfaceat30frames/sduringthesuccessiveflow ofglycerolsolutionswithincreasingrefractiveindices.Each200 consecutivevideoframeswereaveragedinordertoenhancethe signal-to-noise ratio. As the refractive index of the surround-ingmediumgetshigher,plasmonresonancecurveshiftstowards longerwavelengthsresultingindarkerimaging spotsunderTM polarizedillumination.Fig.3ashowsgreenchannelviewofan aver-agedRGBimageofamicrospotsensorarrayin20%v/vglycerol solutionenvironment (nd=1.3596).SPRidifferenceimageswere

generated bytaking TE imagesasnormalizationreference, and TMimagesinpurewater mediumasbackground(Fig.3b).Line profileofarowofmicroarrayrevealstheuniformityofthe reflec-tivitychangeacrossthespots(Fig.3c).Averagereflectivitychange ofspotsweremeasuredateachglycerolconcentrationlevelfrom 1%to25%v/v(SeeFig.S8fortimeresolvedresponsesof individ-ualsensingspotsduringfluidexposures).Theglycerolcalibration curvefor4×4spotslocatedwithintherectangularframeshownin Fig.3aexhibitshighlinearity(R2=0.9951)withinadynamicrange

of22200×10−6RIUbetweennd=1.3354and1.3576(Fig.3d).The

errorbarsshowninFig.3dshowtwicethestandarddeviation(2SD) ofthemeasuredvaluedemonstratingthelowintra-sensor variabil-itybetween16spots.Theslopeofthecalibrationcurvewhichgives

(5)

Fig.3. Microarrayimagingofsensingspotsunderbulkdielectricmediawithdifferentrefractiveindices.(a)GreenchannelviewofanRGBimageofamicroarrayofAg/Au

bimetallicsensingspotsunder20%v/vglycerolsolutionenvironment(Refractiveindexofglycerolsolution,nd:1.3596).(b)3DrepresentationofSPRidifferenceimage.

Baselineimageistakenunderpurewatermedium(Refractiveindexofpurewater,nd:1.335).(c)Lineprofileofarowofmicrospots.(d)Percentagereflectivitychangewith

respecttotherefractiveindexofbulkmediumatvaryingconcentrationsofglycerolsolutionsfrom1%to25%v/v.Bulkrefractiveindexsensitivityobtainedfromlinear

calibrationcurveis485%/RIU.Errorbarsdenote2SDofmeasurementsfrom16spotsshowninpart(a),demonstratingintra-sensorvariability.(Forinterpretationofthe

referencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

theexperimentalreflectivitybulkrefractiveindexsensitivity,SRBE

wasfoundas485%/RIU.Intensitynoiseofasinglepixelinterms ofpercentagereflectivity,␴Rwasfoundas0.2%,whereas

averag-ingarectangularareaof10-by-10pixels(120×120␮m2)reduces

thereflectivity noise downto 0.02% level. Thus, theminimum detectablebulkrefractiveindexchange,␴novera10-by-10pixels

areaiscalculatedas4.12×10−5RIUforthesmartphoneplatform. ThelowcostAg/AubimetallicBDSPRstructureexhibitsrelatively low refractive index sensitivity as compared to the previously reportedSPRgrating,prismandwaveguidecouplers[13,29–32]. However,sincethenoiselevelisalsoreducedbyareaaveraging, overallresolutionofthesystemiscomparablewiththepreviously demonstratedstudies.

3.2. Real-timemonitoringofbovineserumalbumin(BSA) adsorption

Wehavetakentime-resolvedintensitychangemeasurements inresponsetotheproteinadsorptiononthesensorsurface.Bovine serumalbumin(BSA) isknowntoadsorbontothegoldsurface forming a 4–7nm thick monolayer [33]. 1mg/mL (15␮M) BSA (Sigma Aldrich) dissolved in 10mM phosphate buffer solution (PBS,pH=7.4)wasinjectedthroughtheflowcellfor5minafter athoroughPBSwash.Followingtheformationofself-assembled monolayeronthegoldcoating, thesensorsurface wascleaned byPBS washagain.SPRi differenceimageof arbitrarilydefined 4-by-4rectangularregionofinterestsaftertheBSAadsorptionis

showninFig.4a.Averagereflectivitychangeof16ROIsovertime isasshowninFig.4bandthesteady-statereflectivitydifference is foundas4.37±0.53%.Resonancewavelength shiftcausedby theBSAadsorptionwasmeasuredusingSPRwavelength interro-gationsetuprepeatingthesameBSAprotocol.Theresonancedip shiftsfrom503.8nmto507nmasshowninFig.4c.Reflectivityat 520nmdecreasesby6.44%from52.46%to46.02%,inagreement withimagingresults.

Wehaveperformedkineticanalysisofthereactionbasedona simpleinteractionmodelexplainedintheSupplementarymaterial. Theassociationrate,kaoftheBSA-Aucomplexformationis

calcu-latedas1150M−1s−1,withtheassumptionthatthedissociation rate,kdisnegligiblysmallascanbededucedfromthesensorgram

curveaftersecondPBSinjection.

3.3. Demonstrationofabiodetectionassay

Asanexemplarybiodetection experiment,captureofmouse IgG antibodyby immobilized layerof rabbit anti-mouse(RAM) IgGantibodyprotocolwasimplementedasdirectassay.First, sur-face of a thin gold film coated BD chip wascleaned by argon plasmatreatment.Sensorsurfacewascoatedwithself-assembled monolayer(SAM)of 11-mercaptoundecanoicacid(11-MUDA)by immersingthechipin2mMethanolsolutionof mercaptounde-canoicacidovernightfollowedbyrinsingwithethanolandwater, and drying in the fume hood. Then, BD chip was integrated withaflow cell.Ethanol(70%)and PBSsolutionswereinjected

(6)

576 H.Guneretal./SensorsandActuatorsB239(2017)571–577

Fig.4. Real-timemonitoringofBSAadsorptionontothegoldsurface.(a)Arbitrarilydefined4-by-4rectangularregionofinterests(96×96␮m2each)onentirelyAg/Aubilayer

coatedsensorspotimage(top)andbackgroundcorrectedSPRidifferenceimageofROIs(bottom)takenafterBSAadsorption.(b)Sensorgramshowingaveragereflectivity

changeofROIspotsduringtheimplementationofBSAprotocol.TheinsetschematicillustratesbindingofBSAmoleculesonthegratingsurface.Errorbarsdenote2SDof

measurementsfrom16spots.(c)ReflectancespectratakenbeforeandafterBSAadsorptionusingthenormalincidenceSPRspectroscopysetup(Fig.S6).

Fig.5.NanomolarleveldetectionofcaptureofmouseIgGbyimmobilizedlayerofRAMIgG(a)SpectralsensorgramshowingtheimmobilizationstepsofRAMIgGtakenby

usingthenormalincidenceSPRspectroscopysetup(Fig.S6).(b)Dose-responsecurveforthecaptureofmouseIgGtakenbyusingSPRimagingplatform.Theinsetschematics

illustrateimmobilizationofRAMIgG(bluecolored)onthesensorsurfaceandselectivebindingofmouseIgG(redcolored)withRAMIgG,respectively.Errorbarsdenote2SD

ofmeasurementsfrom3spots.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

onto the surface at 100␮L/min flow rate for further cleaning. Surfaceofthe11-MUDA SAMlayerwasactivatedbythe expo-sureof400mM1-ethyl-3-(3dimethylaminopropyl)-carbodiimide (EDC)and100mMN-hydroxysuccinimide(NHS)mixture(1:1)at 100␮L/minflowratefor4min.Bothreagentswerepreparedin distilledwaterandmixturewaspreparedjustbeforeuse.Diluted RAMIgG(50␮g/mL)in0.1mMsodiumacetatebuffersolutionwas injectedontotheactivatedsensorsurfaceat50␮L/minflowrate for3min.RAMIgGantibodieswereimmobilizedontheactivated surfacebyaminecouplingchemistry.FollowingtheRAMFc immo-bilization,non-reactedNHSesterswerecappedbytheexposure of1Methanolaminesolutionat100␮L/minflowratefor4minto preventnon-specificanalytebindings.Sensorsurfacewascleaned byPBSwashfor5minaftereachstep.Thewholeimmobilization processfromsurfaceactivationtoblockingstepwasprobedin real-timeusingthewavelengthinterrogationsetup(Fig.5a).

SPRchipimmobilizedwithRAMIgGistakenoutthewavelength interrogationsetupandpluggedintothesmartphoneattachment. MouseIgG solutionsat concentrationsrangingfrom1.33nMto 830nMwereinjectedsuccessivelyat50␮L/minflowratefor5min. Intensitychangesofindividualpixelsatthreedistinctlocationson thesensorsurfaceisshowninFig.5b.Dose-responsecurvereveals

thatnanomolarleveldetectionofantibodyanalyteisachievable withina dynamic range froma few nanomolarstomicromolar concentration.

4. Conclusion

In this work, we demonstrated the useof a smartphone as ahand-heldsurface plasmonresonanceimagingbiosensor with highsensitivity.Developinganattachableimagingaccessoryfrom inexpensiveopticalcomponentsand3Dprintedparts,andusing easy-to-implementproceduresforfabricatingminiaturizedsensor chipsintegratedwithflowcellsfromextremelycheapsubstrates likeopticalstoragediscs,weofferapromisingdetectionplatform thatenablesbiosensinginthefieldwithhighlevelofportabilityand affordablecost.Thecapabilitytoperformparallelassaysinashort amountoftimeallowstheuseoftheinstrumentforpoint-of-care applicationswheremonitoringofmultipleparametersisdesirable.

Acknowledgement

ThisworkwassupportedbytheStatePlanningAgencyofthe TurkishRepublicProjectUNAM.

(7)

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.snb.2016.08.061.

References

[1]S.K.Vashist,O.Mudanyali,E.M.Schneider,R.Zengerle,A.Ozcan,

Cellphone-baseddevicesforbioanalyticalsciences,Anal.Bioanal.Chem.406

(2014)3263–3277,http://dx.doi.org/10.1007/s00216-013-7473-1.

[2]Y.Lu,W.Shi,J.Qin,B.Lin,Lowcost,portabledetectionofgold

nanoparticle-labeledmicrofluidicimmunoassaywithcameracellphone,

Electrophoresis30(2009)579–582,http://dx.doi.org/10.1002/elps.

200800586.

[3]O.Mudanyali,S.Dimitrov,U.Sikora,S.Padmanabhan,I.Navruz,A.Ozcan,

Integratedrapid-diagnostic-testreaderplatformonacellphone,LabChip12

(2012)2678–2686,http://dx.doi.org/10.1039/c2lc40235a.

[4]D.N.Breslauer,R.N.Maamari,N.A.Switz,W.A.Lam,D.A.Fletcher,Mobile

phonebasedclinicalmicroscopyforglobalhealthapplications,PLoSOne4

(2009)e6320,http://dx.doi.org/10.1371/journal.pone.0006320.

[5]H.Zhu,S.Mavandadi,A.F.Coskun,O.Yaglidere,A.Ozcan,Optofluidic

fluorescentimagingcytometryonacellphone,Anal.Chem.83(2011)

6641–6647,http://dx.doi.org/10.1021/ac201587a.

[6]L.Shen,J.a.Hagen,I.Papautsky,Point-of-carecolorimetricdetectionwitha

smartphone,LabChip12(2012)4240,http://dx.doi.org/10.1039/c2lc40741h.

[7]D.Gallegos,K.D.Long,H.Yu,P.P.Clark,Y.Lin,S.George,etal.,Label-free

biodetectionusingasmartphone,LabChip13(2013)2124–2132,http://dx.

doi.org/10.1039/c3lc40991k.

[8]P.Preechaburana,M.C.Gonzalez,A.Suska,D.Filippini,Surfaceplasmon

resonancechemicalsensingoncellphones,Angew.Chem.Int.Ed.Engl.51

(2012)11585–11588,http://dx.doi.org/10.1002/anie.201206804.

[9]Y.Liu,Q.Liu,S.Chen,F.Cheng,H.Wang,W.Peng,Surfaceplasmonresonance

biosensorbasedonsmartphoneplatforms,Sci.Rep.5(2015)12864,http://

dx.doi.org/10.1038/srep12864.

[10]K.Bremer,B.Roth,Fibreopticsurfaceplasmonresonancesensorsystem

designedforsmartphones,Opt.Express23(2015)17179–17184,http://dx.

doi.org/10.1364/OE.23.017179.

[11]P.J.R.Roche,S.Filion-Côté,M.C.K.Cheung,V.P.Chodavarapu,A.G.Kirk,A

cameraphonelocalisedsurfaceplasmonbiosensingplatformtowards

low-costlabel-freediagnostictesting,J.Sens.2011(2011)1–7,http://dx.doi.

org/10.1155/2011/406425.

[12]S.Dutta,K.Saikia,P.Nath,SmartphonebasedLSPRsensingplatformfor

bio-conjugationdetectionandquantification,RSCAdv.6(2016)

21871–21880,http://dx.doi.org/10.1039/C6RA01113F.

[13]B.Liedberg,C.Nylander,I.Lunström,Surfaceplasmonresonanceforgas

detectionandbiosensing,Sens.Actuators4(1983)299–304,http://dx.doi.

org/10.1016/0250-6874(83)85036-7.

[14]J.Homola,Presentandfutureofsurfaceplasmonresonancebiosensors,Anal.

Bioanal.Chem.377(2003)528–539,

http://dx.doi.org/10.1007/s00216-003-2101-0.

[15]J.Homola,Surfaceplasmonresonancesensorsfordetectionofchemicaland

biologicalspecies,Chem.Rev.108(2008)462–493,http://dx.doi.org/10.1021/

cr068107d.

[16]B.H.Ong,X.Yuan,S.C.Tjin,J.Zhang,H.M.Ng,Optimisedfilmthicknessfor

maximumevanescentfieldenhancementofabimetallicfilmsurfaceplasmon

resonancebiosensor,Sens.ActuatorsBChem.114(2006)1028–1034,http://

dx.doi.org/10.1016/j.snb.2005.07.064.

[17]L.Xia,S.Yin,H.Gao,Q.Deng,C.Du,Sensitivityenhancementforsurface

plasmonresonanceimagingbiosensorbyutilizinggold–silverbimetallicfilm

configuration,Plasmonics6(2011)245–250,http://dx.doi.org/10.1007/

s11468-010-9195-y.

[18]Y.Chen,R.S.Zheng,D.G.Zhang,Y.H.Lu,P.Wang,H.Ming,etal.,Bimetallic

chipsforasurfaceplasmonresonanceinstrument,Appl.Opt.50(2011)

387–391,http://dx.doi.org/10.1364/AO.50.000387.

[19]C.-T.Li,K.-C.Lo,H.-Y.Chang,H.-T.Wu,J.H.Ho,T.-J.Yen,Ag/Aubi-metallicfilm

basedcolorsurfaceplasmonresonancebiosensorwithenhancedsensitivity,

colorcontrastandgreatlinearity,Biosens,Bioelectron36(2012)192–198,

http://dx.doi.org/10.1016/j.bios.2012.04.016.

[20]T.T.Ehler,L.J.Noe,Surfaceplasmonstudiesofthinsilver/goldbimetallicfilms,

Langmuir11(1995)4177–4179,http://dx.doi.org/10.1021/la00010a088.

[21]B.Kaplan,H.Guner,O.Senlik,K.Gurel,M.Bayindir,A.Dana,Tuningoptical

discsforplasmonicapplications,Plasmonics4(2009)237–243,http://dx.doi.

org/10.1007/s11468-009-9099-x.

[22]B.Turker,H.Guner,S.Ayas,O.O.Ekiz,H.Acar,M.O.Guler,etal.,Grating

couplerintegratedphotodiodesforplasmonresonancebasedsensing,Lab

Chip11(2011)282–287,http://dx.doi.org/10.1039/c0lc00081g.

[23]I.InternationalIntellectualGroup,PCGrate-S,2011.

[24]E.D.Palik,HandbookofOpticalConstantsofSolids,1985.

[25]LogeeswaranVj,N.P.Kobayashi,M.S.Islam,W.Wu,P.Chaturvedi,N.X.Fang,

etal.,Ultrasmoothsilverthinfilmsdepositedwithagermaniumnucleation

layer,NanoLett.9(2009)178–182,http://dx.doi.org/10.1021/nl8027476.

[26]W.Chen,M.D.Thoreson,S.Ishii,A.V.Kildishev,V.M.Shalaev,Ultra-thin

ultra-smoothandlow-losssilverfilmsonagermaniumwettinglayer,Opt.

Express18(2010)5124–5134,http://dx.doi.org/10.1364/OE.18.005124.

[27]S.H.Ahn,L.J.Guo,High-Speedroll-to-rollnanoimprintlithographyonflexible

plasticsubstrates,Adv.Mater.20(2008)2044–2049,http://dx.doi.org/10.

1002/adma.200702650.

[28]G.G.Nenninger,M.Piliarik,J.Homola,Dataanalysisforopticalsensorsbased

onspectroscopyofsurfaceplasmons,Meas.Sci.Technol.13(2002)

2038–2046,http://dx.doi.org/10.1088/0957-0233/13/12/332.

[29]D.C.Cullen,R.G.W.Brown,C.R.Lowe,Detectionofimmuno-complex

formationviasurfaceplasmonresonanceongold-coateddiffractiongratings,

Biosensors3(1987)211–225,

http://dx.doi.org/10.1016/0265-928X(87)85002-2.

[30]C.Nylander,B.Liedberg,T.Lind,Gasdetectionbymeansofsurfaceplasmon

resonance,Sens.Actuators3(1982)79–88,

http://dx.doi.org/10.1016/0250-6874(82)80008-5.

[31]Z.Wang,Z.Cheng,V.Singh,Z.Zheng,Y.Wang,S.Li,etal.,Stableandsensitive

silversurfaceplasmonresonanceimagingsensorusingtrilayeredmetallic

structures,Anal.Chem.86(2014)1430–1436,http://dx.doi.org/10.1021/

ac402126k.

[32]L.Song,Z.Wang,D.Zhou,A.Nand,S.Li,B.Guo,etal.,Waveguidecoupled

surfaceplasmonresonanceimagingmeasurementandhigh-throughput

analysisofbio-interaction,Sens.ActuatorsBChem.181(2013)652–660,

http://dx.doi.org/10.1016/j.snb.2013.01.096.

[33]D.C.Carter,J.X.Ho,Structureofserumalbumins,Adv.ProteinChem.45

(1994)153–203,http://dx.doi.org/10.1016/S0065-3233(08)60640-3.

Biographies

HasanGunerisaPh.D.studentattheUNAMMaterialsScienceandNanotechnology

ProgramatBilkentUniversity.Hisresearchinterestsareinthefieldofdesignand

implementationofplasmonresonancesensingsystems.

ErolOzgurisapost-doctoralresearchassociateattheUNAMMaterialsScienceand

NanotechnologyProgramatBilkentUniversity.Hecurrentlyworksonlargescale

productionandvariousapplicationsofphotonicandplasmonicbiosensors.

GuzinKokturkisaresearcherattheUEKAE−BILGEM−TheScientificand

Techno-logicalResearchCouncilofTurkey(TUBITAK).SheworksinBioelectronicsDevices

andSystemsGroup.Herresearchinterestsaredevelopmentofbiosensordevices

andbiologicalassaysfordifferentbiosensorapplicationareas.

MehmetCelikisaPh.D.studentattheDepartmentofComputerEngineeringat

MiddleEastTechnicalUniversity.Hisresearchinterestsareinthefieldofcomputer

visionandmachinelearning.

ElifEsenisresearcherattheUEKAE−BILGEM−TheScientificandTechnological

ResearchCouncilofTurkey(TUBITAK).SheisaPh.D.studentatMolecular

Biol-ogy,GeneticsandBiotechnolgyprogramattheIstanbulTechnicalUniversityand

continuestoworkinthefieldsofbiosensordeviceandsensorchipdevelopment.

AhmetEminTopalisaPh.D.studentattheUNAMMaterialsScienceand

Nano-technologyProgramatBilkentUniversity.Hisresearchinterestsareinthefieldof

colorimetricbiomolecularsensingandimagingusingplasmonresonances.

SencerAyasisapost-doctoralfellowattheCanaryCenteratStanfordforCancer

EarlyDetection,DepartmentofRadiology,StanfordSchoolofMedicine.Hisresearch

isonthedesignandrealizationofplasmonicnanostructuresandmetasurfaces,with

applicationstoimagingandspectroscopy.

YildizUludagistheHeadofComputationalBiologyAndSecurityApplicationsUnit

attheUEKAE−BILGEM−TheScientificandTechnologicalResearchCouncilof

Turkey(TUBITAK).ShereceivedherPh.D.fromCranfieldUniversity(UK)and

con-tinuestoworkinthefieldsofbiosensordeviceandsensorchipdevelopment.

CaglarElbukenisAssistantProfessoratBilkentUniversity,National

Nanotech-nology Research Center.His researchinterests include lab-on-a-chipdevices,

microdroplet-basedmicrofluidicsystemsandsensingtechnologiesforportable

applications.

AykutluDanaisAssociateProfessoratBilkentUniversity,NationalNanotechnology

ResearchCenter.HereceivedhisPh.D.fromStanfordUniversityandcontinuesto

Şekil

Fig. 1. Surface plasmon resonance imaging platform integrated with a smartphone. (a) Schematic illustration and (b) photograph of the imaging apparatus
Fig. 2. Grating coupled SPRi sensor chip. (a) Schematic of the SPRi chip assembly fabricated by integrating a bimetallic Blu-ray disc chip and a disposable fluidic channel
Fig. 3. Microarray imaging of sensing spots under bulk dielectric media with different refractive indices
Fig. 4. Real-time monitoring of BSA adsorption onto the gold surface. (a) Arbitrarily defined 4-by-4 rectangular region of interests (96 × 96 ␮m 2 each) on entirely Ag/Au bilayer coated sensor spot image (top) and background corrected SPRi difference image

Referanslar

Benzer Belgeler

Müctehid, selef- i sâlihin üzerinde icmâ yaptığı meselelerle birlikte fakihlerin ihtila- fa düĢtükleri konuları da bilmelidir. Bu itibarla müctehidin, Medine ve

Gelibolulu Âlî Künhü'l-ahbâr'mda Âçik Çeleb'nin ve onu takibedenlerin Lâmiî'yi Câmî-i Rûm olarak adlandirdiklanni vurgular, ancak Câmî ile Lâmiî'yi &#34;yer nerde,

experimental and theoretical investigation of the adsorption/ desorption energies of various ubiquitously utilized alcohols (methanol (MeOH), ethanol (EtOH), n-propanol (n-PrOH))

Nevertheless, despite the differences between software engineering and mature engineering, one of the key issues in this analysis is that software development does follow

All the values in Table 6.7 represents the reduction in the cost components compared to the published schedule whose fleet type assignment is based on 100% demand satisfaction

Accord- ingly, Iran proposes “permanent placement of IAEA inspectors in Iran, whose job would be to monitor tightly the goings-on at various nuclear facilities such as Bushehr

This work is partially supported by the Scientific and Technical Research Council of Turkey (TUBITAK) and by the Turkish Academy of Sciences (TUBA).. McKean,

We say that the realization f0; 1g Z d of site percolation contains a doubly-in…nite self-repelling path if there exists a doubly-in…nite open path none of whose vertices is adjacent