• Sonuç bulunamadı

BULGULAR VE YORUM

4. BÖLÜM SONUÇ VE ÖNERİLER

4.5. Öneriler

- Madde seçme yöntemlerine ait SH değerleri, BSD yetenek kestirimi kullanıldığında daha düşük sonuç vermiştir. Operasyonel BBT uygulamalarında BSD yetenek kestiriminin kullanılması önerilmektedir - BBT uygulamalarının önemli savlarından biri de kağıt kalem testlerine

kıyasla daha kısa uzunlukta testler oluşturmasıdır. Elde edilen sonuçlar değerlendirildiğinde; BBT uygulamalarında BSD yetenek kestirim yönteminin tercih edilmesi önerilmektedir.

- a-tabakalama madde seçme yöntemi, test durdurma kuralı SH0.2 olduğu koşulda sonuç vermemiştir. Bu üzerinde çalışılması gereken bir bulgudur. Farklı madde havuzu büyüklükleri ve a-parametre değerleri belirlenerek araştırmalar yapılması önerilmektedir. Ayrıca, a-tabakalama madde seçme yönteminde kullanılan tabakalama sayısının da bu değişkenlerle ilişkisi irdelenebilir.

İleride yapılacak çalışmalarla ilgili olarak

- Bu araştırmada, yetenek kestirim yöntemleri EOT ve BSD yetenek kestirim yöntemleri ile sınırlandırılmıştır. Farklı yetenek kestirim yöntemlerine yer veren araştırmalar yapılabilir.

- BBT uygulamalarının bileşenlerinden testi başlatma kuralları ve madde havuzu büyüklüğünün madde seçme yöntemleri üzerindeki etkisi araştırılabilir.

- Bu araştırmada, madde kullanım sıklığı, madde havuzu kullanımı düzeyinde incelenmiştir; madde kullanım sıklığını kontrol eden yöntemlere değinilmemiştir. İleride yapılacak araştırmalarda madde

kullanım sıklığı yöntemlerinin, madde seçme yöntemlerini nasıl etkilediği konusu ele alınabilir.

- BBT uygulamalarını ilgilendiren bir diğer konu içerik balansı(content balance)dır. İçeriğe göre ağırlıklandırılmış madde havuzunda madde seçme yöntemlerinin nasıl işlediği araştırma konusu yapılabilir.

- Bu araştırmada tek boyutlu madde tepki kuramı ele alınmıştır, çok boyutlu madde tepki kuramına dayalı araştırmalara yer verilebilir.

- Eldeki araştırma simülatif olarak yürütülmüştür, operasyonel BBT uygulamalarında elde edilen bulguların nasıl işlediği araştırılabilir.

KAYNAKÇA

Bock, R. D., Aitkin, M. (1981). Marginal Maximum Likelihood Estimation of Item Parameters. Application of an EM algorithm. Psychometrika, 46(4), pp 433-459.

Costa, D., Karino, C., Moura, F., Andrade, D. (2009). A Comparision of Three Methods of Item Selection for Computerized Adaptive Testing. 2009 GMAC Conference on Computerized Adaptive Testing, June,

Deng, H., Ansley, T., Chang, H. (2010). Stratified and Maximum Information Item Selection Procedures in Computer Adaptive Testing. Journal of Educational Measurement, Vol.47, No.2, pp 202-226.

Eggen, T. H. J. M. (1999). Item Selection in Adaptive Testing with the Squential Probability Ratio Test. Applied Psychological Measurement, Vol.23, No.3., pp 249-261.

Eggen, T.H.J.M. (2004). Contributions to the Theory and Practice of Computerized Adaptive Testing. Print Partners Ipskamp B.V., Citogroup Arnhem, NL, ISBN: 90-5834-056-2.

Hambleton, R. K., & Swaminathan, H. (1985). Item Response Theory:

Principles and Applications. Boston: Kluwer-Nijhoff Publishing.

Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of Item Response Theory. Newbury Park, CA: Sage Publications.

Han, K. (2009). Gradual Maximum Information Ratio Approach to Item Selection in computerized Adaptive Testing. Graduate Management Admission Council Research Reports, RR-09-07, June 25, USA.

Han, K. (2010). Comparision of Non-Fisher Information Item Selection Criteria in Fixed Length Computerized Adaptive Testing. Paper presented at the Annual Meeting of the National Council on Measurement in Education, Denver.

Han, K. (2012). SimulCAT: Windows Application That Simulates Computerized Adaptive Test Administration. Applied Psychological Measurement, 36.

Ho, T. (2010). A Comparison of Item Selection Procedures Using Different Ability Estimation Methods in Computerized Adaptive Testing Based on Generalized Partial Credit Model. Doctoral Dissertation, Graduate School of the University of Texas at Austin.

Iseri, A. I. (2002). Assessment of Students' Mathematics Achievement Through Computer Adaptive Testing Procedures. Unpublished doctoral dissertation. Middle East Technical University, Turkey.

Kaptan, F. (1993). Yetenek Kestiriminde Adaptive (bireysellestirilmis) Test Uygulaması ile Geleneksel Kağıt-kalem Testi Uygulamasının Karşılaştırılması. Yayımlanmamış doktora tezi, Hacettepe Universitesi

Kalender, İ. (2011). Effects of Different Computerized Adaptive Testing Strategies on Recovery of Ability. Unpublished Doctoral Dissertation.

Middle East Technical University, Ankara.

Kingsbury, G. G., Zara, A. R. (1989). Procedures for Selecting Items for Computerized Adaptive Tests. Applied Measurement in Education, 2(4), pp 359-375).

Köklü, N. (1990). Klasik Test Teorisinie Göre Geliştirilen Tailored Test ile Grup Testi Arasında Bir Karşılaştırma. Yayınlanmamış doktora tezi. Hacettepe Üniversitesi, Türkiye

Linacre, J. M. (2000). Computer-Adaptive Testing: A Methodology Whose Time Has Come. MESA Memorandum.

Linda, T. (1996). A comparision of the Traditional Maximum Information Method and the Global Information Method in CAT Item Selection. Annual Meeting of the National Council on Measurement in Education, New York, April.

McBride, J.R. (1985). Computerized Adaptive Testing. Educational Leadership, October.

Orcutt, V. L. (2002). Computerized Adaptive Testing: Some Issues in Development. Annual Meeting of the Educational Research Exchange, University of North Texas, February, Denton, Texas.

Sireci, S. (2003). Computerized Adaptive Testing: An Introduction. Measuring Up: Assessment Issues for Teachers, Counselors and Administrators, 12p.,

Slater, S. C. (2001). Pretest Item Calibration Within The Computerized Adaptive Testing Environment. Unpublished Doctoral Dissertation, Graduate School of the University Massachusetts, Amherst.

Stocking, M. L. (1992). Controlling Iitem Exposure Rates in a Realistic Adaptive Testing Paradigm. (Research Report 93-2). Princeton, NJ: Educational Testing Service.

Thissen, D. & Mislevy, R. J. (2000). Testing algorithms. In H. Wainer, (Eds.).

Computerized Adaptive Testing: A primer, Mahwah, NH: Lawrence Erlbaum Associates, Inc, pp. 101-133.

Tian J., Miao, D; Zhu, X; Gong, J. (2007). An Introduction to the Adaptive Testing, US-China Education Review, Volume 4, No.1, ISBN:1548-6613, USA.

Urry, V. W. (1977). Tailored Testing: A Successful Application of Latent Trait Theory. Journal of Educational Measurement, Vol.14, No.2, pp 181-196.

Van Der Linden, W.J., Glas, C.A.W. (2010). Elements of Adaptive Testing, Statistics for Social and Behaviorel Sciences, Springer New York Dordrecht Heidelberg London, ISBN: 978-0-387-85459-5.

Veerkamp, W.J.J., Berger, M.P.F. (1997). Some New Item Selection Criteria for Adaptive Testing. Journal of Educational and Behavioral Statistics, Vol.22, No.2, pp 203-226.

Veldkamp, B.P. (2012). Ensurind The Future of Computerized Adaptive Testing.

In Theo, J.H.M; Veldkamp, B.P. (ed). Psychometrics in Practice at RCEC. University of Twente, Netherlands, 978-90-365-3374-4.

Wainer, H., Dorans, N., Flaughter,. R., Green, B., Mislevy, R., Steinberg, L., Thissen, D. (1990) Computerized adaptive testing: A primer. Hillsdale.

NJ: Lawrence Erlbaum Associates.

Wang, T., Vispoel, W. (1998). Properties of Ability Estimation Methods in Computerized Adaptive Testing. Journal of Educational Measurement, Vol.35, No.2, pp 109-135.

Weiss, David J. (1983). Latent Trait Theory and Adaptive Testing. In David J.

Weiss (ed.). New Horizons in Testing: Latent Trait Test Theory and Computerized Adaptive Testing. (pp. 5-7). New York: Academic Press.

Weiss, D.J., Kang, G.K. (2007). Comparison of Computerized Adaptive Testing and Classical Methods for Measuring Individual Change. Graduate Management Admission Council, Item Calibration and Special Applications Paper Session, June 7.

Weiss, D. J., Kingsbury, G. G. (1984). Application of Computerized Adaptive Testing to Educational Problems. Journal of Educational Measurement, 21, 361-375.

Weiss, D. J. (2010). CAT Central: A Global Resource for Computerized Adaptive Testing Research and Applications [Online].

http://www.psych.umn.edu/psylabs/CATCentral. Last visited on 25/11/2012.

Weissman, A. (2003). Assessing the Efficiency of Item Selection in Computerized Adaptive Testing. Paper presented at the Annual Meeting of the American Educational Research Association, April, Chicago.

Wen, H., Chang, H., Hau, K. (2001). Adaption of a-stratified Method in Variable Length Computerized Adaptive Testing. American Educational Research Association Annual Meeting, Seattle.

Yi, Q., Chang, H. (2003). a-Stratified CAT Design With Content Blocking. British Journal of Mathematical and Statistical Psychology, vol. 56, pp 359–378.

EKLER

Ek:1 Araştırmanın Yürütüldüğü Grup Dağılım Grafiği

Ek:2 SimulCAT Bilgisayar Programı

Ek:3 Madde Havuzu Parametre Değerleri

Madde No a b c

1 1.138 -0.873 0.138

2 1.487 1.254 0.071

3 1.345 2.458 0.079

4 1.251 0.325 0.116

5 1.183 0.917 0.126

6 1.430 -1.694 0.096

7 1.154 -0.332 0.142

8 1.127 1.838 0.134

9 0.939 2.422 0.146

10 1.422 2.252 0.081

11 1.411 1.217 0.139

12 1.432 2.564 0.099

13 1.363 -0.583 0.092

14 1.237 -0.422 0.093

15 1.386 -0.900 0.088

16 0.925 1.555 0.055

17 0.929 -0.458 0.061

18 1.291 1.362 0.054

19 1.330 0.969 0.080

20 1.399 0.563 0.102

21 1.196 -2.730 0.054

22 0.992 1.366 0.069

23 1.477 2.860 0.056

24 1.214 -1.115 0.130

25 1.351 -1.623 0.113

26 1.464 1.633 0.073

27 1.227 -0.593 0.092

28 0.912 1.707 0.087

29 1.326 -2.088 0.078

30 1.443 -2.422 0.116

31 1.298 1.564 0.130

32 1.299 -0.053 0.063

33 0.888 1.662 0.069

34 1.052 0.584 0.054

35 1.155 1.820 0.117

36 1.010 -0.399 0.110

37 1.008 1.124 0.096

38 0.852 2.093 0.086

39 0.817 0.922 0.074

40 1.241 -1.418 0.076

41 1.205 -2.028 0.088

42 1.060 -0.798 0.096

43 1.437 0.091 0.098

44 0.863 1.068 0.074

45 1.259 0.029 0.054

46 0.951 -2.243 0.137

47 1.153 0.739 0.074

48 0.806 -2.654 0.064

49 1.006 0.729 0.065

50 1.233 -1.056 0.129

51 0.921 -0.307 0.130

52 0.920 -0.849 0.075

53 1.006 2.095 0.061

54 0.989 -0.615 0.085

55 1.420 -2.090 0.097

56 1.212 -1.485 0.139

57 1.280 -2.802 0.086

58 1.109 -1.267 0.067

59 0.829 -1.303 0.111

60 1.158 0.109 0.056

61 0.936 2.134 0.142

62 0.881 2.762 0.056

63 1.183 1.428 0.131

64 1.285 1.086 0.085

65 1.452 -0.513 0.075

66 1.070 -2.036 0.058

67 0.905 2.766 0.088

68 1.436 2.423 0.056

69 1.049 -2.699 0.083

70 0.860 -0.359 0.130

71 0.805 -0.622 0.147

72 1.304 -2.229 0.108

73 1.131 -0.452 0.146

74 1.287 -0.501 0.131

75 1.167 -1.843 0.111

76 1.142 -0.209 0.057

77 1.004 2.095 0.087

78 1.126 -1.257 0.098

79 1.097 -2.062 0.138

80 1.252 2.003 0.081

81 1.165 2.176 0.051

82 1.375 0.669 0.149

83 0.857 2.719 0.083

84 0.943 2.129 0.138

85 1.172 -2.641 0.119

86 1.496 -1.241 0.108

87 0.868 0.380 0.074

88 1.169 2.934 0.101

89 1.186 -1.987 0.133

90 1.442 2.274 0.057

91 0.890 2.899 0.105

92 1.037 2.574 0.123

93 0.886 -0.721 0.060

94 1.054 -2.652 0.115

95 1.477 -1.928 0.054

96 1.497 -1.566 0.131

97 1.363 2.540 0.071

98 1.036 -0.418 0.134

99 1.404 -1.267 0.132

100 0.800 -1.521 0.131

101 0.888 2.386 0.053

102 1.302 0.138 0.132

103 0.879 -2.528 0.052

104 1.335 -1.908 0.057

105 1.351 -0.915 0.136

106 0.899 -2.669 0.140

107 1.412 0.853 0.121

108 1.240 0.419 0.127

109 0.881 0.553 0.057

110 0.908 -0.275 0.080

111 0.979 -0.866 0.068

112 0.886 2.215 0.136

113 1.339 1.820 0.137

114 1.214 0.727 0.069

115 1.248 -2.514 0.079

116 1.141 -0.815 0.070

117 1.281 1.999 0.093

118 0.959 2.676 0.139

119 0.981 0.707 0.079

120 1.106 -1.171 0.144

121 1.004 -1.242 0.070

122 1.258 0.444 0.097

123 0.820 -0.551 0.116

124 0.921 -1.212 0.066

125 1.462 2.285 0.098

126 1.107 2.523 0.096

127 1.237 -0.069 0.089

128 1.258 2.681 0.127

129 1.258 2.758 0.074

130 1.148 -0.374 0.135

131 1.363 1.158 0.091

132 0.875 1.457 0.115

133 0.811 -0.684 0.072

134 1.323 0.771 0.094

135 1.496 -2.359 0.079

136 1.358 -1.767 0.052

137 1.099 0.523 0.074

138 1.494 -1.115 0.075

139 0.880 1.617 0.068

140 0.828 -1.359 0.062

141 1.176 2.341 0.129

142 0.844 -2.109 0.086

143 1.257 0.766 0.055

144 1.128 2.668 0.057

145 1.462 -2.402 0.136

146 0.948 -0.697 0.140

147 0.801 1.429 0.061

148 1.185 -1.994 0.150

149 0.915 -1.046 0.149

150 1.325 2.322 0.083

151 0.818 1.329 0.101

152 1.045 2.888 0.098

153 1.367 -2.628 0.113

154 1.456 -0.571 0.141

155 1.429 -0.213 0.084

156 1.182 2.439 0.063

157 0.847 0.089 0.122

158 0.887 -2.525 0.102

159 0.923 -2.556 0.127

160 1.288 0.513 0.103

161 1.069 -1.920 0.099

162 0.903 -1.718 0.116

163 0.889 -2.521 0.105

164 1.332 1.043 0.085

165 1.102 1.029 0.106

166 1.470 -1.272 0.119

167 1.017 2.324 0.119

168 1.394 2.881 0.121

169 1.010 1.798 0.076

170 1.168 -1.651 0.089

171 1.081 -0.113 0.093

172 0.979 2.143 0.141

173 1.472 2.396 0.071

174 1.480 2.426 0.119

175 0.992 -0.730 0.091

176 1.302 2.051 0.071

177 1.469 -0.553 0.065

178 1.473 2.586 0.118

179 1.028 1.987 0.067

180 1.448 0.279 0.054

181 1.059 1.159 0.051

182 1.041 0.886 0.141

183 0.838 -1.318 0.132

184 1.008 1.798 0.089

185 0.810 -2.207 0.077

186 0.831 -0.582 0.140

187 1.425 -2.652 0.050

188 1.492 -2.786 0.092

189 1.425 -0.370 0.097

190 0.942 -2.608 0.137

191 0.996 -0.951 0.059

192 0.911 2.618 0.087

193 1.431 -1.558 0.061

194 1.197 1.738 0.128

195 1.493 -0.866 0.115

196 1.143 -1.074 0.118

197 1.345 2.462 0.119

198 0.891 -2.804 0.112

199 1.301 1.957 0.064

200 1.465 -1.276 0.093

201 1.019 0.848 0.056

202 0.818 1.909 0.137

203 1.425 1.100 0.136

204 1.365 0.613 0.140

205 1.354 1.656 0.146

206 1.265 -1.480 0.081

207 1.342 -2.915 0.066

208 1.429 -0.950 0.106

209 1.295 -0.694 0.139

210 0.886 -1.237 0.054

211 1.337 -1.402 0.140

212 0.901 1.693 0.062

213 1.297 -2.446 0.067

214 1.354 1.555 0.118

215 0.801 1.204 0.062

216 1.017 0.246 0.147

217 1.367 -2.043 0.077

218 0.981 0.597 0.149

219 0.918 -2.429 0.055

220 0.822 2.802 0.132

221 1.382 1.843 0.089

222 1.118 -0.540 0.103

223 1.213 1.182 0.074

224 0.848 1.683 0.106

225 0.879 1.782 0.076

226 0.827 -1.818 0.126

227 1.184 -0.441 0.060

228 1.380 2.793 0.094

229 1.125 -1.447 0.079

230 0.833 -0.637 0.074

231 1.408 -1.021 0.102

232 0.893 2.450 0.094

233 1.059 1.611 0.131

234 1.342 -2.245 0.070

235 1.320 -1.307 0.137

236 0.958 1.740 0.139

237 1.106 1.058 0.121

238 1.444 1.360 0.077

239 1.367 2.647 0.070

240 0.831 -1.646 0.091

241 0.873 1.112 0.074

242 1.483 0.021 0.101

243 1.137 2.698 0.119

244 1.315 -2.065 0.051

245 1.215 1.075 0.062

246 1.410 1.517 0.117

247 1.167 -0.666 0.082