• Sonuç bulunamadı

Application of bayesian analysis to the losses of offsite power for Akkuyu NPP site

N/A
N/A
Protected

Academic year: 2021

Share "Application of bayesian analysis to the losses of offsite power for Akkuyu NPP site"

Copied!
27
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

TURKISH ATOMIC ENERGY AUTH O RITY

ÇEKMECE NUCLEAR RESEARCH AND

TRAINING

CENTER

I S T A N B U L - T U R K E Y

Technical Report N o: 36

APPLICATION OF BAYESIAN AN ALYSIS TO THE LOSSES OF OFFSITE POWER

FOR AK K U YU NPP SITE

Ulvi AD ALIO Ğ LU

Nuclear Engineering Department

December 1986

(2)

TURKISH ATOMIC ENERGY AUTHORITY

ÇEKMECE NUCLEAR RESEARCH AND TRAINING CENTER

ISTANBUL - TURKEY

Technical Report No: 36

APPLICATION OF BAYESIAN ANALYSIS TO

THE LOSSES OF OFFSITE POWER

FOR AKKUYU NPP SITE

Ulvi ADALIOĞLU

Nuclear Engineering Department

December 1986

(3)

SUMMARY

APPLICATION OF BAYESIAN ANALYSIS TO

THE LOSSES OF OFFSITE POWER FOR AKKUYU NPP SITE*

T h e d a t a on t h e o c c u r a n c e s and d u r a t i o n s of l o s s e s of o f f s i t e p o w e r f or A k k u y u N P P s i t e are a n a l y s e d by u s i n g

B a y e s i a n t e c h n i q u e . T h e m e a n f r e q u e n c y of l o s s e s a n d th e n o n ­ r e c o v e r y p r o b a b i l i t i e s w i t h i n a t i m e i n t e r v a l a r e o b t a i n e d .

Ö Z E T

AKKUYU SANTRAL MAHALLİ İÇİN HARİCÎ GÜC

KAYBINA BAYES ANALİZİNİN TATBİKATI*

B a y e s a n a l i z t e k n i ğ i k u l l a n ı l a r a k A k k u y u s a n t r a l m a ­ h a l l i i ç i n dış e l e k t r i k g ü c ü n ü n k a y b ı n a a i t t e k e r r ü r s a y ı l a n ve k a y ı p s ü r e l e r i n e ai t d a t a a n a l i z e d i l m i ş t i r . O r t a l a m a t e ­ k e r r ü r s a y ı s ı ( f r e k a n s ı ) ve b e l l i b i r z a m a n a r a l ı ğ ı n d a e l e k ­ t r i k g ü c ü n ü n g e l m e m e s i i h t i m a l l e r i h e s a p l a n m ı ş t ı r . * b a s e d on the w o r k s u p p o r t e d by I , A . E . A . u n d e r the c o n t r a c t N o .3 4 2 1 / R 2 / R B .

(4)

TABLE

OF

CONTENTS

P a g e s 1. I n t r o d u c t i o n — --- --- --- I 2. M a t h e m a t i c a l B a c k g r o u n d — --- - — --- 1 2.1. B a y e s i a n A n a l y s i s --- --- ■-— 1 2.2. D i s t r i b u t i o n F u n c t i o n s --- 2 2 . 2 . 1 . P o i s s i o n D i s t r i b u t i o n --- 2 2 . 2 . 2 . G a m m a D i s t r i b u t i o n --- --- 3 3 . A p p 1 i ca t i on to A k k u y u S i t e — --- --- -— 3 3.1. D a t a on L O S P at A k k u y u --- --- 3 3.2. C u r v e F i t t i n g to D a t a --- 4 3 . 2 . 1 . F r e q u e n c y D i s t r i b u t i o n of L O S P --- 4 3 . 2 . 2 . P r o b a b i l i t y D i s t r i b u t i o n s of O f f s i t e P o w e r R e c o v e r y --- --- --- --- 9 4 . De s c r ip t ion of C o d e s ---- <--- --- --- -- 12 4.1. C o d e P O I S --- --- — --- --- --- 12 4 . 1 . 1 . I n p u t of P O I S — ---- - — --- 12 4 . 1 . 2 . D e s c r i p t i o n of S u b r o u t i n e s --- 13 4.2. C o d e G A M A --- --- --- — --- 14 4 . 2 . 1 . I n p u t of G A M A - - --- --- --- 14 4 . 2 . 2 . D e s c r i p t i o n of S u b p r o g r a m m e s --- - - 14 5. C o n c l u s i o n --- — --- --- --- - - --- 15 R e f e r e n c e s --- ---*--- --- --- 15 A p p e n d i x A - L i s t i n g of P O I S --- *--- 17 A p p e n d i x B - L i s t i n g of G A M A ---- --- ---■--- 20

(5)

LIST

OF

TABLES

P a g e s T a b l e 1- E n e r g y l o s s e s on 154 kV t r a n s m i s s i o n line b e t w e e n 1 8 .4 • 1 9 8 2 - 5 . 4 . 1 9 8 5 a r o u n d A k k u y u s i t e --- 5 T a b l e 2- E n e r g y l o ss e s on 38Ü kV t r a n s m i s s i o n line b e t w e e n 1 . 1 . 1 9 8 0 - 2 2 • 4 . 1 9 8 0 a r o u n d A k k u y u s i t e ---- --- 6 T a b l e 3- P o s t e r i o r d i s t r i b u t i o n of f r e q u e n c y of loss of o f f s i t e p o w e r for A k k u y u s i te ---- 8 T a b l e 4- P r o b a b i l i t y d i s t r i b u t i o n of r e c o v e r y t i me s for A k k u y u s i t e --- 11 T a b l e 5- P r o b a b i l i t i e s of f a i l u r e s to r e c o v e r o f f s i t e p o w e r f or s o m e r e a c t o r s i t e s --- 12 T a b l e 6- I np ut for P 0 1 S --- 12 T a b l e 7- I np ut for G A M A -- --- 14

LIST

of

FIGURES

Fig, 1- Q ( A ) f u n c t i o n v e r s u s A --- 9 Fig. 2- Q (T ) f u n c t i o n v e r s u s t i m e --- 10

(6)

I. INTRODUCTION

A n a d e q u a t e t r e a t m e n t of a s et of t e s t d a t a m u s t b e p e r f o r m e d , b o t h q u a l i t a t i v e l y a n d q u a n t i t a t i v e l y , f o r an e v a l u a t i o n of t h e i r r e l i a b i l i t y i m p l i c a t i o n s . T h e s t a t i s t i c a l i n f e r e n c e s n e e d b e s t e s t i m a t e v a l u e s of c e r t a i n p h y s i c a l l y i m p o r t a n t c o n s t a n t s t o g e t h e r w i t h s o m e c o n f i d e n c e i n t e r v a l s a s s o c i a t e d w i t h t h e s e v a l u e s . B o t h c l a s s i c a l a n d B a y e s i a n a n a l y s i s t e c h n i q u e s c a n b e u t i l i z e d to o b t a i n i n f o r m a t i o n f r o m t e s t d a t a . T h e B a y e s i a n a p p r o a c h h a s a d v a n t a g e t h a t it c a n b e u s e d f o r s m a l l to m o d e ­ r a t e n u m b e r of t e s t d a t a . H o w e v e r it m a y a f f e c t a l l r e s u l t s b e c a u s e of t h e p r i o r a s s u m p t i o n s d u r i n g t h e i n i t i a l a s s e s s ­ m e n t of a n a l y s i s . In t h i s r e p o r t t h e f r e q u e n c y of l o s s of o f f s i t e p o w e r a n d t h e n o n r e c o v e r y p r o b a b i l i t i e s , of o f f s i t e p o w e r w i t h i n c e r t a i n p e r i o d of t i m e s a r e o b t a i n e d b y a B a y e s i a n a n a l y s i s f o r A k k u y u 1 N P P . I n s t e a d of c o n s i d e r i n g w h o l e n a t i o n a l g r i d , l o c a l g r i d s y s t e m is a s s u m e d to p r o v i d e r e p r e s e n t a t i v e d a t a f o r t h e a n a l y s i s ( 1 ) . S m a l l p r o g r a m m e s a r e w r i t t e n f o r c u r v e f i t t i n g p r o c e s s e s in o r d e r to o b t a i n p r o b a b i l i t y d e n s i t y f u n c t i o n s a n d c u m u l a t i v e p r o b a b i l i t y d i s t r i b u t i o n f u n c t i o n s .

2. MATHEMATICAL BACKGROUND

2 .1 . B a y e s i a n a n a l y s i s (2) T h e B a y e s t e c h n i q u e s u i t a b l e to a n a l y s e s m a l l to m o d e r a t e n u m b e r of t e s t d a t a a s s i g n s a p r i o r p r o b a b i l i t y d i s t r i b u t i o n f o r d a t a , a n d a p o s t e r i o r p r o b a b i l i t y d i s t r i ­

(7)

2

b u t i o n is o b t a i n e d . This p o s t e r i o r d i s t r i b u t i o n b e c o m e s p r i o r d i s t r i b u t i o n for the n e x t set of d a t a if the t e s t s a r e

p e r f o r m e d to u p d a t e the da ta . The c y c l e d e s c r i b e d r e p e a t s i t s e l f . Th e s e l e c t i o n of p r i o r d i s t r i b u t i o n is the c r i t i c a l p a r t in B a y e s i a n a p p r o a c h . S e v e r a l c a n d i d a t e d i s t r i b u t i o n s m a y be t e s t e d in o r d e r to f i n d b e s t r e p r e s e n t a t i v e of a v a i l a b l e da ta .

Le t f(A) be the p r i o r d i s t r i b u t i o n of the v a r i a b l e A, say, f a i l u r e f r e q u e n c y of an e v e n t . T h e c o n d i t i o n a l p r o b a b i ­ l i t y P ( x ; n , A ) is d e f i n e d as the p r o b a b i l i t y of h a v i n g x f a i l u r e s in a g i v e n n u m b e r of t e s t s , n, fo r the g i v e n f a i l u r e f r e q u e n c y A. T he p o s t e r i o r d i s t r i b u t i o n p ( A ; n , x ) is g i v e n by p ( A ;n ,x) oo P ( x ; n , A) f ( A) / d A P ( x ; n , A ) f ( A ) o 2.2. D i s t r i b u t i o n f u n c t i o n s (1 ,3 ,4) B r i e f d e s c r i p t i o n s of s o m e c o n t i n u o u s p r o b a b i l i t y d i s t r i b u t i o n f u n c t i o n s w i l l be g i v e n h e r e . 2 . 2 . 1 . P o i s s o n d i s t r i b u t i o n Th is d i s t r i b u t i o n d e s c r i b e s p h e n o m e n a fo r w h i c h the a v e r a g e p r o b a b i l i t y of an e v e n t is c o n s t a n t a n d i n d e p e n d e n t of the n u m b e r of p r e v i o u s e v e n t s . F o r c o n s t a n t f a i l u r e rate , A, the m e a n n u m b e r of f a i l u r e s is t he p r o d u c t of A a nd the o b s e r v a t i o n t i m e t. Th e p r o b a b i l i t y of e x a c t l y r f a i l u r e s o c c u r r i n g in t i m e t is t h e n g i v e n by

(8)

3 P(r,t) ( X t ) rr -At e T he m e a n and v a r i a n c e of t are g i v e n by m 2 o 1/A 1 / A2 (2.1) (2.2) 2. 2. 2. G a m m a d i s t r i b u t i o n The G a m m a d i s t r i b u t i o n is the g e n e r a l c as e of c o n ­ t i n u o u s P o i s s o n d i s t r i b u t i o n (or E r l a n g e n d i s t r i b u t i o n ) . The p r o b a b i l i t y d e n s i t y f u n c t i o n of G a m m a d i s t r i b u t i o n is , / . M r-1 -At f(t) = U r'C r T ---- X>0, r > ° (2>3)

w h e r e the n u m b e r r n e e d not be an i nt ege r.

The m e a n and v a r i a n c e of t are e x p r e s s e d by the eq uat ions

m = r / A

02 = r / A 2 (2.4)

3. APPLICATION TO AKKUYU SITE

3.1. D a t a on L O S P at A k k u y u

It was a l m o s t i m p o s s i b l e to o b t a i n the i n f o r m a t i o n ab ou t the o c c u r e n c e s of loss of o f f s i t e p o w e r for w h o l e

T u r k e y . H o w e v e r local d a t a w e r e e a s i l y c o l l e c t e d f r o m r e c o r d ­ ings and a r e g i o n a l e v a l u a t i o n of f r e q u e n c y of L O S P w o u l d be good e n o u g h for an i n it i a l e s t i m a t e of a v e r a g e f r e q u e n c y of grid loss.

(9)

4 T h e A k k u y u N P P s i t e is g o i n g to be f e d by two d i f f e r e n t t yp e of, e n e r g y t r a n s m i s s i o n li n es . O ne is 154 k V l i n e a l r e a d y e x i s t s an d is s u p p l y i n g e n e r g y . T he o t h e r w i l l c o n s i s t s of s e v e r a l ties to the n e a r b y da m s or n a t i o n a l g r i d by 3 8 0 k V l i n e s . Th e a c q u i r e d d a t a ( 5 ) for the g r i d l o s s e s on t h e s e tw o k i n d s of t r a n s m i s s i o n l i ne s a re g i v e n in T a b l e s 1 an d 2. T o t a l n u m b e r of l o s s e s f or a p e r i o d of t o t a l 8 . 2 7 y e a r s e x p e r i e n c e d on t h e s e two p o w e r l i n e s is 205.

A s s u m i n g tha t the g r i d is 1 0 0% a v a i l a b l e , the f r e ­

q u e n c y of o f f s i t e p o w e r l o s s e s is f o u n d as 2 4 . 7 p e r y e a r . T h e a v e r a g e d u r a t i o n of l o s s e s is o b t a i n e d by a v e r a g i n g d a t a o v e r the n u m b e r of o c c u r e n c e s , th at is t = I t . f . / İ f £ (3.1) i i w h e r e t _• is the d u r a t i o n , f. is th e n u m b e r of o c c u r e n c e s . T h e 1 l i ­ re s u 1 1 is 184 m i n u t e s . 3.2. C u r v e f i t t i n g of dat a 3 . 2 . 1 . F r e q u e n c y d i s t r i b u t i o n of L O S P A s s u m i n g a u n i f o r m p r i o r d i s t r i b u t i o n the p o s t e r i o r d i s t r i b u t i o n of f r e q u e n c i e s of g r i d l o s s e s is a c c e p t e d as a P o i s s o n d i s t r i b u t i o n f O ) (a t)rR - A T e ( 3 . 2 ) w h e r e T is the t o t a l o b s e r v a t i o n p e r i o d , R is the t o t a l n u m b e r of e v e n t s o c c u r r e d d u r i n g T.

(10)

5 T a b l e 1- E n e r g y l o ss e s on 154 kV t r a n s m i s s i o n line b e t w e e n 1 8 . 4 . 1 9 8 2 - 5 . 4 . 1 9 8 5 a r o u n d A k k u y u site D u r a t i o n p o w e r loss of > t İ N u m b e r of O c c u r e n c e s , f £ P e r c e n t C o n t r i b u t i o n 1 m x x x x x x 6.9 2 m x x x x x x 6 .9 3 m x x x x x x x x x x x 1 2 . 6 4 m x x x x x x x x x x x 1 2 . 6 5 m X X X 3.4 6 m x x x x 4.6 8 m X X X 3.4 9 m X C M i-H 10 m X 12 m X 15 m X 16 m X 18 m X 25 m X 27 m X 35 m X 39 m X 44 m X 4 6 m X 1 h 9 m X 2 h 19 m X 4 h 20 m X 4 h 48 m X 5 h 40 m X X 2.3 7 h 7 m X 7 h 9 m X 7 h 17 m X 7 h 30 m X 8 h 52 m X 8 h 53 m X 9 h 12 m X 9 h 13 m X 9 h 33 in X 10 h 7 m X X 2.3 10 h 11 m X 11 h 52 m X 12 h 14 m X 14 h 49 m X 18 h 40 in X 21 h 1 m X 21 h 13 m X 2 2 h 56 in X 27 h 27 m X 29 h 11 m X 29 h 42 m X 29 h 52 m X 33 h 32 m X 34 h 25 in X T o t a l 87 100

(11)

T a b l e 2- E n e r g y l o s s e s on 380 kV t r a n s m i s s i o n l i n e b e t w e e n 1.1.1980 - 2 2.4.1985 a r o u n d A k k u y u s i t e D u r a t i o n of N u m b e r of p e r c e n t p o w e r l o s s , t^ O c c u r e n c e s , f. C o n t r i b u t i o n 2 m X X 1.7 3 m X X X 2.5 4 m x x x x x 4.2 5 m x x x x x x x x 6.8 6 m x x x x x x x 5.9 7 m x x x x x x x 5.9 8 m X X X 2.5 9 m X X 1.7 10 m x x x x x 4.2 11 ra X X 1.7 13 TO X X X 2.5 14 m X X X 2.5 15 TO X X 1.7 16 m X 0.8 18 m X 0.8 19 m X X X 20 m X 21 m X 25 ID X X 26 m X 27 m X X 29 m X 30 m X 31 m X X 33 m X X 34 m X 35 m X X 36 m X X 38 m X 39 m X 40 m X 41 m X 43 TO X 44 m X 46 m X 49 m X 51 m X 52 m X 55 TO X 57 m X 1 h 4 ra X 1 h 5 m X 1 h 7 m X X 1 h 8 m X 1 h 9 m X 1 h 10 m X 1 h 15 m X 1 h 34 m X 1 h 42 m X 2 h 7 ra X 2 h 13 m X 2 h 57 m X 3 h 1 7m X 3 h 27 m X 3 h 29 m X 3 h 35 m X 3 h 59 m X 4 h 24 m X 4 h 36 m X 6 h 1 m X 6 h 7 m X 6 h 22 m X 6 h 54 m X 6 h 55 m X 7 h 58 m X 9 h 57 ra X 10 h 57 m X 11 h 16 m X 13 h 25 m X 26 h 22 m X T o t a l 118 100

(12)

F o r th e A k k u y u d a t a T = 8 . 2 7 y e a r s R = 205 e v e n t s (3.3) A c o m p u t e r p r o g r a m , c a l l e d P O IS, is w r i t t e n in o r d e r to o b t a i n f r e q u e n c y d i s t r i b u t i o n by E q . ( 3 . 2 ) . P r o g r a m c a l c u ­ l a t e s c u m u l a t i v e d i s t r i b u t i o n f u n c t i o n , F ( A ) , d e f i n e d as A F ( A ) = / d A f f ( A 1) (3.4) o an d c o m p l e m e n t a r y cumulative d i s t r i b u t i o n f u n c t i o n , Q ( A ) , w h i c h is g i v e n by Q(A) = 1 - F(A) (3.5) H a v i n g o b t a i n e d p r o b a b i l i t y d e n s i t y f u n c t i o n p r o g r a m P O I S a l s o c a l c u l a t e s m e a n v a l u e o f f r e q u e n c i e s by oo m = / dX X f (A) (3.6) o and the o t h e r m o m e n t s by oo u = / dA ( A - m ) n f(A) n = 2 , 3 , 4 , . . . (3.7) n o

Th e s e c o n d m o m e n t g i v e s the v a r i a n c e and the c o e f f i c i e n t s of s k e w n e s s and k u r t o s i s a re d e f i n e d by 2/ 3 y 3 / y 2 P2 y4 / u 2 ( 3 . 8 ) r e s p e c t i v e l y .

(13)

8 T a b l e 3 s u m m a r i z e s p o s t e r i o r d i s t r i b u t i o n f u n c t i o n as f u n c t i o n of f r e q u e n c y a nd c a l c u l a t e d m e a n v a l u e a n d v a r i a n c e an d 6 ^ an d ^ 2 c o e f f i c i e n t s . T a b l e 3 - P o s t e r i o r d i s t r i b u t i o n of f r e q u e n c y of loss of o f f s i t e p o w e r f or A k k u y u s i te

Cumulative Comple. Cum. Frequency Density Function Dist. Func. Dist. Func.

X(year f(X) F(X) Q(X)

0.1700 E+02 0.5678 E-06 0.4827 E-05 0 .1 0 0 0 E+01 0.1802 E+02 0.1899 E-04 0.1047 E-04 0.9999 E+00 0.1904 E+02 0.3289 E-03 0.1271 E-03 0.9998 E+00 0 .2 0 0 0 E+02 0.2827 E-02 0.1295 E-02 0.9987 E+00 0 .2 1 0 2 E+02 0.1643 E-01 0.9544 E-02 0.9905 E+00 0.2204 E+02 0.5893 E-01 0.4495 E-01 0.9550 E+00 0.2300 E+02 0.1314 E+00 0.1352 E+00 0.8648 E+00 0.2403 E+02 0.2076 E+00 0.3115 E+00 0.6885 E+00 0.2476 E+02 0.2292 E+00 0.4756 E+00 0.5244 E+00 0.2505 E+02 0.2267 E+00 0.5407 E+00 0.4593 E+00 0.2601 E+02 0.1801 E+00 0.7416 E+00 0.2584 E+00 0.2703 E+02 0.1039 E+00 0.8872 E+00 0.1128 E+00 0.2805 E+02 0.4478 E+01 0.9409 E+00 0.3906 E-01 0.2901 E+02 0.1576 E+01 0.9884 E+00 0.1164 E-01 0.3303 E+02 0.4076 E+02 0.9974 E+00 0.2601 E-02 0.3105 E+02 0.8322 E-02 0.9995 E+00 0.4693 E-03 0.3202 E+02 0.1514 E-03 0.9999 E+00 0.7647 E-04 0.3304 E+02 0.2037 E-04 0.9999 E+00 0.8423 E-05 0.3400 E+02 0.2558 E-05 0.1000 E+01 0

Means = 0.24785 E+02 Betal == 0.1240 E+00 Std. Dev. * 0.17356 E+01 Beta2 ■= 0.30827 E+01

(14)

< V I > 0 9 F i g . l s h o w s c o m p l e m e n t a r y c u m u l a t i v e d i s t r i b u t i o n f u n c t i o n , Q ( A ) , v e r s u s f r e q u e n c y . 3 . 2 . 2 . P r o b a b i l i t y d i s t r i b u t i o n s of o f f s i t e p o w e r r e c o v e r y T he o b s e r v e d d a t a for r e c o v e r y t i m e s w e r e u s e d to o b t a i n e s t i m a t e s of m e a n and v a r i a n c e by the e q u a t i o n s t n = y . t i f i / ^ f i (3.9) i i o^ = y ( t ^ - m ) ^ f j _ / £ f i (3.10) i i T h e c a l c u l a t e d v a l u e s ar e m = a 184 m i n 3 9 1 . 8 ( 3 . 1 1 )

(15)

10

A g a m m a d i s t r i b u t i o n , g i v e n by Eq. (2.3), a r e t h e n c o n s t r u c t e d to fit the m e a n and v a r i a n c e t h r o u g h the use of E q s . ( 2 . 4 ) . T he p a r a m e t e r s r and X are f o u n d to be as r = 0 . 2 2 0 5 5 X = 1 . 1 9 8 6 3 x l 0 -3 (3.12) C o m p u t e r p r o g r a m , n a m e d G A M A , is the s e c o n d s m a l l c o d e w r i t t e n to o b t a i n p r o b a b i l i t y d e n s i t y d i s t r i b u t i o n , and c u m u l a t i v e d i s t r i b u t i o n f u n c t i o n s by m e a n s of E q . ( 2 . 3 ) and E q s . ( 3 . 4 - 3 . 8 ) . T a b l e 4 s u m m a r i z e s d i s t r i b u t i o n f u n c t i o n s , an d m e a n v a l u e and s t a n d a r t d e v i a t i o n of r e c o v e r y t i m e s . T h e m e a n and s t a n d a r t d e v i a t i o n o b t a i n e d f r o m d i s t r i b u t i o n f u n c t i o n s are m = 1 8 5 . 5 m i n a = 3 2 1 . 0 F i g . 2 is the c o m p l e m e n t a r y c u m u l a t i v e d i s t r i b u t i o n f u n c t i o n for r e c o v e r y t im es . T h e p r o b a b i l t y t h a t r e c o v e r y t a k e s m o r e t h a n a g i v e n t im e p e r i o d is f o u n d f r o m thi s C C D F . T a b l e 5 g i v e s so me of the p r o b a b i l i t i e s w h i c h ar e the Q(t) v a l u e s t o g e t h e r w i t h t h o s e g i v e n for so m e B W R t y p e p l a n t s (6 ). T < M I N U T E S ) Fig.2- Q(T) function versus time

(16)

11 T a b l e 4- P r o b a b i l i t y d i s t r i b u t i o n of r e c o v e r y t i m e s for A k k u - y u s i t e Recovery Time t(min.) Density Function f(t) Cumulative Dist. Func. F(t) Comple. Cumu. Dist. Func. Q(t) 0 .1 0 0 0 E+00 0.3820 E+00 0.1910 E-01 0.9809 E+00 0.7666 E+00 0.7802 E-01 0.1186 E+00 0.8814 E+00 0.9433 E+01 0.1092 E-01 0.3195 E+00 0.6805 E+00 0.2009 E+02 0.5922 E-02 0.4042 E+00 0.5957 E+00 0.3009 E+02 0.4311 E-02 0.4549 E+00 0.5450 E+00 0.6009 E+02 0.2426 E-02 0.5507 E+00 0.4492 E+00 0.9009 E+02 0.1707 E-02 0.6118 E+00 0.3882 E+00 0.1 2 0 1 E+03 0.1316 E-02 0.6568 E+00 0.3431 E+00 0.1501 E+03 0.1067 E-02 0.6925 E+00 0.3075 E+00 0.1841 E+03 0.8737 E-03 0.7255 E+00 0.2745 E+00 0.2401 E+03 0.6642 E-03 0.7683 E+00 0.2317 E+00 0.3001 E+03 0.5195 E-03 0.8037 E+00 0.1963 E+00 0.3601 E+03 0.4194 E-03 0.8318 E+00 0.1682 E+00 0.4201 E+03 0.3461 E-03 0.8548 E+00 0.1452 E+00 0.4801 E+03 0.2903 E-03 0.8739 E+00 0.1261 E+00 0.5401 E+03 0.2464 E-03 0.8901 E+00 0.1099 E+00 0.6001 E+03 0.2113 E-03 0.9038 E+00 0.9618 E-01 0.7001 E+03 0.1662 E-03 0.9226 E+00 0.7733 E-01 0.8001 E+03 0.1328 E-03 0.9376 E+00 0.6939 E-01 0.9001 E+03 0.1075 E-03 0.9496 E+00 0.5037 E-01 0 .1 0 0 0 E+04 0.8785 E-04 0.9594 E+00 0.4059 E-01 0 .1 1 0 0 E+04 0.7235 E-04 0.9674 E+00 0.3257 E-01 0.1 2 0 0 E+04 0.5997 E-04 0.9741 E+00 0.2595 E-01 0.1300 E+04 0.4998 E-04 0.9795 E+00 0.2044 E-01 0.1400 E+04 0.4185 E-04 0.9842 E+00 0.1584 E-01 0.1500 E+04 0.3517 E-04 0.9880 E+00 0.1198 E-01 0.1600 E+04 0.2967 E-04 0.9913 E+00 0.8729 E-01 0.1700 E+04 0.2511 E-04 0.9940 E+00 0.5984 E-02 0.1800 E+04 0.2130 E-04 0.9963 E+00 0.3658 E-02 0.1900 E+04 0.1811 E-04 0.9983 E+00 0.1682 E-02 0 .2 0 0 0 E+04 0.1544 E-04 0.1000 E+01 0 .0

Means = 0.1855 E+03 Betal == 0.7046 E+01 Std. Dev. = 0.3210 E+03 Beta2 == 0.1068 E+02

(17)

- 12 T a b l e 5 — P r o b a b i l i t i e s of f a i l u r e s to re c o v e r o f f s i t e p o w e r fo r s o m e r e a c t o r s i t e s Cases Millstone Point 1 Grand Gulf 1 Limerick G.S. Akkuyu 1 Failure to recover within 1 /2 h 0.43 0 .2 - 0.545

II 11 II It 1 h - - - 0.449 It II II II 2 h 0.24 - 0.365 0.343 II II It II 4 h - - 0.158 0.232 II II II It 15 h - 9xl0~4 0.0504 II It II II 20 h 0.05 2.6xl0-2 It II II It 24 h - lxlO- 8 1.42xl0~2 II II II It 28 h - 0 .1 - 6.5x10 8

4. DESCRIPTION OF CODES

4.1. C o m p u t e r c o d e P O I S It is d e v e l o p e d to c a l c u l a t e p o s t e r i o r d i s t r i b u t i o n of f r e q u e n c y of los s of o f f s i t e p o w e r as m o d e l e d b y a P O I S S O N p r o c e s s , a n d b y a s s u m i n g a u n i f o r m p r i o r d i s t r i b u t i o n . 4 . 1 . 1 . I n p u t of P OI S T h e i n p u t d a t a are g i v e n as f o l l o w s : T a b l e 6 - I n p u t for P O I S No of Card Columns Programme

Variable Format Description

1 1-12 TL F12.5 Observation period, T

1 13-24 R 15 Tota1 number of failures in ' 1 25-29 NA 15 Number of points to be found

(18)

13 T a b l e 6 - (C o n t .) No of Card Columns Programme

Variable Format Description

1 30-35 NN 15 Number of intervals for integration (S100)

2 1-12 XI E12.5 Beginning of frequency interval for distribution

2 13-24 X2 E12.5 End of frequency interval for distri­ bution

4 , 1 . 2 . D e s c r i p t i o n of S u b r o u t i n e s

M A I N p r o g r a m : POIS MAIN programme reads input cards, calculates Poisson probability density function at each point of NA. Then it calls Subroutine TINT to integrate density func­ tion within the interval between to conse­ cutive frequency points. It normalizes density function to obtain unit, total probability Cumulative distribution func­ tions are obtained. Finally it calls Subroutine MOMENT to calculate mean, vari­ ance, 3rc* and 4 ^ moments of frequency with respect to density functions, and the

coefficients 3^ and 3^*

S u b r o u t i n e T I N T : It integrates probability density function according to trapezoidal rule.

Subroutine MOMENT : It calculates moments of frequency with respect to density function.

S u b r o u t i n e S I M P : It uses Simpson’s rule for the calculation of moment s .

(19)

14 4.2. C o d e G A M A It c a l c u l a t e s the p r o b a b i l i t y d i s t r i b u t i o n of r e c o v e r y t i m e s by g a m m a d i s t r i b u t i o n c u r v e f i t t i n g . 4 . 2 . 1 . I n p u t of G A M A T h e i n p u t d a t a of G A M A are as f o l l o w s : T a b l e 7- I n p u t f or G A M A Card

No Columns Variable Format Description

1 1-5 NR 15 Observed No. of data

1 5-10 NA 15 Number of points to be found on distri­ bution curves (^5000)

1 10-15 NN 15 Number of intervals for integration t(<100)

2 1-15 F(J) E15.5 Frequency of duration 2 15-30 TX( J) E15.5 Duration of loss

NR n

~ Z L 1-12 XI E12.5 Beginning of frequency interval for

distribution

12-24 X2 El 2.5 End of frequency interval for distribu­ tion

4.2 . 2 . D e s c r i p t i o n of p r o g r a m m e

M A I N p r o g r a m m e : It is essentially same programme of POIS MAIN

e x c e p t t h a t i t f i r s t calculates the X and R p a r aine t e i s o f G amma f unc t ion f r om the

o b s e r v e d d a t a o f l o s s o f offsite power, and

Gamma f u n c t i o n .

The s u b r o u t i n e s T IN T, M O M E N T and S I M P a re d e s c r i b e d in s u b c h a p t e r 4 . 1 . 2 .

(20)

15

5. CONCLUSION

T he loss of g r i d p o w e r w h i c h was v e r y f r e q u e n t d u r i n g th e p a s t y e a r s in T u r k e y is one of the m o s t i m p o r t a n t a c c i d e n t i n i t i a t o r s in n u c l e a r p o w e r p l a n t s . T h e d a t a for the r e g i o n a l g r i d a r o u n d A k k u y u N P F s i te are a n a l y s e d a c c o r d i n g to the B a y e s i a n t e c h n i q u e . T h e p o s t e r i o r d i s t r i b u t i o n of L O S P f r e q u e n c i e s for a u n i f o r m p r i o r .d i s t r i b u t i o n and G a m m a d i s t r i b u t i o n of r e c o v e r y t i m e s are f o u n d . M e a n f r e q u e n c y of l o s s e s a n d n o n - r e c o v e r y p r o b a b i l i t i e s are o b t a i n e d . T h e B a y e s i a n a n a l y s i s u s e d are s h o w n th a t it g i v e s th e d e s i r e d i n f o r m a t i o n a b o u t the L O S P i n i t i a t o r . M o r e r e a s o n a b l e r e s u l t s , e s p e c i a l l y m e a n f r e q u e n c y of L O SP , n e e d m o r e r e l i ­ a b l e s t a t i s t i c a l d a t a fo r the g ri d l o s s e s . But the n o n - r e c o ­ v e r y p r o b a b i l i t i e s f o u n d for A k k u y u s i te are c o m p a r a b l e to t h o s e g i v e n f or s o m e r e a c t o r s i te s .

REFERENCES

1- P r o b a b i l i s t i c R i s k A s s e s s m e n t , L i m e r i c k G e n e r a t i n g S t a t i o n , P h i l a d e l p h i a E l e c t r i c C o . , M a r c h 1981, A p p . A . 2- N a n c y R . M a n n , Ray E . S c h a f e r , N o z e r D .S i n g p u r w a 1 l a , " M e t h o d s for S t a t i s t i c a l A n a l y s i s of R e l i a b i l i t y and L i f e D a t a " , J o h n W i l e y , 1974. 3- D r .L .L e d e r m a n of IAEA, J a n . 1986 ( p r i v a t e c o m m u n i c a t i o n ) . 4- N o r m a n J . M c C o r m i c k , " R e l i a b i l i t y and R i s k A n a l y s i s " , A c a d e m i c P r e s s , 1981.

(21)

16

-5- T u r k i s h E l e c t r i c i t y A u t h o r i t y , D e p . of L o a d D i s t r i b u t i o n s and Sales, M a y 1985 ( p r i v a t e c o m m u n i c a t i o n ) .

6- U . A d a l ı o ğ l u , B . G . G ö k t e p e , F i n a l r e p o r t of C o o r d i n a t e d R e s e a r c h P r o g r a m m e on "The D e v e l o p m e n t of R i s k C r i t e r i a for the N u c l e a r Fuel C yc l e " , u n d e r c o n t r a c t No.: 3 4 21 / R B , A p r i l 1984.

(22)

17

Appendix A - Listing öf POIS

1 n 4 5 7 « w 9 İO 11 12 ■ib 14 15 16 17 is 19 2 0 21 22 2 3 24

25

26 2 7 26 29 30 31 32 33 34 35 36

C POSTERIOR D I STRIBUTION OF LOSS OF ÖFFSITBT P O W E R G AS MODELED BY A P O ISSON PROCESS

C

IMPLICIT REALMS (A-H,0-Z> COMMON TL* R# CM* NN D IMENSION X (5001), PX <5001 >.0(5001 >. F<5001 > EXTERNAL LIBAEMULATE CALL L I B S t S T A K L I S H tülB SIMULATE) READ (5.10) T L . R . NA. Nü 10 FORMAT ( 2E12. 5, 215 > W R I T E <6. 13) TL, R. NA'. N N

12 FORMAT</5X. 'LAMDA*-', Efc2;J9, SX.','R**4,€flS. 5-5*. 'N A * % 15 l'NN=',I5> N0=NA+1 IR=R R E A D (5, 11) XI. <2 11 FO R M AT <2E 12. 5) W R I T E(t* 14) XI.X2

14 FORMAT ( /5X, /Xl*/VEl2. 5, 5X. X 2 = U E12L5)

DX*<X2-X1)/NA X < 1 >«X1 DO 2 I~2, MO X < I ) « X U - 1 ; + D X 2 CONTINUE G WRITE <6,89' 89 F O R M A T (1 İX, ' I . 12X, X 10X. 'PX ' ) I F ' R . C-T 20 ) GO TO 81 c

G CALCULATION Or GAMMA FUNCTION WHEN IR SMALL INTEGER

XIN*1 DO 5 U = i , IE ■XIN*XIN*IJ: 5 CONTINUE GM-XlN C DO 3 Ur- 1 , N O FT ~7L'* X •; -J) P X ( U > =FT-> ,îlR* C E X F < - F T ) ,' C-M C W R i TE İ 6, 9 3 > U . \ < -J > ■ F X L > ■J CONTINUE 93 F O R M A T ' 1OX, 14 $ X •2El2;5> GO TO 191 81 CONTINUE C

C CALCULATION OF ; GAM M A F U N C T ION AND ) DISTRI BUT I ON

C TOGETHER WHEN IR LARGE INTEGER

DO 42 I — 1 .NO X IN-1 FT*TL-< X ( I > D O 5J. L - 1 - IF: X.i U - X I N * F T « D E X F F-F'V/r.-’) /h 51 CONTINUE P X < I )= X I N

(23)

54 55 56 57 56 59 60 61 62 63 64 65 66 67

66

69 70 71 72 73 74 75 76 77 76 79 60 83. 62 83 8 4 85 8 6 87 80 89 90 Q 1 92 93 94 95 96 97 95 9? 100 101 102 100 104 105 106 107 106 109 18 C WRITE ( fc* 93 > I. X<I).PX(I') 42 CONTINUE C 191 CONTINUE C W R I T E <

6

, 90)

90 FORMAT! / I IX, ' I S 11X, XXI V9X, 'XX2',BX, ' F ( l V )

1

=

1

XX1=0. XX2=X(I> F(I>=PX(I>*X<I>/2. C W R I T E (

6

, 91) I, X X I ,X X 2 , F (I > DO 4 1=2, NO

xxi=x< :>-i)

XX.2=X< I ) CALL T I NT (XXI, X X2, F D I S ). F (I > =F •; I -1)+FDIS C W R I T E (6,91> I,XXI,XX2,F(I) 4 CONTINUE 91 F O R M A T

(1

OX, 14. 5X. 3E12. 5) DO 105 1=1,NO P X ( I )=FX <I )/F (N O ; 105 CONTINUE DO 106 1=1,MO F ! l i = F ( D / F ( N ü ) Q < I ) = i- F >: I ) 106 CONTINUE W R I T E (

6

,

1 1 0

) 110 FORMAT(/10X,5H I •SX,5H T , 10X,5H PX , İ2X,5H F < I ) , 13

1

. 5H G<

1

) ) DO 50 :--.= i,NQ W R I T E(6, 115) O'-., X(K> , PX(K>, F(K), Q(K) ) 50 CONTINUE

İ İ 5 FORMAT ■ 12X, 15, 5XVE12 5, 5X, E12 5, 5X, E12. 5, 5X,-E12. 5)

GALL M O M E N T <X ,D X ,N O , P X ) STOP

END

S U B R O U 7INE TINTIXX.l, X X 2 ,YOR) IMPLICIT REALs

8

i A-H, 0~Z> COMMON 7L, R, CM. NH N T = N N + 1 IR=R .DDX=( ,■ X

2

- X X

1

» /NN K‘ ~ i YOR=0 FZ=0. Y=XX İ IF (R GT 20. ) 00 TO 15 11 CONTINUE FT=TL*Y PY=FT*«R*DEXP <-F T ) /CM V OR = YOR + (P Y+ PZ >*DDX •' 2 PZ=PY Y-=Y+DDX N = N

+1

IF(N GT. NT)

00

TQ

13

. GO TO 11

(24)

lie 111 112 1 1 3 114 115 1 1 6 117 116 1 1 9 120 121 122 1 2 3 1 2 4 12 5 12 6 127 126 129 13C 131 132 1 3 3 134 1 3 5 1 3 6 137 1 3 6 137 1 4 0 141 142 143 144 145 146 147 1 4 0 149 1 5 0 151 152 15 3 154 15 5 1 5 6 157 156 157 16 0 161 16 2 163 164 165 166 167 166 1 6 9 1 7 0 171 172 173 19 15 CONTINUE XIN=1. FT=TL*Y DO 18 1=1.IR XIN=XIN*FT*DEXP(- F T / R )/I 18 CONTINUE PY=XIN Y O R = Y O R + (P Y + P Z )*DDX/2. PZ=PY Y=Y+DDX N=M+1 I F (N . GT. NT) GO TO 13 GO TO 15 13 RETURN END SUBROUTINE M O M E N T (X ,DX,NO. P X ) IMPLICIT REAL*8 <A-H, Q-Z)

DIMENSION X (5001>.P X (5001).P Y 1 <5001), P Y2(5001>. PY3(5001) 1» PY4 < 5001)

CALL SIMP(PX, DX, NO# AMOO) DO 5 1=1.NO

P Y 1 (I>=X <I)*PX(I ) 5 CONTINUE

CALL SIMP(PY1* DX» NO# A M 0 1 ) DO 12 1=1.NO

PY2<I>=<X<I)-AM01)*#2-*PX(I ) P Y 3 (I ) = < X <I )- A M 0 1 >**3*PX<I> PY4(I)=(X(I>~AM01)**4*PX<I> 12 CONTINUE

CALL SIMP(PY2» DX# NO. AM02) CALL SIMP(PY3.DX. NO. AMG3) CALL SIMP(PY4.DX.NO# AMC4) B 1=AM03**2/(A M G 2 * # 3 ) B 2=A M 0 4 /(AM02**2) ST=DSQR T < A M 0 2 )

WRITE (6. 9) AMOO. AMO I'

9 F O R M A T (//5 X . 'TOPLAM IHIIMAL='. E12. 5.5X. 'ORTALAMA D E G E R = '.E l 2. 5> WRITE<6. 10) AMC2» AM03.AM04

10 FORMATC/5X. 'VARY A N S = E 1 2 . 5. 5X. 'SKEWNESS=',E12. 5, 15X. 'KURTOSIS=', El2. 5)

WRITE < 6 , 17) ST,Bl.B2

17 FORMAT ( /5X, 'STD. DEV. = '. E12. 5. 5X. 'BETA1= ', E12. 5, 5X# 'BETA2= ' 1, E 12. 5 >

RETURN

END

SUBROUTINE SIMPtPX.DX,NO,AINT) C INTEGRATION BY SIMPSON RULE

IMPLICIT REAL*B <A-H,0-Z> DIMENSION PX(5C01) N0G=(NG-1>/2 N01=N0ü-l PZC=0. PZ1=0. DO 10 1=1,N01 N I = 2 * H 1 PZC=PZC + P X < N I ) 10 CONTINUE DO 11 1=1,NOO NJ=2*I PZ1=PZ1+PX<NJ) 11 CONTINUE A I N T = (PX (1)+4.* P Z 1+2.*PZO+PX(NO>>*DX/3. RETURN END

(25)

20 A p p e n d i x B - L i s t i n g of G A M A

1

C C A L C U L A T I O N OF P R O B A B I L I T Y D I S T R I B U T I O N OF R E C O V E R Y n c. C T I MES DY G A M MA D I S T R I B U T I O N C U R V E FITTIN G

3

IMPLICIT R E A L

*8

<A-H,0-Z> 4 C O M M O N TL> R, GM, NN C w.* D I M E N S I O N TX(ICOO),X<5C01>, PX(5001),G< 5 0 0 1 ).F(5001) t W E X T E R N A L L I B $ E M U L A T E 7 C ALL L I B $ E S T A B L I S H ( L I B ^ E M U L A T E )

e

W R I T E (

6

.43) 9 43 F O R M A T ( / / 1 5 X , ' INPUT DATA '//) İC R E A D (5/

8

) NR, NA, NN

11

e

F O R M A T (315)

1

£ W R I T E (6,32) N R , N A , N N

13 32 F O R M A T (5X, 'OBSER. NO OF D A T A ® ', I5/5X, 'NO OF P O I N T S

14 1. ON DISTR. =', I5/5X, 'NO OF INTERVAL FOR INTEG. = ',

15 215/ )

16 R EAD ( 5, 7 > ( (F(U), TX(U> ), J=i, NR>

17 7 F O R M A T (4Eİ 5. 5) 1C W R I T E (

6

,33) ((F (J >, T X (J )),J® 1,N R ) 19 33 F O R M A T (10 X , ' O B S E R V ED D A T A '/<5 X , 4 E 1 5 5))

20

R E A D (5, İl) XI, X2

21

11

F O R M A T (2E12. 5)

22

W R I T E (

6

, 142) XI. X2

23 142 FORMATS/5X, 'EE.GINN. OF VAR I A. INTER. =' , E12. 5, 5X,

24 1L 'END OF VAR IA INTER. = ', E12. 5)

25 W R I T E <

6

, 14)

26 14 F O R M A T ( / // 1 5 X , ' OU T P U T DATA ',//)

27 c

2

C c C A L C U L A T I O N OF MEAN AND V A R I A N C E FROM O B S E R V E D

29

c

DATA VALU ES 30 c 31 AF=0. 3 eC AME=0 33 DO 28 I = İ,NR 34 A F = A F + F( I ) 35 A M E = A M E + F(I ) * T X(I) 36 28 C O N TINUE 37 A M E = A M E / A F 30 AVAR=0. 39 DO 29 1=1,NR 40 A V A R = A V A R + F < I ) * < T X ( I>- A M E)**2 41 29 CONT I N U E 42 A V A R = A V A R / A F 43 W R I T E <

6

, İ 13 ) AME, AVAR

44 113 FORMAT < 5 X , 'MEAN® ' • Eİ2. 5, 5X, 'VARIANCE® ', E12. 5)

45 T L * A M E / A V A R 46 R = A M E * T L 47 W R I T E i t , 13) T L , R 43 13 F O R M A T ( /5X, 'LAMDA® ', El 2. 5, 5X, 'R=',E12. 5 > 49 NQ=WA+i 50 D X ®<X 2 - X 1>/NA 51 52 c C A L C U L A T I O N OF GAMMA FUN C T I O N 53 Z=R

(26)

54 55 Si-57 5G 59 6C 61 62 63 64 65 66 67 6 6 69 70 71 72 73 74 75 76 77 76 79 BC ei 82 83 84 85 86 87 86 89 90 91 92 93 94 95 96 97 96 99 1 0 0 101 1 0 2 103 1Ö4 105 106 107 1 0 8 109 n o 21 C 0 X 0 = 1 . 5748646*Z+. 9512363*Z**2-. 699 S5S 8 * Z * * 3 C 1+. 4 2 4 5 5 4 9 * Z * * 4 - . 1010678*Z**5 G X C - 1 . 577191652*Z+. 9 8 8 2 0 5 8 9 1 * Z**2-. 8 9705 693 7*Z** 3 1+. 9 1 8 2 0 6 8 5 7 * Z * * 4 - , 756704078*Z**5+. 4821 9 9 3 9 4 * Z ** 6 2-, 1 9 3 5 2 7 8 1 8 * Z * * 7 + . 0 3 5 8 6 8 3 4 3 * Z * * 8 GM = G X C / Z C X(1)=X1 DO 2 1=2,NO X (I)=X <I - İ )+DX 2 C O N T I N U E WRITE(6< 89) 89 F O R M A T < 1 IX, ' I ', 12X, X', 10X, 'PX') DO 3 J — 1,NO FT=TL*X<J) PX( J)=7L*FT**(R-1. > -s-DEXP ( -FT > /GM C WRITE(6, 93) J, X<J),FX(J) 3 C O N T IN U E C 93 F O R M A T < 10X, 14, 5X, 2E12. 5) C W R I T E (6, 90) C 90 F O R M A T ( / ! 1 X, 'I 11X, 'XXI ', 9X, ' XX2 ', 8X, 'F < I ) ' ) 1 = 1 XX1=0. X X 2 = X (I ) F<I )=PX(I>*X<I)/2. C W R I T E (6,91) I , X X 1, XX2, F < I > DO 4 1=2,NO X X i = X < I - l > XX2=X C I )

C ALL T I N K XXI, XX2, FDIS) F < I ) = F ( I - l )+ F DI S C WR I TE (6,- 91) I, XXI, XX2, F<I> 4 CON T IN U E C 91 F O R M A T ( 10X, 14, 5X, 3E12. 5) DO 105 1=1,NO P X < I )=P X <I )/F <N O ) 105 C O N T I N UE DO 106 i=i,NO F t I > =F { I )./ F (NO ) G(I)=i-F<I) 106 C O N T I N U E W R I T E (6,110) 11C FORMAT (/10X, 5H I , 8X, 5H T , 10X, 5H PX , 12X, 5H F(I),13X 1, 5H Q (I ) ) DO 50 K = 1 ,N 0 W R I T E <6, 115) <K, X(K), PX<K),F<K>. Q(K)) 50 C O N T I N UE

115 F O R M A T ( 12 X , 15, SX, E12. 5, 5X, 0 2 . 5, 5X, E12. 5, 5X, E12. 5) C ALL MOMENT ( X.- DX, NO, PX )

STOP END S U E R 0 U 7 I NE T IMT < X XI, X X2, Y O R ) IMPLICIT R E A L * 8 (A-H,0-Z) C O M M O N T L , R,GM, NM N T = N N + 1 DDX=( XX2-XX 1 ) /NN

(27)

110 111 112 113 114 115 116 117 118 119 12C 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 136 139 14C 141 142 143 144 145 146 147 140 149 150 151 152 153 154 155 156 157 158 159 160 161 162 162 164 165 _ 22 _ N*1 Y0R-0. PZ-0. Y*XX1 11 CONTINUE FT-TL*Y PY«TL*FT**(R-1. )*DEXP(-FT)/GM VOR-YOR+(PY+PZ)*DDX/2. PZ-PY Y-Y+DDX N-N+l IF(N .CT. NT) CO TO 13 GO TO 11 13 RETURN END

SUDROUTINE MOMENT (X.-DX.NO*PX) IMPLICIT REAL*6 (A-H. 0-Z)

DIMENSION X (5001>, PX<5001), PY1(5001). PY2(5001>.PY3(5001) 1, PY4(5001>

CALL SIMPIPX. DX.NQ, AMOO) DO 5 1*1.NO

PY1(I)*X(I)*PX(I) 5 CONTINUE

CALL SIMP (PYl,DX,NO. AM01> DO 12 1*1.NO

P Y 2 (I >*<X( I>-AM01>«*2*PX<I >

PY3 <I>*(X(I)-AMQ1)**3*PX(I) PY4<I)-(X <Il-AMOl)«*4*PX<l> 12 CONTINUE

CALL SIMP(PY2,DX.N0. AM02) CALL SIMP(PY3» DX. NO* AM03) CALL SIMPİPY4» DX, NO» AM04) B 1 *AM03**2/ ( AMC'2**3) B2»AM04/(AM02*«2) ST*DSGRT(AM02)

WRITE(6* 9) AMOC.AMQl

9 FORMAT(//5X*.'TOPLAM İHTİMAL*', E12. 5, 5X, 'ORTALAMA DEĞER*', E12. 5) WRITEC6, 10) AM02, AM03.AM04

10 FORMAT! /5X« 'VARYANS*'. E12. 5, SX, ' S K E W N E S S * E l 2. 5. ‘ 15X, 'KURTOSIS*', Eİ2. 5)

WRITE(6.17) ST.B1.B2

17 FORMAT</5X. 'STD. DEV. *', E12. 5, 5X. 'BETA1*', E12. 5. 5X, 'BETA2*'

1 .E 1 2. 5)

RETURN

END-SUBROUTINE SIMP(PX, DX, NO,AINT)

C INTEGRATION BY SIMPSON RULE

IMPLICIT REAL«6 (A-H. 0-Z) DIMENSION PX(5C01) NOG*(NO-1)/2 NOl«NOD-1 PZO-O. PZ1-0. DO 10 1*1, N01 NI*2*I+1 PZO-PZO+PX(NI) 10 CONTINUE DO 11 1*1,NOO NJ«2*I PZ1»PZ1+PX(NJ) 11 CONTINUE AINT*(PX(l)+4. «P1İ42. *PZO+PX(NG))*DX/3. RETURN END

Referanslar

Benzer Belgeler

I N CHARACTERIZATION of rf-SQUIDs, the effect of the used electronics (rf-pumping frequency and applied power) and tank circuit on the flux to voltage transfer function, , is

Osmanlı toplumunun büyük kısmının konar-göçer aşiretlerden oluştuğu dönemlerden, yerleşikleşme ve devletleşmeye geçilmesiyle birlikte ortaya çı- kan yeni kurumlar,

STATCOM/SMES is another control strategy, which is placed at output generation of the wind energy to mitigate fluctuations of output power and frequency as well

33 Araştırmada öğrencilerin sınıf düzeyi değişkenine göre beden eğitimi dersi değer düzeylerine bakıldığında; Spor kültürü, Sağlıklı yaşam ve

Konuşmacılar: Engin Gönül, Hakan Sabuncuoğlu,

Hamath stones stones, permitted the Reverend William Wright to accompany him on an inspection tour.. Meanwhile two other ^roups^of

Un grand nombre d’aqueducs fameux sillonnent la cam­ pagne aux environs de la ville: ils sont destinés à transporter l'eau d'une colline à l’autre à travers les

Bunların arasında, Tevfik Fik­ ret’in “Rübab-ı Şikeste”si; çok okunmadan parça parça olmuş bir “Zavallı Necdet”, bir eylül şehit Cevdet Efendi’nin