• Sonuç bulunamadı

çimlenme yeteneğinin kromozom 1, 2 ve 4’te farklı genler tarafından kontrol edildiğini bildirmiĢlerdir. Yapılan bu çalıĢma ile hıyarda düĢük sıcaklıkta çimlenme yeteneği farklı bitkilerde yapılan çalıĢmalar ve hıyarda yapılan çalıĢma ile tutarlı sonuç vererek, 1, 2 ve 4. kromozomlarda farklı genler (çok gen) tarafından kontrol edildiği belirlenmiĢtir.

DüĢük sıcaklıkta çimlenme yüzdesi ile ilgili kromozom 1, 2 ve 4’te farklı QTL gen bölgeleri belirlenmiĢtir. Bunlardan kromozom 1’deki gen bölgesi en yüksek LOD skoru verdiğinden, ana QTL gen bölgesi olarak belirlenmiĢtir. 16.905.088-19.405.477 bp arasında belirlenen bu gen bölgesi F2:3 populasyonunda yeni markırlar ile taranarak CG121 (17.536.800 bp) ve CG137 (17.901.284 bp) markırları arasında 364.484 bp’ye kadar daraltılmıĢtır. DüĢük sıcaklıkta çimlenme yüzdesi ile ilgili kromozom 1’de 364.484 bp alanda 24 adet aday gen tespit edilmiĢtir.

qCG1.1 lokusu fine mapping ve gen klonlaması gibi ileri haritalama çalıĢmaları yapılarak ilgili genler tespit edilebilir ve hıyar için önemli bir özellik olan düĢük sıcaklıkta çimlenme yeteneği ile ilgili markırlar MAS için kullanılabilir nitelikte bulunmuĢtur.

Kolzada meyve uzunluğu ve tohum ağırlığı ile ilgili (Yang vd. 2012b), karpuzda tohum uzunluğu, geniĢliği ve 100 tohum ağırlığı ile ilgili (Prothro vd. 2012), nohutta tohum büyüklüğü ve 100 tohum ağırlığı ile ilgili (Fatokun vd. 1992, Hossain vd. 2010, Singh vd. 2016), buğdayda 1000 dane ağırlığı, dane uzunluğu, geniĢliği ve kalınlığı ile ilgili (Wu vd. 2015), fasulyede 100 tohum ağırlığı, tohum uzunluğu, tohum yüksekliği ve Ģekli ile ilgili (Park vd. 2000a), soya fasulyesinde tohum uzunluğu, geniĢliği, yüksekliği, Ģekli ve 100 tohum ağırlığı ile ilgili (Mian vd. 1996, Salas vd. 2006, Teng vd. 2009, Sun vd. 2012, Hu vd. 2013) maĢ fasulyesinde tohum ağırlığı ile ilgili (Fatokun vd. 1992) yapılan çalıĢmalarda tohum iriliği ile ilgili özelliklerin karmaĢık bir özellik olduğu ve çok gen (QTL) tarafından kontrol edildiği bildirilmiĢtir. Wang vd. (2014) tarafından hıyarda yapılan çalıĢmada tohum uzunluğu ile ilgili kromozom 2, 3, 4, 5 ve 6’da, tohum geniĢliği ile ilgili kromozom 2, 5 ve 6’da ve 100 tohum ağırlığı ile ilgili ise

(QTL) tarafından kontrol edildiği bildirilmiĢtir. Yapılan bu çalıĢma ile hıyarda tohum uzunluğu, geniĢliği ve 100 tohum ağırlığı ile ilgili farklı bitkilerde yapılan çalıĢmalar ve hıyarda yapılan çalıĢma ile tutarlı sonuç vererek, tohum uzunluğu; 1, 3, 4, 5 ve 6.

kromozomlarda, tohum geniĢliği; 1, 3, 5 ve 6. kromozomlarda, 100 tohum ağırlığı ise 1, 3, 4, 5 ve 6. kromozomlar tarafından farklı genler (çok gen) tarafından kontrol edildiği belirlenmiĢtir.

Tohum uzunluğu, geniĢliği ve 100 tohum ağırlığı ile ilgili belirlenen QTL gen bölgelerinden birbiri ile tutarlı ve en yüksek LOD skoru veren kromozom 3.1 (25.722.118-32.327.411 bp), 5.1 (1.414.211-7.257.947 bp) ve 5.2 (18.516.256-22.034.792 bp) QTL gen bölgeleri ana QTL gen bölgeleri olarak belirlenmiĢtir.

Kromozom 3’te tohum uzunluğu ile ilgili gen bölgesi F2:3 populasyonunda yeni markırlar ile taranarak SL322 (29.009.381 bp) ve SL328 (30.244.029 bp) markırları arasında 1.234.648 bp’ye kadar daraltılmıĢtır. Tespit edilen sınır markırları arasında 171 adet aday gen tespit edilmiĢtir (EK 15).

Kromozom 3’te tohum geniĢliği ile ilgili gen bölgesi F2:3 populasyonunda yeni markırlar ile taranarak SL335 (28.019.444 bp) ve SL305 (28.790.632 bp) markırları arasında 771.188 bp’ye kadar daraltılmıĢtır. Tespit edilen sınır markırları arasında 133 adet aday gen tespit edilmiĢtir (EK 16)

Kromozom 3’te 100 tohum ağırlığı ile ilgili gen bölgesi F2:3 populasyonunda yeni markırlar ile taranarak SSR23725 (28.606.387 bp) ve UW85395 (28.952.366 bp) markırları arasında 345.979 bp’ye kadar daraltılmıĢtır. Tespit edilen sınır markırları arasında 58 adet aday gen tespit edilmiĢtir (EK 17).

Kromozom 5’te tohum uzunluğu ile ilgili ilk gen bölgesi (5.1) F2:3 populasyonunda yeni markırlar ile taranarak SL510 (5.911.499 bp) ve SL576 (6.754.205 bp) markırları arasında 842.706 bp’ye kadar daraltılmıĢtır. Tespit edilen sınır markırları arasında 144 adet aday gen tespit edilmiĢtir (EK 18).

Kromozom 5’te tohum geniĢliği ile ilgili ilk gen bölgesi (5.1) F2:3 populasyonunda yeni markırlar ile taranarak SL510 (5.911.499 bp) ve SL576 (6.754.205 bp) markırları arasında 842.706 bp’ye kadar daraltılmıĢtır. Tespit edilen sınır markırları arasında 144 adet aday gen tespit edilmiĢtir (EK 18).

Kromozom 5’te 100 tohum ağırlığı ile ilgili ilk gen bölgesi (5.1) F2:3 populasyonunda yeni markırlar ile taranarak SL579 (6.479.932 bp) ve SL512 (6.980.763 bp markırları arasında 500.831 bp’ye kadar daraltılmıĢtır. Tespit edilen sınır markırları arasında 77 adet aday gen tespit edilmiĢtir (EK 19).

Kromozom 5’te tohum uzunluğu ile ilgili ikinci gen bölgesi (5.2) F2:3 populasyonunda yeni markırlar ile taranarak SWE507 (19.571.931 bp) ve SSR11012 (19.692.766 bp) markırları arasında 120.835 bp’ye kadar daraltılmıĢtır. Tespit edilen sınır markırları arasında 7 adet aday gen tespit edilmiĢtir (EK 20).

Kromozom 5’te tohum geniĢliği ile ilgili ikinci gen bölgesi (5.2) F2:3 populasyonunda yeni markırlar ile taranarak SWE507 (19.571.931 bp) ve SWE5024 (19.798.865 bp) markırları arasında 226.934 bp’ye kadar daraltılmıĢtır. Tespit edilen sınır markırları arasında 15 adet aday gen tespit edilmiĢtir (EK 21).

qSL3.1, qSL5.1, qSL5.2, qSWI3.1, qSWI5.1, qSWI5.2, qSWE3.1 ve qSWE5.1 lokusları fine mapping ve gen klonlaması gibi ileri haritalama çalıĢmaları yapılarak ilgili genler tespit edilebilir ve hıyar için önemli özellikler olan tohum uzunluğu, geniĢliği ve 100 tohum ağırlığı ile ilgili markırlar MAS için kullanılabilir olarak değerlendirilmiĢtir.

KAYNAKLAR

Abramoff, M.D., Magalhaes, P.J. and Ram, S.J. 2004. Image Processing with ImageJ.

Biophotonics International 11(7): 36-42.

Agrama, H.A.S. and Moussa, M.E. 1996. Mapping QTLs in breeding for drought tolerance in maize (Zea mays L.). Euphytica 91: 89–97.

Ahmadi-Ochtapeh, H., Soltanloo, H., Ramezanpour, S.S., Naghavi, M.R., Nikkhah, H.R. and Yoosefi Rad, S. 2015. QTL mapping for salt tolerance in barley at seedling growth stage. Biol. Plantarum 59: 283–290.

Akarsu, A.N. ve Lüleci, G. 2002. Gen haritalaması: Ne demek, haritalar nasıl oluĢturuluyor, neler içeriyor, nasıl yorumlanıyor? Dokuz Eylül Tıp Dergisi, (Ġnsan genomu projesi-özel sayı): 29-39.

Amano, M., Mochizuki, A., Kawagoe, Y., Iwahori, K., Niwa, K., Svoboda, J., Maeda, T. and Imura, Y. 2013. High-resolution mapping of zym, a recessive gene for Zucchini yellow mosaic virus resistance in cucumber. Theor. Appl. Genet.

126: 2983–2993.

Amin, Y.A. and Ayman, A.D. 2013. QTL mapping of wheat (Triticum aestivum L.) in response to salt stress. Int. J. Bio. Tech. 3: 47-60.

Ammiraju, J.S.S., Dholakia, B.B., Santra, D.K., Singh, H., Lagu, M.D., Tamhankar, S.A., Dhaliwal, H.S., Rao, V.S., Gupta, V.S. and Ranjekar, P.K. 2001.

Identification of inter simple sequence repeat (ISSR) markers associated with seed size in wheat. Theor. Appl. Genet. 102: 726–732.

Andaya, V.C. and Mackill, D.J. 2003. Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. Journal of Experimental Botany 54 (392):

2579-2585.

Anonim. 2017. Web Sitesi: https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr, EriĢim Tarihi: 15.04.2018

Anonymous. 2013. Web Sitesi: ttp://www.theplantlist.org/1.1/browse/A/Cucurbitaceae/, EriĢim Tarihi: 15.04.2018

Anonymous. 2016a. Web Sitesi: https://ndb.nal.usda.gov/ndb/foods/show/2958, EriĢim Tarihi: 15.04.2018

Anonymous. 2016b. Web Sitesi: http://www.fao.org/faostat/en/#data/QC, EriĢim Tarihi:

15.04.2018

Anonymous. 2017. Web Sitesi: https://www.trademap.org/(X(1)S(egt1sticmtisfjb5-rby4yx45))/Country_SelProduct_TS_Map.aspx?nvpm=1|||||0707|||4|1|1|1|2|1|2|1

|1, EriĢim Tarihi: 15.04.2018

Arends, D., Prins, P., Broman, K.W. and Jansen, R.C. 2014. Tutorial-Multiple-QTL Mapping (MQM) Analysis for R/qtl. http://www.rqtl.org/tutorials/MQM-tour.pdf, 1-39.

Arends, D., Prins, P., Jansen, R.C. and Broman, K.W. 2010. R/qtl: high-throughput multiple QTL mapping. Bioinformatics 26:2990–2992.

Arumuganathan, K. and Earle, E.D. 1991. Nuclear DNA content of some important plant species. Plant Mol. Biol. Report 9: 208–218.

Babu, R., Nair, S.K., Prasanna, B.M. and Gupta, H.S. 2004. Integrating marker assisted selection in crop breeding – Prospects and challenges, Curr. Sci. 87: 607-619.

Bae, K.M., Kwon, Y.S., Cho, I.H. and Yi, S.I. 2006. Use of cDNA-AFLP for transcript profiling in narrow genetic pools; for example, cucumber (Cucumis sativus L.).

Plant Breeding 125: 488–492.

Baloğlu, P. 2016. LEA (Late Embryogenesis Abundant) Genlerinin Salatalık (Cucumis sativus L.) Genomunda Belirlenmesi, Biyoinformatik Analizleri ve Kuraklık Stresi Altında Gen Ġfade Profillerinin Çıkarılması. Yüksek lisans tezi, Kastamonu Üniversitesi Fen Bilimleri Enstitüsü, 141 s, Kastamonu.

Bashier, K., Khan, N.M., Rasheed, S. and Salim, M. 2007. Indica rice varietal development in Pakistan: An overview. Paddy Water Environ. 5: 73-81.

Bayraktar, K. 1970. Sebze YetiĢtirme. Ege Üniversitesi, Ziraat Fakültesi Yayınları, Ġzmir.

Beckmann, J.S. 1994. Genetic mapping, an overview. Suhai S. Ed. In: Computational methods in Genome Research. New York: Plenum Press, pp. 75-84.

Berg, J.A., Appiano, M., Martínez, M.S., Hermans, F.W.K., Vriezen, W.H., Visser, R.G.F., Bai, Y.L. and Schouten, H.J. 2015. A transposable element insertion in the susceptibility gene CsaMLO8 results in hypocotyl resistance to powdery mildew in cucumber. BMC Plant Biol. 15: 243.

Botstein, D., White, R., Skolnick, M. and Davis, R.W. 1980. Construction of a genetic linkage map in man using restriction fragmenth length polymorphisms, Amer. J of Human Genetic 32: 314-331.

Broman, K.W., Wu, H., Sen, S. and Churchill, G.A. 2003. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19: 889–890.

Burow, G., Burke, J., Xin, Z.G. and Franks, C. 2011. Genetic dissection of early-season cold tolerance in sorghum (Sorghum bicolor (L.) Moench). Mol. Breed. 28:

391–402.

Burr, B., Burr, F.A., Thompson, K.H., Albertson, M.C. and Stuber, C.W. 1988. Gene mapping with recombinant inbreds in maize. Genetics 118: 519- 526.

Cavagnaro, P.F., Senalik, D.A., Yang, L.M., Simon, P.W., Harkins, T.T., Kodira, C.D., Huang, S.W. and Weng, Y. 2010. Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genom 11: 569.

Chen, L., Lou, Q. J., Sun, Z. X., Xing, Y. Z., Yu, X. Q. and Luo, Y. J. 2006. QTL mapping of low temperature on Germination rate of Rice. Rice Res. 13 (2): 93-98.

Cheng, Z.C., Gu, X.F., Zhang, S.P., Miao, H., Zhang, R.W., Liu, M.M. and Yang, S.L.

2010. QTL mapping of fruit length in cucumber. China Vegetables 12: 20–25.

Cohen, S., Gertman, E. and Kedar, N. 1971. Inheritance of resistance to melon mosaic virus in cucumbers. Phytopathology 61: 253-255.

Collard, B.C.Y., Jahufer, M.Z.Z., Brouwer, J.B. and Pang, E.C.K. 2005. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:

169-196.

Dabuxilatu, I. and Motoki, I. 2005. Distribution of K, Na and Cl in root and leaf cells of soybean and cucumber plants grown under salinity conditions. Soil Science &

Plant Nutrition 51 (7) :1053-1057.

Das, S., Upadhayaya, H.D., Srivastava, R., Bajaj, D., Gowda, C.L.L., Sharma, S., Singh, S. Tyagi, A.K. and Parida, S.K. 2015. Genome-wide insertion-deletion (InDel) marker discovery and genotyping for genomics-assisted breeding applications in chickpea. DNA Res. 22: 377–386.

Dashti, H., Yazdi-Samadi, B., Ghannada, M., Naghavi, M.R. and Quarri, S. 2007. QTL analysis for drought resistance in wheat using doubled haploid lines. Int J Agric Biol. 9: 98–101.

De Candolle, A. 1886. Origin of cultivated plants. Cambridge University Press, London.

de Milliano, M.J.K., Folkertsma, R.T., van Paassen, M.Q.M., de Vries, J.S. and Sela, M.B. 2012. Fusarium resistant cucumber plants. US patent US 2012/0066790 A1.

Deschamps, S., Llaca, V. and May, G.D. 2012, Genotyping-by-Sequencing in Plants, Biology 1(3): 460-483.

Dhingani, R.M., Umrania, V.V., Tomar, R.S., Parakhia, M.V. and Golakiya, B.A. 2015.

Introduction to QTL mapping in plants. Ann. Plant Sci. 4 (04): 1072–1079.

Diaz-Garcia, L., Covarrubias-Pazaran, G., Schlautman, B. and Zalapa, J. 2016. GiNA, an efficient and high-throughput software for horticultural phenotyping. PLoS ONE 11(8): e0160439. doi:10.1371/journal.pone.0160439.

Ding, G.H., Qin, Z.W., Zhou, X.Y. and Fan, J.X. 2007. RAPD and SCAR markers for downy mildew resistance in cucumber. Acta Bot. BorealOccident Sinica 27:

1747–1751.

Dong, S.Y., Miao, H., Zhang, S.P., Liu, M.M., Wang, Y. and Gu, X.F. 2012. Genetic analysis and mapping of white fruit skin color in cucumber. Acta Bot Boreal-Occident Sinica 32: 2177–2181.

Eagles, H.A., Bariana, H.S., Ogbonnaya, F.C., Rebetzke, G.J., Hollamby, G.J., Henry, R.J., Henschke, P.H. and Carter, M. 2001. Implementation of markers in Australian wheat breeding. Crop Pasture Sci. 52(12): 1349–1356.

Elshire, R.J., Glaubitz, J.C., Sun, Q., Poland, J.A., Kawamoto, K., Buckler, E.S. and Mitchell, S.E. 2011. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE 6(5): e19379.

Engin, A. 1991. Tohumlu Bitkiler Sistematiği. Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Yayınları, 330, Samsun.

Enslin, P.R. and Rehm, S. 1958. The distribution and biogenesis of the cucurbitacins in relation to the taxonomy of the Cucurbitaceae. Proc. Linn. Soc. Lond. 169(3):

230–238.

Erensayın, C. 2000. Genetik, 2. Baskı, Nobel Yayın Dağıtım, 119-134 s, Ankara.

Fan, Y., Shabala, S., Ma, Y., Xu, R. and Zhou, M. 2015. Using QTL mapping to investigate the relationships between abiotic stress tolerance (drought and salinity) and agronomic and physiological traits. BMC Genomics 16: 43.

Fatokun, C.A., Menancio-Hautea, D.I., Danesh, D. and Young, N.D. 1992. Evidence for orthologous seed weight genes in cowpea and mung bean based on RFLP mapping. Genetics 132: 841- 846.

Foolad, M.R., Chen, F.Q. and Lin, G.Y. 1998. RFLP mapping of QTLs conferring cold tolerance during seed germination in an interspecific cross of tomato.

Molecular Breeding 4: 519-529.

Foolad, M.R., Lin, G.Y. and Chen, F.Q. 1999. Comparison of QTLs for seed germination under non-stress, cold stress and salt stress in tomato. Plant Breeding 118: 167-173.

Fukino, N., Yoshioka, Y., Kubo, N., Hirai, M., Sugiyama, M., Sakata, Y. and Matsumoto, S. 2008. Development of 101 novel SSR markers and construction of an SSR-based genetic linkage map in cucumber (Cucumis sativus L.). Breed Sci 58: 475–483.

Fukino, N., Yoshioka, Y., Sugiyama, M., Sakata, Y. and Matsumoto, S. 2013.

Identification and validation of powdery mildew (Podosphaera xanthii)-resistant loci in recombinant inbred lines of cucumber (Cucumis sativus L.).

Mol Breed 32: 267–277.

Furtana, G.B. and Tıpırdamaz, R. 2010. Physiological and antioxidant response of three cultivars of cucumber (Cucumis sativus L.) to salinity. Turk. J. Biol. 34: 287–

296.

Gelderman, H. 1975. Investigation on inheritance of quantitative characters in animals by gene markers. I. Methods. Theor. Appl. Genet. 46: 300-319.

Glover, K.D., Wang, D., Arelli, P.R., Carlsoni S.R., Cianzio, S.R. and Diers, B.W.

2004. Near isogenic lines confirms a soybean cyst nematode resistance gene from PI 88788 on linkage group, J. Crop Sci. 44: 936–941.

Gong, J.M., He, P., Qian, Q.A., Shen, L.S., Zhu, L.H. and Chen, S.Y. 1999.

Identification of salt-tolerance QTL in rice (Oryza sativa L.). Chinese Science Bulletin 44: 68–71.

Göl, D. 2015. Mercimek Genomunda Rekombinant KendilenmiĢ Hatları Kullanarak AFLP ve SNP Markırlarının Haritalanması, Doktora Tezi. Ege Üniversitesi Biyoteknoloji Anabilim Dalı, 82 s., Ġzmir.

Griffiths, A.J.F., Wessler, S.R., Lewontin, R.C., Gelbart, W.M., Suzuki, D.T. and Miller, J.H. 2005. Introduction to genetic analysis. 8th eds. New York: WH Freeman and Company.

Gupta, P.K. and Rustgi, S. 2004. Molecular markers form the transcribed/expressed region of the genome in higher plants. Funct Integr Genomics 4: 139-162.

Han, L.Z., Zhang, Y.Y., Qiao, Y.L., Cao. G.L., Zhang, S.Y., Kim, J.H. and Koh, H.J.

2006. Genetic and QTL analysis for low temperature vigor of germination in rice. Acta Genet. Sin. 33: 998-1006.

Hayashi, E., Aoyama, N. and Still, D.W. 2008. Quantitative trait loci associated with lettuce seed germination under different temperature and light environments.

Genome 51: 928–947.

He, J., Zhao, X., Laroche, A., Lu, Z. X., Liu, H. and Li, Z. 2014. Genotyping by sequencing (GBS), an ultimate marker assisted selection (MAS) tool to accelerate plant breeding. Front. Plant Sci. 5: 484.

He, P., Li, J.Z., Zheng, X.W., Shen, L.S., Lu, C.F., Chen, Y. and Zhu, L.H. 2001.

Comparison of molecular linkage maps and agronomic trait loci between DH and RIL populations derived from the same rice cross, Crop Sci. 41: 1240-1246.

Hooker, J.D. 1876. Cucumis sativus var. sikkimensis. Botanical Magazine 6206.

Hossain, S., Ford, R., McNeil, D., Pittock, C. and Panozzo, J.F. 2010. Inheritance of seed size in chickpea (Cicer arietinum L.) and identification of QTL based on 100-seed weight and seed size index, Aust. J. Crop Sci. 4: 126-35.

Hu, S., Lübberstedt, T., Zhao, G. and Lee, M. 2016. QTL mapping of low-temperature germination ability in the maize IBM Syn4 RIL population. PLoS ONE 11(3):

e0152795. doi:10.1371/journal.pone.0152795.

Hu, Z., Zhang, H., Kan, G., Ma, D., Zhang, D., Shi, G., Hong, D., Zhang, G. and Yu, D.

2013. Determination of the genetic architecture of seed size and shape via linkage and association analysis in soybean (Glycine max L. Merr.). Genetica 141: 247–254.

Huang, S., Li, R., Zhang, Z., Li, L., Gu, X., Fan, W. and Li, S. 2009. The genome of the cucumber, Cucumis sativus L. Nat. Genet. 41: 1275-1281.

Ibrahim, T.A., El-Hefnawy, H.M. and El-Hela, A.A. 2010. Antioxidant potential and phenolic acid content of certain cucurbitaceous plants cultivated in Egypt. Nat Prod Res 24(16): 1537–1545.

Islam, M.R., Salam, M.A., Hassan, L., Collard, B.C.Y., Singh, R.K. and Gregorio, G.B.

2011. QTL mapping for salinity tolerance at seedling stage in rice. Emir. J.

Food Agric. 23(2): 137-146.

ĠĢçi, B. 2008. Asmada QTL (Kantitatif karakter lokus) Analizi. Anadolu, J. of AARI 18 (2): 11-37.

Ji, S.L., Jiang, L., Wang, Y.H., Zhang, W.W., Liu, X., Liu, S.J., Chen, L.M., Zhai, H.Q.

and Wan, J.M. 2009. Quantitative trait loci mapping and stability for low temperature germination ability of rice. Plant Breed 128: 387–392.

Jiang, S., Yuan, X., Pan, J., He, H. and Cai, R. 2008. Quantitative trait locus analysis of lateral branch–related traits in cucumber using recombinant inbred lines. Sci.

China Ser. C-Life Sci. 51: 833–841.

Kabelka, E. and Grumet, R. 1997. Inheritance of resistance to the Moroccan watermelon mosaic virus in the cucumber line TMG-1 and cosegregation with zucchini yellow mosaic virus resistance. Euphytica 95: 237-242.

Kabelka, E., Ullah, Z. and Grumet, R. 1997. Multiple alleles for zucchini yellow mosaic virus resistance at the zym locus in cucumber. Theor. Appl. Genet. 95: 997-1004.

Kang, H., Weng, Y., Yang, Y., Zhang, Z., Zhang, S., Mao, Z., Cheng, G., Gu, X., Huang, S. and Xie, B. 2011. Fine genetic mapping localizes cucumber scab resistance gene Ccu into an R gene cluster. Theor. Appl. Genet. 122: 795–803.

Kappes, S.M. 1999. Utilization of gene mapping information in livestock animals.

Theriogenology 51: 135-47.

Khan, S. 2015. QTL mapping: a tool for improvement in crop plants. Res. J. Recent Sci.

4, 7-12.

Kim, S.M., Suh, J.P., Lee, C.K., Lee, J.H., Kim, Y.G. and Jena, K.K. 2014. QTL mapping and development of candidate gene-derived DNA markers associated with seedling cold tolerance in rice (Oryza sativa L.). Mol Genet Genomics 289: 333.

Kirigwi, F.M., Van Ginkel, M., Brown-Guedira, G., Gill, B.S., Paulsen, G.M. and Fritz, A.K. 2007. Markers associated with a QTL for grain yield in wheat under drought, Mol. Breed. 20: 401–413.

Kłosińska, U., Kozik, U.E., Nowicki, M. and Wehner, T.C. 2013. Low temperature seed germination of cucumber: Genetic basis of the tolerance trait. Journal of Horticultural Research 21(2): 125-130.

Knoll, J., Gunaratna, N. and Ejeta, G. 2008. QTL analysis of early-season cold tolerance in sorghum. Theor Appl Genet. 116: 577–587.

Konieczny, A. and Ausubel, F.M. 1993. A procedure for mapping arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant Journal 4: 403-410.

Kosambi, D.D. 1944. The estimation of map distance from recombination values.

Annals of Eugenices 12: 172-175.

Kozik, E.U. and Wehner, T.C. 2006. Inheritance of chilling resistance in cucumber seedlings. Proc. Cucurbitaceae 2006, p. 121-124 (ed. G. J. Holmes). Universal Press, Raleigh, North Carolina.

Kozik, E.U. and Wehner, T.C. 2008. A single dominant gene Ch for chilling resistance in cucumber seedlings. J. Amer. Soc. Hort. Sci. 133: 225-227.

Kozik, E.U., Kłosińska, U. and Wehner, T.C. 2012. Inheritance of low temperature seed germination ability in cucumber. In: Proc. of 10th Eucarpia International Meeting on Genetics and Breeding Cucurbitaceae 2012. Antalya, Turkey, pp 575-578.

Kumar, S., Banks, T.W. and Cloutier, S. 2012. SNP discovery through Next-Generation Sequencing and its applications, Int. J. Plant Genomics 2012:Article ID 831460.

Kumar, S., Rajendran, K., Kumar, J., Hamwieh, A. and Baum, M. 2015. Current knowledge in lentil genomics and its application for crop improvement. Front Plant Science 6: 78.

Kutlu, B. 2014. Lipoksigenaz Genlerinin 2 Farklı Rekombinant KendilenmiĢ Hat (RIL) Populasyonu Kullanılarak Mercimek Genomunda Haritalanması, Yüksek Lisans Tezi. Ege Üniversitesi Biyoteknoloji Anabilim dalı, 93 s., Ġzmir.

Lang, L., Xu, A., Ding, J., Zhang, Y., Zhao, N., Tian, Z., Liu, Y., Wang, Y., Liu, X., Liang, F., Zhang, B., Qin, M., Dalelhan, J. and Huang, Z. 2017. Quantitative trait locus mapping of salt tolerance and ıdentification of salt-tolerant genes in Brassica napus L. Front. Plant Sci. 8.

Lee, S.Y., Ahn, J.H., Cha, Y.S., Yun, D.W., Lee, M.C., Ko, J.C., Lee, K.S. and Eun, M.Y. 2007. Mapping QTLs related to salinity tolerance of rice at the young seedling stage. Plant Breed. 126: 43–46.

Li, Y., Tian, X.M., Wei, M., Shi, Q.H., Yang, F.J. and Wang, X.F. 2015. Mechanisms of tolerance differences in cucumber seedlings grafted on rootstocks with different tolerance to low temperature and weak light stresses. Turk. J. Bot.

39(4): 606-614.

Li, Y., Yang, L., Pathak, M., Li, D., He, X. and Weng, Y. 2011a. Fine genetic mapping of cp: a recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L. Theor. Appl. Genet. 123: 973–983.

Li, Y.H., Wen, C.L. and Weng, Y. 2013. Fine mapping of the pleiotropic locus B for black spine and orange mature fruit color in cucumber identi es a 50 kb region containing a R2R3-MYB transcription factor. Theor. Appl. Genet. 126: 2187–

2196.

Li, Z., Zhang, Z., Yan, P., Huang, S., Fei, Z. and Lin, K. 2011b. RNA-Seq improves annotation of protein-coding genes in the cucumber genome. BMC Genom 12:540.

Liao, P.Y. and Lee, K.H. 2010. From SNPs to functional polymorphism: The insight into biotechnology applications, Biochemical Engineering Journal 49: 149–

158.

Lim, T. K. 2012. Edible medicinal and non medicinal plants: Volume 2, Fruits. Edible Medicinal and Non Medicinal Plants.

Liu, B.H. 1998. Statistical genomics. New York: CRC Press Boca Raton.

Lou, L., Wang, H., Qian, C., Liu, J., Bai, Y. and Chen, J. 2013. Genetic mapping of gummy stem blight (Didymella bryoniae) resistance genes in Cucumis sativus-hystrix introgression lines. Euphytica 192: 359–369.

Lower, R.L. 1974. Measurement and selections for cold tolerance in cucumber. Pickle Pak Science IV: 8-11.

Lu, H., Lin, T., Klein, J., Wang, S., Qi, J., Zhou, Q., Sun, J., Zhang, Z., Weng, Y. and Huang, S. 2014. QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor. Appl. Genet. 127: 1491–1499.

Luo, M., Zhao, Y., Zhang, R., Xing, J., Duan, M., Li, J., Wang, N., Wang, W., Zhang, S., Chen, Z., Zhang, H., Shi, Z., Song, W. and Zhao, J. 2017. Mapping of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers. BMC Plant Biol. 17: 140.

Lv, J., Qi, J., Shi, Q., Shen, D., Zhang, S., Shao, G., Li, H., Sun, Z., Weng, Y., Shang, Y., Gu, X., Li, X., Zhu, X., Zhang, J., Treuren, R.V., Dooijeweert, W.V., Zhang, Z. and Huang, S. 2012. Genetic diversity and population structure of cucumber (Cucumis sativus L.). PLoS ONE 7:e46919.

Mano, Y. and Takeda, K. 1997. Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum

Mao, A.J., Zhang, F., Zhang, L.R. and Wang, Y.J. 2008. Analysis on the inheritance of resistance to Fusarium wilt race 4 and scab and their linkage in WI 2757 cucumber. Sci. Agri. Sinica 41: 3382-3388.

Mather, K. 1949. Biometrical Genetics. Methuen, London.

Matsuoka, Y., Mitchell, S.E., Kresovich, S., Goodman, M. and Doebley, J. 2002.

Microsatellites in Zea-variability, patterns of mutations and use for evolutionary studies.Theor. Appl. Genet. 104: 436-450.

Meng, H., Chen, S., Cheng, Z., Chai, D. and Li, Y. 2012. Srap markers for fruit shape in cucumber. Pak. J. Bot. 44(4): 1381-1384.

Mian, M.A.R., Bailey, M.A., Tamulonis, J.P., Shipe, E.R., Carter, T.E., Parrott, J.W.A., Ashley, D.A., Hussey, R.S. and Boerma, H.R. 1996. Molecular markers associated with seed weight in two soybean populations. Theor. Appl. Genet.

93: 1011–1016.

Miao, H., Zhang, S., Wang, X., Zhang, Z., Li, M., Mu, S., Cheng, Z., Zhang, R., Huang, S., Xie, B., Fang, Z., Zhang, Z., Weng, Y. and Gu, X. 2011a. A linkage map of cultivated cucumber with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica 182: 167–176.

Miao, H., Gu, X.F., Zhang, S.P., Zhang, Z.H., Huang, S.W. and Wang, Y. 2013.

Detection of quantitative trait loci for plant height in different environments using an RIL population in cucumber. Sci. Agri. Sinica 45: 4552–4560.

Miao, H., Gu, X.F., Zhang, S.P., Zhang, Z.H., Huang, S.W., Wang, Y., Cheng, Z.C., Zhang, R.W., Mu, S.Q. and Li, M. 2011b. Mapping QTLs for fruit-associated traits in Cucumis sativus L. Scientia Agricultura Sinica 44(24): 5031–5040.

Miao, H., Zhang, S., Wang, M., Wang, Y., Weng, Y. and Gu, X. 2016. Fine mapping of virescent leaf gene v-1 in cucumber (Cucumis sativus L.). Int. J. Mol. Sci.

17:E1602.

Mondini, L., Noorani, A. and Pagnotta, M.A. 2009. Assessing plant genetic diversity by molecular tools. Diversity 1(1): 19–35.

Morgan, T.H. 1910. Sex-limited inheritance in Drosophila. Science 32: 120-122.

Morgan, T.H. 1911. The application of the conception of pure lines to sex-limited inheritance and to sexual dimorphism. Amer. Nat. 45(530): 65–78.

Morton, N.E. 1955. Sequential tests for the detection of linkage. Amer. J Hum. Genet.

7(3): 277-318.

Mullis, K.B. and Faloona, F. 1987. Specific synthesis of DNA in vitro via polymerase chain reaction. Methods Enzymol. 155: 350–355.

Murray, M.G. and Thompson, W.F. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8:4321–4326. doi: 10.1093/nar/8.19.4321.

Nadeem, M.A., Nawaz, M.A., Shahid, M.Q., Doğan, Y., Comertpay, G., Yıldız, M., Hatipoğlu, R., Ahmad, F., Alsaleh, A. and Labhane, N. 2017. DNA molecular markers in plant breeding: Current status and recent advancements in genomic selection and genome editing. Biotechnol. & Biotechnol. Equipment 32(2):

261-285.

Nafeesa, Z., Shivalingu, B.R., Vivek, H.K., Priya, B.S. and Swamy, S.N. 2015.

Exploring a new serine protease from Cucumis sativus L. Appl. Biochem.

Biotechnol. 175, 2787–2794.

Nayar, N.M. and More, T.A. 1998. Cucurbits (Science Publishers, Inc.). 340 p.

Neff, M.M., Neff, J.D., Chory, J. and Pepper, A.E. 1998. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphism: experimental application in Arabidopsis thaliana genetics. Plant J. 14(3): 387-392.

Neff, M.M., Turk, E. and Kalishman, M. 2002. Web-based Primer Design for Single Nucleotide Polymorphism Analysis. Trends in Genetics 18: 613-615.

Netzer, D., Niegro, S. and Galun, F. 1977. A dominant gene conferring resistance to Fusarium wilt in cucumber. Phytopathology 67: 525-527.

Nezhad, K.Z., Weber, W., Röder, M., Sharma, S., Lohwasser, U., Meyer, R., Saal, B.

and Börner, A. 2012. QTL analysis for thousand-grain weight under terminal drought stress in bread wheat (Triticum aestivum L.). Euphytica 186: 127–138.

Nienjuis, J., Lower. R.L. and Staub, J.E. 1983. Selection for improved low temperature germination in cucumber. J. Am. Soc. Hortic. Sci. 108: 1040.

Oerke, E.C., Dehene, H., Schoenbeck, F. and Weber, A. 2001. Rice losses. In Crop production and crop protection. Estimation losses in major food and cash crops. Elsevier Science B.V., Amesterdam, pp. 808.

Oluoch, G., Zheng, J., Wang, X., Khan, M.K.R., Zhou, Z., Cai, X., Wang, C., Wang, Y., Li, X., Wang, H., Liu, F. and Wang, K. 2016. QTL mapping for salt tolerance at seedling stage in the interspecific cross of Gossypium tomentosum with Gossypium hirsutum. Euphytica. 209:223–235.

ÖzĢensoy, Y. ve Kurar, E. 2013. Genetik Bağlantı Analizi ve Uygulama Alanları, Erciyes Üniversitesi Veteriner Fakültesi Dergisi 10(1): 53-62.

Pang, X., Zhou, X.H., Wan, H.J. and Chen, J.F. 2013. QTL Mapping of downy mildew resistance in an introgression line derived from interspecific hybridization between cucumber and Cucumis hystrix. J. Phytopathol. 161: 536-543.

Park, S.O., Coyne, D.P., Jung, G., Skroch, P.W., Arnaud-Santana, E., Steadman, J.R., Ariyarathne, H.M. and Nienhuis, J. 2000a. Mapping of QTL for seed size and shape traits in common bean. J Am Soc Hort Sci 125: 466–475.

Park, Y.H., Sensoy, S., Wye, C., Antonise, R., Peleman, J. and Havey, M.J. 2000b. A genetic map of cucumber composed of RAPDs, RFLPs, AFLPs, and loci conditioning resistance to papaya ringspot and zucchini yellow mosaic viruses.

Genome 43: 1003- 1012.

Passarge, E. 2000. Renkli genetik atlası. Çevirenler: Lüleci G, Sakızlı M, Alper Ö.

Ġstanbul: Nobel Tıp Kitapevleri.

Paterson, A.H. 1996. Making genetic maps. In: Paterson AH (ed.) Genome mapping in plants, San Diego, California: Academic Press, Austin, Texas, pp. 23–39.

Perveen, S., Shinwari, K.I., Jan, M., Malook, I., Rehman, S., Khan, M. and Jamil, M.

2013. Low temperature stress induced in biochemical parameters, protein banding pattern and expression of Zat12 and Myb genes in rice seedling. J.

Stress Physiol. Biochem. 9: 193–206.

Powell, W., Machray, G.C. and Provan, J. 1996. Polymorphism revealed by simple sequence repeats. Trends in Plant Science, 1, 215-222.

Prothro, J., Sandlin, K., Abdel-Haleem, H., Bachlava, E., White, V., Knapp, S. and McGregor, C. 2012. Main and epistatic quantitative trait loci associated with seed size in watermelon. J Am Soc Hortic Sci. 137(6): 452-457.

Provvidenti, R. 1987. Inheritance of resistance to a strain of zucchini yellow mosaic virus in cucumber. HortScience 22: 102-103.

Qi, C. and Yuan, Z. 1983. A new type of cucumber-Cucumis sativus L. var.

Xishuangbannanesis. Acta Horticulturae Sinica 4: 259–263.

Reiter, R.S., Williams, J.G., Feldmann, K.A., Rafalski, J.A., Tingey, S.V. and Scolnik, P.A. 1992. Global and local genome mapping in Arabidopsis thaliana by using recombinant inbred lines and random amplified polymorphic DNAs, Proc.

Natl. Acad. Sci. USA, 89: 1477-1481.

Ren, Y., Zhang, Z., Liu, J., Staub, J.E., Han, Y., Cheng, Z., Li, X., Lu, J., Miao, H., Kang, H., Xie, B., Gu, X., Wang, X., Du, Y., Jin, W. and Huang, S. 2009. An integrated genetic and cytogenetic map of the cucumber genome. PLoS One 4:e5795.

Robinson, R.W. and Decker-Walters, D.S. 1999. Cucurbits (CAB International). 226 p.

Røeggen, O. 1987. Variation in minimum germination temperature for cultivars of bean (Phaseolus vulgaris L.) cucumber (Cucumis sativus L.) and tomato (Lycopersicum esculentum Mill.). Sci Hortic 33: 7-65.

Royle, J.F. 1839. Illustrations of the botany and other branches of the natural history of the Himalayan Mountains and of the flora of Cashmere. London : Wm. H.

Allen, London.

Rozen, S. and Skaletsky, H. 2000. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132: 365-386.

Benzer Belgeler