1. Razumilava, N. and G.J. Gores, Classification, diagnosis, and management of cholangiocarcinoma. Clinical Gastroenterology and Hepatology, 2013. 11(1):

p. 13-21. e1.

2. Nakanuma, Y., et al., Pathological classification of intrahepatic cholangiocarcinoma based on a new concept. World J Hepatol, 2010. 2(12):

p. 419-427.

3. Komuta, M., et al., Histological diversity in cholangiocellular carcinoma reflects the different cholangiocyte phenotypes. Hepatology, 2012. 55(6): p.


4. Roskams, T., Liver stem cells and their implication in hepatocellular and cholangiocarcinoma. Oncogene, 2006. 25(27): p. 3818-3822.

5. Sripa, B. and C. Pairojkul, Cholangiocarcinoma: lessons from Thailand.

Current opinion in gastroenterology, 2008. 24(3): p. 349.

6. Everhart, J.E. and C.E. Ruhl, Burden of digestive diseases in the United States Part III: Liver, biliary tract, and pancreas. Gastroenterology, 2009.

136(4): p. 1134-1144.

7. Bridgewater, J., et al., Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J hepatol, 2014. 60(6): p. 1268-1289.

8. Shaib, Y. and H.B. El-Serag. The epidemiology of cholangiocarcinoma. in Seminars in liver disease. 2004. Copyright© 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

9. Wirth, T.C. and A. Vogel, Surveillance in cholangiocellular carcinoma. Best Practice & Research Clinical Gastroenterology, 2016. 30(6): p. 987-999.

10. Dhanasekaran, R., et al., Treatment outcomes and prognostic factors of intrahepatic cholangiocarcinoma. Oncology reports, 2013. 29(4): p. 1259-1267.

11. Khan, S.A., et al., Cholangiocarcinoma. The Lancet, 2005. 366(9493): p.


12. Cunningham, S.C., et al., Palliation of hepatic tumors. Surgical oncology, 2007. 16(4): p. 277-291.

13. Hyder, O., et al., Recurrence after operative management of intrahepatic cholangiocarcinoma. Surgery, 2013. 153(6): p. 811-818.

14. Razumilava, N. and G.J. Gores, Cholangiocarcinoma. The Lancet, 2014.

383(9935): p. 2168-2179.

15. Tyson, G.L. and H.B. El‐ Serag, Risk factors for cholangiocarcinoma.

Hepatology, 2011. 54(1): p. 173-184.

16. Kaewpitoon, N., et al., Opisthorchis viverrini: the carcinogenic human liver fluke. World journal of gastroenterology, 2008. 14(5): p. 666.

17. Shin, H.-R., et al., Hepatitis B and C virus, Clonorchis sinensis for the risk of liver cancer: a case-control study in Pusan, Korea. International journal of epidemiology, 1996. 25(5): p. 933-940.

18. Palmer, W.C. and T. Patel, Are common factors involved in the pathogenesis of primary liver cancers? A meta-analysis of risk factors for intrahepatic cholangiocarcinoma. Journal of hepatology, 2012. 57(1): p. 69-76.

19. Yamasaki, S., Intrahepatic cholangiocarcinoma: macroscopic type and stage classification. Journal of hepato-biliary-pancreatic surgery, 2003. 10(4): p.


20. Blechacz, B., et al., Clinical diagnosis and staging of cholangiocarcinoma.

Nature Reviews Gastroenterology and Hepatology, 2011. 8(9): p. 512-522.

21. Hamilton, S.R. and L.A. Aaltonen, Pathology and genetics of tumours of the digestive system. Vol. 48. 2000: IARC press Lyon:.

22. Goodman, Z.D., Neoplasms of the liver. Modern Pathology, 2007. 20: p. S49-S60.

23. Xu, H., et al., Contrast-enhanced ultrasound of intrahepatic cholangiocarcinoma: correlation with pathological examination. The British journal of radiology, 2014.

24. Li, R., et al., Dynamic enhancing vascular pattern of intrahepatic peripheral cholangiocarcinoma on contrast-enhanced ultrasound: the influence of chronic hepatitis and cirrhosis. Abdominal imaging, 2013. 38(1): p. 112-119.

25. Valls, C., et al., Intrahepatic peripheral cholangiocarcinoma: CT evaluation.

Abdominal imaging, 2000. 25(5): p. 490-496.

26. Hamrick-Turner, J., P. Abbitt, and P.R. Ros, Intrahepatic cholangiocarcinoma: MR appearance. AJR. American journal of roentgenology, 1992. 158(1): p. 77-79.

27. Fan, Z.M., et al., Intrahepatic cholangiocarcinoma: spin-echo and contrast-enhanced dynamic MR imaging. AJR. American journal of roentgenology, 1993. 161(2): p. 313-317.

28. Murakami, T., et al., Contrast‐ enhanced MR imaging of intrahepatic cholangiocarcinoma: pathologic correlation study. Journal of Magnetic Resonance Imaging, 1995. 5(2): p. 165-170.

29. Anderson, C.D., et al., Fluorodeoxyglucose PET imaging in the evaluation of gallbladder carcinoma and cholangiocarcinoma. Journal of gastrointestinal surgery, 2004. 8(1): p. 90-97.

30. Hustinx, R., PET imaging in assessing gastrointestinal tumors. Radiologic Clinics of North America, 2004. 42(6): p. 1123-1139.

31. Patel, A.H., et al., The utility of CA 19-9 in the diagnoses of cholangiocarcinoma in patients without primary sclerosing cholangitis. The American journal of gastroenterology, 2000. 95(1): p. 204-207.

32. Venkatesh, P.G., et al., Increased serum levels of carbohydrate antigen 19-9 and outcomes in primary sclerosing cholangitis patients without

cholangiocarcinoma. Digestive diseases and sciences, 2013. 58(3): p. 850-857.

33. Sinakos, E., et al., Many patients with primary sclerosing cholangitis and increased serum levels of carbohydrate antigen 19-9 do not have cholangiocarcinoma. Clinical Gastroenterology and Hepatology, 2011. 9(5):

p. 434-439. e1.

34. Tamandl, D., et al., Influence of hepatic resection margin on recurrence and survival in intrahepatic cholangiocarcinoma. Annals of surgical oncology, 2008. 15(10): p. 2787-2794.

35. Greene, F.L., The American Joint Committee on Cancer: updating the strategies in cancer staging. Bulletin of the American College of Surgeons, 2002. 87(7): p. 13.

36. Edge, S.B. and C.C. Compton, The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM.

Annals of surgical oncology, 2010. 17(6): p. 1471-1474.

37. Tsai, S., H. Nathan, and T.M. Pawlik, Primary liver cancer: intrahepatic cholangiocarcinoma emerges from the shadows. Updates in surgery, 2010.

62(1): p. 5-9.

38. NCCN Clinical Practice Guidelines in Oncology Version 2.2016 Hepatobiliary Carcinoma.

39. de Jong, M.C., et al., Intrahepatic cholangiocarcinoma: an international multi-institutional analysis of prognostic factors and lymph node assessment.

Journal of Clinical Oncology, 2011. 29(23): p. 3140-3145.

40. Tsao, J.I., et al., Management of hilar cholangiocarcinoma: comparison of an American and a Japanese experience. Annals of surgery, 2000. 232(2): p.


41. Rajagopalan, V., et al., Gallbladder and biliary tract carcinoma: A comprehensive update, Part 1. Oncology (Williston Park, NY), 2004. 18(7):

p. 889-896.

42. Ebata, T., et al., Hepatectomy with portal vein resection for hilar cholangiocarcinoma: audit of 52 consecutive cases. Annals of surgery, 2003.

238(5): p. 720-727.

43. Hemming, A.W., et al., Surgical management of hilar cholangiocarcinoma.

Annals of surgery, 2005. 241(5): p. 693-702.

44. Burke, E.C., et al., Hilar cholangiocarcinoma: patterns of spread, the importance of hepatic resection for curative operation, and a presurgical clinical staging system. Annals of surgery, 1998. 228(3): p. 385.

45. Chamberlain, R.S. and L.H. Blumgart, Hilar cholangiocarcinoma: a review and commentary. Annals of surgical oncology, 2000. 7(1): p. 55-66.

46. Sotiropoulos, G.C., et al., R0 liver resections for primary malignant liver tumors in the noncirrhotic liver: a diagnosis-related analysis. Digestive diseases and sciences, 2009. 54(4): p. 887-894.

47. DeOliveira, M.L., et al., Cholangiocarcinoma: thirty-one-year experience with 564 patients at a single institution. Annals of surgery, 2007. 245(5): p.


48. Sapisochin, G., et al., Mixed hepatocellular cholangiocarcinoma and intrahepatic cholangiocarcinoma in patients undergoing transplantation for hepatocellular carcinoma. Liver Transplantation, 2011. 17(8): p. 934-942.

49. Rosen, C.B., J.K. Heimbach, and G.J. Gores, Liver transplantation for cholangiocarcinoma. Transplant International, 2010. 23(7): p. 692-697.

50. Zeng, Z.-C., et al., Consideration of the role of radiotherapy for unresectable intrahepatic cholangiocarcinoma: a retrospective analysis of 75 patients. The Cancer Journal, 2006. 12(2): p. 113-122.

51. Chen, Y., Y. Tian, and X. Chen. Establishing the Impact Evaluation Indicators System for Rural Road Investment Projects: Evidence from Fujian Province, China. in Optoelectronics and Image Processing (ICOIP), 2010 International Conference on. 2010. IEEE.

52. Barney, B.M., et al., Clinical outcomes and toxicity using stereotactic body radiotherapy (SBRT) for advanced cholangiocarcinoma. Radiation oncology, 2012. 7(1): p. 67.

53. Liver, E.A.F.T.S.O.T., EASL–EORTC clinical practice guidelines:

management of hepatocellular carcinoma. Journal of hepatology, 2012.

56(4): p. 908-943.

54. Kim, J.Y., et al., Clinical role of 18F-FDG PET-CT in suspected and potentially operable cholangiocarcinoma: a prospective study compared with conventional imaging. The American journal of gastroenterology, 2008.

103(5): p. 1145-1151.

55. Hong, K. and J.-F.H. Geschwind. Locoregional intra-arterial therapies for unresectable intrahepatic cholangiocarcinoma. in Seminars in oncology.

2010. Elsevier.

56. Kiefer, M.V., et al., Chemoembolization of intrahepatic cholangiocarcinoma with cisplatinum, doxorubicin, mitomycin C, ethiodol, and polyvinyl alcohol.

Cancer, 2011. 117(7): p. 1498-1505.

57. Park, S.-Y., et al., Transarterial chemoembolization versus supportive therapy in the palliative treatment of unresectable intrahepatic cholangiocarcinoma. Clinical radiology, 2011. 66(4): p. 322-328.

58. Vogl, T.J., et al., Transarterial chemoembolization in the treatment of patients with unresectable cholangiocarcinoma: results and prognostic factors governing treatment success. International journal of cancer, 2012.

131(3): p. 733-740.

59. Shen, W., et al., Adjuvant transcatheter arterial chemoembolization for intrahepatic cholangiocarcinoma after curative surgery: retrospective control study. World journal of surgery, 2011. 35(9): p. 2083-2091.

60. Kuhlmann, J.B., et al., Treatment of unresectable cholangiocarcinoma:

conventional transarterial chemoembolization compared with drug eluting

bead-transarterial chemoembolization and systemic chemotherapy. European journal of gastroenterology & hepatology, 2012. 24(4): p. 437-443.

61. Kim, J.H., et al., Radiofrequency ablation for the treatment of primary intrahepatic cholangiocarcinoma. American Journal of Roentgenology, 2011.

196(2): p. W205-W209.

62. Xu, H., et al., Percutaneous ultrasound-guided thermal ablation for intrahepatic cholangiocarcinoma. The British journal of radiology, 2014.

63. Lien, W. and N. Ackerman, The blood supply of experimental liver metastases. II. A microcirculatory study of the normal and tumor vessels of the liver with the use of perfused silicone rubber. Surgery, 1970. 68(2): p.


64. Kennedy, A.S., et al., Pathologic response and microdosimetry of 90 Y microspheres in man: review of four explanted whole livers. International Journal of Radiation Oncology* Biology* Physics, 2004. 60(5): p. 1552-1563.

65. Dezarn, W.A., et al., Recommendations of the American Association of Physicists in Medicine on dosimetry, imaging, and quality assurance procedures for 90Y microsphere brachytherapy in the treatment of hepatic malignancies. Medical physics, 2011. 38(8): p. 4824-4845.

66. Dawson, L.A., et al., Analysis of radiation-induced liver disease using the Lyman NTCP model. International Journal of Radiation Oncology* Biology*

Physics, 2002. 53(4): p. 810-821.

67. Sarfaraz, M., et al., Radiation absorbed dose distribution in a patient treated with yttrium‐ 90 microspheres for hepatocellular carcinoma. Medical physics, 2004. 31(9): p. 2449-2453.

68. Sarfaraz, M., et al., Physical aspects of yttrium‐ 90 microsphere therapy for nonresectable hepatic tumors. Medical physics, 2003. 30(2): p. 199-203.

69. Dancey, J.E., et al., Treatment of nonresectable hepatocellular carcinoma with intrahepatic 90Y-microspheres. Journal of Nuclear Medicine, 2000.

41(10): p. 1673-1681.

70. Stubbs, R.S., R.J. Cannan, and A.W. Mitchell, Selective internal radiation therapy with 90yttrium microspheres for extensive colorectal liver metastases. Journal of Gastrointestinal Surgery, 2001. 5(3): p. 294-302.

71. Gulec, S.A. and J.A. Siegel, Posttherapy radiation safety considerations in radiomicrosphere treatment with 90Y-microspheres. Journal of Nuclear Medicine, 2007. 48(12): p. 2080-2086.

72. Welsh, J.S., Radiographically identified necrosis after 90Y microsphere brachytherapy: a new standard for oncologic response assessment?

American Journal of Roentgenology, 2007. 188(3): p. 765-767.

73. Lewandowski, R.J., et al., Transcatheter intraarterial therapies: rationale and overview. Radiology, 2011. 259(3): p. 641-657.

74. Uliel, L., et al., From the angio suite to the γ-camera: vascular mapping and 99mTc-MAA hepatic perfusion imaging before liver radioembolization—a comprehensive pictorial review. Journal of Nuclear Medicine, 2012. 53(11):

p. 1736-1747.

75. Kalva, S.P., A. Thabet, and S. Wicky, Recent Advances in Transarterial Therapy of Primary and Secondary Liver Malignancies 1. Radiographics, 2008. 28(1): p. 101-117.

76. Gulec, S.A., et al., Hepatic structural dosimetry in 90Y microsphere treatment: a Monte Carlo modeling approach based on lobular microanatomy. Journal of Nuclear Medicine, 2010. 51(2): p. 301-310.

77. Gates, V.L., et al., Internal pair production of 90Y permits hepatic localization of microspheres using routine PET: proof of concept. Journal of Nuclear Medicine, 2011. 52(1): p. 72-76.

78. Camacho, J.C., et al., 90Y radioembolization: multimodality imaging pattern approach with angiographic correlation for optimized target therapy delivery. Radiographics, 2015. 35(5): p. 1602-1618.

79. Atassi, B., et al., Multimodality Imaging Following 90Y Radioembolization:

A Comprehensive Review and Pictorial Essay 1. Radiographics, 2008. 28(1):

p. 81-99.

80. Braat, A.J., et al., 90Y hepatic radioembolization: an update on current practice and recent developments. Journal of Nuclear Medicine, 2015. 56(7):

p. 1079-1087.

81. Giammarile, F., et al., EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds.

European journal of nuclear medicine and molecular imaging, 2011. 38(7): p.


82. Covey, A.M., et al., Variant Hepatic Arterial Anatomy Revisited: Digital Subtraction Angiography Performed in 600 Patients 1. Radiology, 2002.

224(2): p. 542-547.

83. Liu, D.M., et al., Angiographic considerations in patients undergoing liver-directed therapy. Journal of Vascular and Interventional Radiology, 2005.

16(7): p. 911-935.

84. Lewandowski, R.J., et al., Radioembolization with 90Y microspheres:

angiographic and technical considerations. Cardiovascular and interventional radiology, 2007. 30(4): p. 571-592.

85. Leung, W., et al., Measuring Lung Shunting in Hepatocellular Carcinoma with Intrahepatic-Arterial Technetium-99m-Macroaggregated Albumin.

Journal of Nuclear Medicine, 1994. 35(1): p. 70-73.

86. Hamami, M.E., et al., SPECT/CT with 99mTc-MAA in radioembolization with 90Y microspheres in patients with hepatocellular cancer. Journal of Nuclear Medicine, 2009. 50(5): p. 688-692.

87. Ahmadzadehfar, H., et al., The significance of 99mTc-MAA SPECT/CT liver perfusion imaging in treatment planning for 90Y-microsphere selective

internal radiation treatment. Journal of Nuclear Medicine, 2010. 51(8): p.


88. Sabet, A., et al., Significance of oral administration of sodium perchlorate in planning liver-directed radioembolization. Journal of Nuclear Medicine, 2011. 52(7): p. 1063-1067.

89. Gates, V.L., et al., Intraarterial Hepatic SPECT/CT Imaging Using 99mTc-Macroaggregated Albumin in Preparation for Radioembolization. Journal of Nuclear Medicine, 2015. 56(8): p. 1157-1162.

90. Ilhan, H., et al., Systematic evaluation of tumoral 99mTc-MAA uptake using SPECT and SPECT/CT in 502 patients before 90Y radioembolization. Journal of Nuclear Medicine, 2015. 56(3): p. 333-338.

91. Ulrich, G., et al., Predictive value of intratumoral 99mTc-macroaggregated albumin uptake in patients with colorectal liver metastases scheduled for radioembolization with 90Y-microspheres. Journal of Nuclear Medicine, 2013. 54(4): p. 516-522.

92. Ilhan, H., et al., Predictive value of 99mTc-MAA SPECT for 90Y-labeled resin microsphere distribution in radioembolization of primary and secondary hepatic tumors. Journal of Nuclear Medicine, 2015. 56(11): p.


93. Wondergem, M., et al., 99mTc-macroaggregated albumin poorly predicts the intrahepatic distribution of 90Y resin microspheres in hepatic radioembolization. Journal of Nuclear Medicine, 2013. 54(8): p. 1294-1301.

94. Garin, E., et al., Personalized dosimetry with intensification using 90Y-loaded glass microsphere radioembolization induces prolonged overall survival in hepatocellular carcinoma patients with portal vein thrombosis. Journal of Nuclear Medicine, 2015. 56(3): p. 339-346.

95. Lam, M.G., et al., Prognostic utility of 90Y radioembolization dosimetry based on fusion 99mTc-macroaggregated albumin–99mTc-sulfur colloid SPECT. Journal of Nuclear Medicine, 2013. 54(12): p. 2055-2061.

96. Hendlisz, A., et al., Phase III trial comparing protracted intravenous fluorouracil infusion alone or with yttrium-90 resin microspheres radioembolization for liver-limited metastatic colorectal cancer refractory to standard chemotherapy. Journal of clinical oncology, 2010. 28(23): p. 3687-3694.

97. van Hazel, G.A., et al., SIRFLOX: Randomized phase III trial comparing first-line mFOLFOX6 (plus or minus bevacizumab) versus mFOLFOX6 (plus or minus bevacizumab) plus selective internal radiation therapy in patients with metastatic colorectal cancer. Journal of Clinical Oncology, 2016.

34(15): p. 1723-1731.

98. Gulec, S.A., G. Mesoloras, and M. Stabin, Dosimetric techniques in 90Y-microsphere therapy of liver cancer: the MIRD equations for dose calculations. Journal of Nuclear Medicine, 2006. 47(7): p. 1209-1211.

99. Hilgard, P., et al., Radioembolization with yttrium‐ 90 glass microspheres in hepatocellular carcinoma: European experience on safety and long‐ term survival. Hepatology, 2010. 52(5): p. 1741-1749.

100. Lam, M.G., et al., Safety of repeated yttrium-90 radioembolization.

Cardiovascular and interventional radiology, 2013. 36(5): p. 1320-1328.

101. Abbott, A.M., et al., Outcomes of therasphere radioembolization for colorectal metastases. Clinical colorectal cancer, 2015. 14(3): p. 146-153.

102. Ho, S., et al., Partition model for estimating radiation doses from yttrium-90 microspheres in treating hepatic tumours. European Journal of Nuclear Medicine and Molecular Imaging, 1996. 23(8): p. 947-952.

103. Ho, S., et al., Clinical evaluation of the partition model for estimating radiation doses from yttrium-90 microspheres in the treatment of hepatic cancer. European Journal of Nuclear Medicine and Molecular Imaging, 1997.

24(3): p. 293-298.

104. Kao, Y.H., et al., Clinical implications of the body surface area method versus partition model dosimetry for yttrium-90 radioembolization using resin microspheres: a technical review. Annals of nuclear medicine, 2011.

25(7): p. 455-461.

105. Cremonesi, M., et al., Radioembolisation with 90Y-microspheres: dosimetric and radiobiological investigation for multi-cycle treatment. European journal of nuclear medicine and molecular imaging, 2008. 35(11): p. 2088-2096.

106. Elschot, M., et al., Quantitative Monte Carlo–Based 90Y SPECT Reconstruction. Journal of Nuclear Medicine, 2013. 54(9): p. 1557-1563.

107. Sato, K.T., et al., Unresectable Chemorefractory Liver Metastases:

Radioembolization with 90Y Microspheres—Safety, Efficacy, and Survival 1.

Radiology, 2008. 247(2): p. 507-515.

108. Keppke, A.L., et al., Imaging of hepatocellular carcinoma after treatment with yttrium-90 microspheres. American Journal of Roentgenology, 2007.

188(3): p. 768-775.

109. Atassi, B., et al., Biliary sequelae following radioembolization with Yttrium-90 microspheres. Journal of Vascular and Interventional Radiology, 2008.

19(5): p. 691-697.

110. Salem, R., et al., Incidence of radiation pneumonitis after hepatic intra-arterial radiotherapy with yttrium-90 microspheres assuming uniform lung distribution. American journal of clinical oncology, 2008. 31(5): p. 431-438.

111. Leung, T.W., et al., Radiation pneumonitis after selective internal radiation treatment with intraarterial 90yttrium-microspheres for inoperable hepatic tumors. International Journal of Radiation Oncology* Biology* Physics, 1995. 33(4): p. 919-924.

112. Miller, F.H., et al., Response of liver metastases after treatment with yttrium-90 microspheres: role of size, necrosis, and PET. American Journal of Roentgenology, 2007. 188(3): p. 776-783.

113. Sag, A.A., et al., Yttrium-90 radioembolization of malignant tumors of the liver: gallbladder effects. American Journal of Roentgenology, 2014. 202(5):

p. 1130-1135.

114. Young, J.Y., et al., Radiation dose limits and liver toxicities resulting from multiple yttrium-90 radioembolization treatments for hepatocellular carcinoma. Journal of Vascular and Interventional Radiology, 2007. 18(11):

p. 1375-1382.

115. Sangro, B., et al., Liver disease induced by radioembolization of liver tumors.

Cancer, 2008. 112(7): p. 1538-1546.

116. Kennedy, A.S., et al., Treatment parameters and outcome in 680 treatments of internal radiation with resin 90 Y-microspheres for unresectable hepatic tumors. International Journal of Radiation Oncology* Biology* Physics, 2009. 74(5): p. 1494-1500.

117. Hamoui, N. and R.K. Ryu. Hepatic radioembolization complicated by fulminant hepatic failure. in Seminars in interventional radiology. 2011. © Thieme Medical Publishers.

118. Piana, P.M., et al., Toxicities after radioembolization with yttrium-90 SIR-spheres: incidence and contributing risk factors at a single center. Journal of Vascular and Interventional Radiology, 2011. 22(10): p. 1373-1379.

119. Ayav, A., N. Habib, and L.R. Jiao, Portal hypertension secondary to 90Yttrium microspheres: an unknown complication. Journal of clinical oncology, 2005. 23(32): p. 8275-8276.

120. Jakobs, T., et al., Fibrosis, portal hypertension, and hepatic volume changes induced by intra-arterial radiotherapy with 90yttrium microspheres.

Digestive diseases and sciences, 2008. 53(9): p. 2556-2563.

121. Riaz, A., R. Awais, and R. Salem, Side effects of yttrium-90 radioembolization. Frontiers in oncology, 2014. 4: p. 198.

122. Memon, K., et al., Radioembolization for hepatocellular carcinoma with portal vein thrombosis: impact of liver function on systemic treatment options at disease progression. Journal of hepatology, 2013. 58(1): p. 73-80.

123. Hoffmann, R., et al., Radiofrequency ablation after selective internal radiation therapy with Yttrium90 microspheres in metastatic liver disease—Is it feasible? European journal of radiology, 2010. 74(1): p. 199-205.

124. Mallach, S., et al., An uncommon cause of gastro-duodenal ulceration. World journal of gastroenterology, 2008. 14(16): p. 2593.

125. Veloso, N., et al., Gastroduodenal ulceration following liver radioembolization with yttrium-90. Endoscopy, 2013. 45(S 02): p. E108-E109.

126. Lam, M.G., et al., Root cause analysis of gastroduodenal ulceration after yttrium-90 radioembolization. Cardiovascular and interventional radiology, 2013. 36(6): p. 1536-1547.

127. Carretero, C., et al., Gastroduodenal injury after radioembolization of hepatic tumors. The American journal of gastroenterology, 2007. 102(6): p. 1216-1220.

128. Szyszko, T., et al., Management and prevention of adverse effects related to treatment of liver tumours with 90Y microspheres. Nuclear medicine communications, 2007. 28(1): p. 21-24.

129. Wright, C.L., et al., Radiation pneumonitis following yttrium-90 radioembolization: case report and literature review. Journal of Vascular and Interventional Radiology, 2012. 23(5): p. 669-674.

130. Salem, R., et al., Technical aspects of radioembolization with 90 Y microspheres. Techniques in vascular and interventional radiology, 2007.

10(1): p. 12-29.

131. Wang, D.S., et al., Prophylactic topically applied ice to prevent cutaneous complications of nontarget chemoembolization and radioembolization.

Journal of Vascular and Interventional Radiology, 2013. 24(4): p. 596-600.

132. Salem, R., et al., Treatment of unresectable hepatocellular carcinoma with use of 90 Y microspheres (TheraSphere): safety, tumor response, and survival. Journal of Vascular and Interventional Radiology, 2005. 16(12): p.


133. Carr, B.I., Hepatic arterial 90Yttrium glass microspheres (Therasphere) for unresectable hepatocellular carcinoma: interim safety and survival data on 65 patients. Liver Transplantation, 2004. 10(S2).

134. Lam, M.G., et al., Splenomegaly-associated thrombocytopenia after hepatic yttrium-90 radioembolization. Cardiovascular and interventional radiology, 2014. 37(4): p. 1009-1017.

135. Wiggins, E., et al., Abstract No. 124: effect of chemotherapy on hepatic vasculature in patients undergoing y-90 radioembolization for metastatic disease. Journal of Vascular and Interventional Radiology, 2008. 19(2): p.


136. Murthy, R., et al., Hepatic yttrium-90 radioembolotherapy in metastatic colorectal cancer treated with cetuximab or bevacizumab. Journal of Vascular and Interventional Radiology, 2007. 18(12): p. 1588-1591.

137. Lilly, M.P., et al., Anatomic and clinical factors associated with complications of transfemoral arteriography. Annals of vascular surgery, 1990. 4(3): p. 264-269.

138. Douketis, J.D., et al., Perioperative management of antithrombotic therapy:

antithrombotic therapy and prevention of thrombosis: American College of Chest Physicians evidence-based clinical practice guidelines. Chest Journal, 2012. 141(2_suppl): p. e326S-e350S.

139. Salem, R. and K.G. Thurston, Radioembolization with 90 Yttrium microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies: part 1: Technical and methodologic

considerations. Journal of vascular and interventional radiology, 2006. 17(8):

p. 1251-1278.

140. Zarva, A., et al., Safety of repeated radioembolizations in patients with advanced primary and secondary liver tumors and progressive disease after first selective internal radiotherapy. Journal of Nuclear Medicine, 2014.

55(3): p. 360-366.

141. Tochetto, S.M., et al., Colorectal liver metastasis after 90Y radioembolization therapy: pilot study of change in MDCT attenuation as a surrogate marker for future FDG PET response. American Journal of Roentgenology, 2012.

198(5): p. 1093-1099.

142. Tochetto, S.M., et al., Does Multidetector CT Attenuation Change in Colon Cancer Liver Metastases Treated with 90Y Help Predict Metabolic Activity at FDG PET? 1. Radiology, 2010. 255(1): p. 164-172.

143. Eisenhauer, E., et al., New response evaluation criteria in solid tumours:

revised RECIST guideline (version 1.1). European journal of cancer, 2009.

45(2): p. 228-247.

144. Forner, A., et al., Evaluation of tumor response after locoregional therapies in hepatocellular carcinoma. Cancer, 2009. 115(3): p. 616-623.

145. Zhao, B., L.H. Schwartz, and S.M. Larson, Imaging surrogates of tumor response to therapy: anatomic and functional biomarkers. Journal of Nuclear Medicine, 2009. 50(2): p. 239-249.

146. Bruix, J., et al., Clinical management of hepatocellular carcinoma.

Conclusions of the Barcelona-2000 EASL conference. Journal of hepatology, 2001. 35(3): p. 421-430.

147. Fendler, W.P., et al., Validation of several SUV-based parameters derived from 18F-FDG PET for prediction of survival after SIRT of hepatic metastases from colorectal cancer. Journal of Nuclear Medicine, 2013. 54(8):

p. 1202-1208.

148. Szyszko, T., et al., Assessment of response to treatment of unresectable liver tumours with 90Y microspheres: value of FDG PET versus computed tomography. Nuclear medicine communications, 2007. 28(1): p. 15-20.

149. Zerizer, I., et al., The role of early 18F-FDG PET/CT in prediction of progression-free survival after 90Y radioembolization: comparison with RECIST and tumour density criteria. European journal of nuclear medicine and molecular imaging, 2012. 39(9): p. 1391-1399.

150. Sabet, A., et al., Early post-treatment FDG PET predicts survival after 90Y microsphere radioembolization in liver-dominant metastatic colorectal cancer. European journal of nuclear medicine and molecular imaging, 2015.

42(3): p. 370-376.

151. Hoffmann, R.-T., et al., Transarterial hepatic yttrium-90 radioembolization in patients with unresectable intrahepatic cholangiocarcinoma: factors associated with prolonged survival. Cardiovascular and interventional radiology, 2012. 35(1): p. 105-116.

152. Camacho, J.C., et al., PET response criteria for solid tumors predict survival at three months after intra-arterial resin-based 90Yttrium radioembolization therapy for unresectable intrahepatic cholangiocarcinoma. Clinical nuclear medicine, 2014. 39(11): p. 944-950.

153. Filippi, L., et al., Change in total lesion glycolysis and clinical outcome after 90 Y radioembolization in intrahepatic cholangiocarcinoma. Nuclear medicine and biology, 2015. 42(1): p. 59-64.

154. Mouli, S., et al., Yttrium-90 radioembolization for intrahepatic cholangiocarcinoma: safety, response, and survival analysis. Journal of Vascular and Interventional Radiology, 2013. 24(8): p. 1227-1234.

155. Rafi, S., et al., Yttrium-90 radioembolization for unresectable standard-chemorefractory intrahepatic cholangiocarcinoma: survival, efficacy, and safety study. Cardiovascular and interventional radiology, 2013. 36(2): p.


156. Saxena, A., et al., Yttrium-90 radiotherapy for unresectable intrahepatic cholangiocarcinoma: a preliminary assessment of this novel treatment option. Annals of surgical oncology, 2010. 17(2): p. 484-491.

157. Soydal, C., et al., Radioembolization with 90Y resin microspheres for intrahepatic cholangiocellular carcinoma: prognostic factors. Annals of nuclear medicine, 2016. 30(1): p. 29-34.

158. Klempnauer, J., et al., What constitutes long term survival after surgery for hilar cholangiocarcinoma? Cancer, 1997. 79(1): p. 26-34.

159. Malka, D., et al., Biliary tract neoplasms: update 2003. Current opinion in oncology, 2004. 16(4): p. 364-371.

160. Eckel, F. and R. Schmid, Chemotherapy in advanced biliary tract carcinoma:

a pooled analysis of clinical trials. British journal of cancer, 2007. 96(6): p.


161. Haug, A.R., et al., 18F-FDG PET independently predicts survival in patients with cholangiocellular carcinoma treated with 90Y microspheres. European journal of nuclear medicine and molecular imaging, 2011. 38(6): p. 1037-1045.

162. Lam, M.G., et al., Safety of 90 Y Radioembolization in Patients Who Have Undergone Previous External Beam Radiation Therapy. International Journal of Radiation Oncology* Biology* Physics, 2013. 87(2): p. 323-329.

163. Hilgard, P., et al., Selective internal radiotherapy (radioembolization) and radiation therapy for HCC--current status and perspectives. Zeitschrift fur Gastroenterologie, 2009. 47(1): p. 37-54.

164. Kennedy, A.S., et al., Resin 90 Y-microsphere brachytherapy for unresectable colorectal liver metastases: modern USA experience.

International Journal of Radiation Oncology* Biology* Physics, 2006. 65(2):

p. 412-425.


Related documents